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Given an m X n matrix A, where m > n, a (strict) saddlepoint (SP) of A is an
entry that is (strictly) maximum in its row and (strictly) minimum in its column.
Saddlepoints arise in the theory of two-person zero-sum games. Recently, Llewellyn
et al. [2] showed that finding a non-strict SP requires querying all mn entries of the
matrix in the worst case, while a strict SP can be found by querying just
O((m/n)n'°2%) entries. Assuming that querying an entry of the matrix takes
constant time, their algorithm finds a strict SP in time O((m/n)n'°%23). The
purpose of this note is to describe an algorithm that finds a strict SP of 4 in time
O(m log n), with just O(m) queries of the entries of A.

For simplicity, we assume that A is a square matrix; a rectangular matrix of size
m X n is handled by dividing it into [m/n] matrices of size n X n, as in [2]. The
following observation is from [2].

Lemma 1. Given two entries of A, we can eliminate one of them as a possible
candidate for a strict SP by querying one more entries of A and doing a constant
amount of extra computation.

It follows from this lemma that a matrix can have at most one strict SP. Let H
be a collection of n triples of the form (row, column, value) satistying the following
properties:

P1. H has at most one entry from each row or column of A.
P2. Any strict saddlepoint of A lies in a row and column represented in H.

LemMma 2. If a and b are, respectively, the minimum and maximum values of
entries in H, then any strict saddle point has a value ¢, a < ¢ < b, with equality only
if it is a member of H.

Proof. A strict saddlepoint must either be the representative of H in its row or
else exceed it. Similarly it must either be the representative of H in its column or
else be less thanit. W

It follows immediately from Lemma 2 that:

Lemma 3. If A;; is a minimum (maximum) element of H, then it is the only
possible strict SP in column i (row j).

We initially set H to be {(i,i, 4;)|1 < i < n}. The following lemma essentially
gives an algorithm for finding the strict saddlepoint of A, if it exists.
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Lemma 4. Let (i,j, A;;) and (k,l, Ay,) be two distinct entries of H having
minimum and maximum values, respectively. By querying A;; and doing a constant
amount of extra computation, we can reduce the size of H by one, while preserving
properties P1 and P2.

Proof. By property P1,i # k and j # /. We say a row or column is remaining if
it has a representative in H. We divide the analysis into three cases depending on
the value of A4,,.

Case 1. A, < A;; <Ay Any strict saddlepoint in column [ is no larger than
A, However, A; < A,;, so by Lemma 2 column / cannot contain a strict SP, and
we can eliminate this column entirely. By Lemma 3, the only possible strict SP in
row k is A,;, which we have already ruled out. Consequently, we can delete the
entry (k, I, A,,) from H.

Case 2. A;; <Ay <Ay This case is symmetric to case 1; here we eliminate
row ¢ and column j and, consequently, delete the entry (i, j, A ,-j) from H.

Case 3. A;; <A; <Ay. By Lemma 3, the only possible strict saddlepoints in
column j or row k are A4;; and A,,. The first inequality rules out A4,;; the second
rules out A4,,. Hence, the column j and the row k can be eliminated. The row i
and the column /, however, cannot be eliminated yet. We, therefore, delete
(i, j, A;j) and (k, 1, Ay, from H but insert (i, 1, A;). This preserves the properties
of H while decreasing its size by one.

This completes the proof. ®

Once we have eliminated all but one entry as a possible saddlepoint, then to test
whether this last entry really is a saddlepoint, we make comparisons with all other
entries in its row and column; this requires 2n — 2 additional queries. Finally, we
can store H as a min-max heap so that the operations Delete-Min, Delete-Max,
Find-Min, Find-Max and Insert can be performed in worst-case time O(log n) [1].
This proves our main result.

THEOREM 5. Given an m X n matrix A, where m > n, we can determine whether
A has a strict saddlepoint, and report such an entry, by querying O(m) matrix entries
and doing O(m log n) additional computation.
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Circumscribed Circles

ROBERT OSSERMAN
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In a paper giving a new derivation of the four-vertex theorem [1], I stated
without proof some elementary lemmas about circumscribed circles. The argu-
ments needed are familiar to those who work in the field, but are not completely
obvious. In rethinking those arguments, I noticed that the statements hold in far





