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ABSTRACT

Suppose P is a set of points in the plane with rectilinear
distance. Let ZS(P) denote the length of a Steiner minimal
tree for P. Let lr(P) denote the semiperimeter of the smallest

rectangle with vertical and horizontal lines which encloses P.
Tt is well known that % (P) > & (P) for |P| > 3 where |P| de-

notes the cardinality of P.
In designing placement algorithms for printed circuits,
%,(P) has been used as an estimate of 2_(P) when |P| is small.

Therefore, it is of some interest to know the value of
2, (P)
L.,(P)

o} = Max

* [Pl
In this paper we show P, tends to (Vn+1)/2 and we give the exact
value of 0, for n < 10.

1. INTRODUCTION

A rectilinear Steiner tree (RST) for a set of points P in
the plane is a tree which interconnects P using only vertical
and horizontal lines. A minimal RST is such a tree with short-
est possible total length which is denoted by zs(P). Minimal

RST's have potential application to wire layout algorithms for
printed circuits.
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It has recently been proved [2] that the construction for
minimal RST's is an NP-complete problem in general. Therefore
it becomes increasingly important to learn some general proper-
ties of minimal RST's. 1In this paper we study an extremal prob-
lem of minimal RST's. Let R(P) denote the smallest rectangle
(with vertical and horizontal sides) enclosing P and let g (P)
denote its semiperimeter. Define r

L (P)
p(P) = —F—
%, (P)
and
p. = Max p(P)
n |P]=n

where IP] is the cardinality of P. We show that Py = (Yn+1)/2
when n is a square. Since °n is monotone nondecreasing in n,
(/541)/2 is a reasonable estimate of Py for large n. However,
the problem of determining exact values for p, Seems to be very
difficult even for not so large n. The values of Py for small

n are of particular interest since in the printed circuit appli-
cation n is usually a single digit number. It is trivial to
note that Py = 1. The values of P3r Py and pg are given in [3].

In this paper, we determine Py for 6 < n < 10. The values of

I for 2 < n < 10 are listed in Table 1.

Table 1
n 2 3 4 5 6 7 8 9 10
p 1 1 3 3/2 5/3 7/4 11/6 2 2

Zr(P) has been suggested and used as an estimate of QS(P)

in [4,5]. Since p(P) > 1 for all P, and from Table 1, o (P) <2
for n < 10, the error factor for such an estimate is at most
two for these values of n.

2. SOME PRELIMINARY RESULTS

Let P be the set of points to be interconnected. Consider
the rectilinear grid formed by drawing a horizontal and vertical
line through each point of P. G(P) will denote the portion of



BOUNDED RECTILINEAR STEINER TREES 21

the grid within R(P). A fundamental theorem on minimal RST's
which reduces their construction to a finite problem is the
following.

Hanan's Theorem [31: There is a minimal RST for P which isg
composed of a subset of the lines of G(P).

Now we state and prove several lemmas which will be used
to derive Pne

Lemma 1: o, 18 monotone increasing in n.

Proof: Suppose P is the set of points for which °n is achieved.

Let a point p be added inside of R(P). Since

sLs(P+{p}) > 2 _(P) and

er (P+{P}) 2’1' »),

we have
ls(P+{p})
P+l = 5 ®+(p1) = °n°

. ab-1
Lemma 2: Suppose n > ab. Then S Ar R

Proof: Suppose n = ab. Consider an a xb grid where each edge
is of unit length and each grid point is a point of P. Then

zr(P) = (a-1) + (b-1).
But a minimal RST on P must contain at least ab -1 edges, and

hence is of length at least ab-1. (It is easy to see that its
length is indeed ab-1.) Therefore

9. (P)
Pab > S > ab-1 .
—-g,r(P) Z (at+b-2)

Lemma 2 now follows immediately from Lemma 1.
Let Sn(a,b) denote the greatest length a minimal RST for a

set of points contained in a rectangle whose sides have lengths
a and b can have. Recently, the following results have been
proven.
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Chung and Graham's Theorem [1]:

Sn(a,b) i% (a+b+at+ bt_n) R

where t is an arbitrary positive integer.

Using Lemma 2 and this theorem, we obtain

v+l

Theorem 1: b, =% for n a square.

Proof: By Chung and Graham's theorem we have

1

S (a,b) 5

p < Max < Max
— + —
n a,b atb a,b

(atb+at+b n/t)

a+b !

for any positive integer t. When n is a square, let t = vn in
the above inequality. Then we have

1
P 55 (/n+1).

But from Lemma 2, for n a square

, o=l _ /n#1
%7 o/nea 2

Theorem 1 is proven.

Define d(A,B) to be the (rectilinear) distance between two
points A and B which is composed of the horizontal distance
dX(A,B) and the vertical distance dy(A,B).

Lemma 3: Suppose P, > k where k is a positive integer. Then
po(P) = Py, implies that each side of R(P) contains at least k+1
points of P.

Proof: Suppose on the contrary that R(P) has a side AB con-
taining only m points {Ul,...,Um} with m < k. We may assume

that all other points of P are contained in a rectangle CDEF
(see Figure 1) with d(a,E) > 0.
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Fig. 1

Let{Vl,...,Vm}be m points on line EF such thatdy(Ui,Vi)==O
for i =1,...,m. Let P' =P U{vl,...,vm} - {Ul,...,Um}. Then

n > [p'].
Let t' be a minimal RST on P' and let t be an RST on P
formed by adding edges (Ui,Vi), i=1,...,m to t'. Since

ft') .
@ p(P') <p, and
r
m < Pp ?
it follows that
1
JLS(P) ) wE) L(t )+mdx(Ul,Vl) <
= ] ’
lr(P) —-Qr(P) lr(P )+dx(Ul,Vl) n

a contradiction to the fact that p(P) = Py

Corollary: Suppose P, = k where k is a positive integer. Then
there exists a set P of n points with o(P) = p_ such that each
stde of R(P) contains at least k + 1 points of P,

Proof: We follow the notation in Lemma 3. Let

n' = Min{x:p =k}.
X
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Suppose line AB contains m points, m < k. Let CDEF be the
smallest rectangle enclosing all other points of P not on line
AB. Then line EF contains a point of P. But no V., i=1,...,n,

can be a point of P since otherwise IP'I < n' implies

X > p(p') > 2LE)

2T @ > k, an absurdity. Therefore line EF contains
r

at least m+1 points of P'. So P' is a set of n' points with
p(P') = P and having at least one more point on a side which

previously contained less than k +1 points. Repeating this con-
struction, we obtain in a finite number of steps a set P* of n'
points with p (P*) = pn, and each side of R(P*) containing at

least k +1 points of p*,.
Suppose n > n'. Let P** be the union of P* and any n-n'
points inside R(P*). Then p(P**) = pn and each side of R (P**)

contains at least k +1 points of P**,

Lemma 4: There exists a set P of n points with p(P) = 0,
n > 4, such that all four points at the corners of R(P) are
points of P.

Proof: Let R(P) be the rectangle ABCD as shown in Figure 2.
Assume A £ P,

D U, A

W----- PV

c B
Fig. 2

From Lemma 3, we may assume that P is such that line AB
and line AD each contain at least two points. Let U be the
rightmost point on line AD and V the uppermost point on line
AB. Consider the rectangle AVWU. Let Q be the set of points
of P lying in the rectangle AVWU.

Let X be a point in Q U {V} - {U} such that no other point
in Q is higher than X, and X is the rightmost point among all
points in Q which has the same height as X. Draw the rectangle
UU'XX' as shown in Figure 3.
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Fig. 3

pefine P' = P U {u'} U {x'} - {u} - {x}.
It is easy to see that Zr(P') = lr(P). On the other hand

we will show RS(P') z_%s(P). This implies p(P') = I Thus, in

a finite number of steps, we will find a set P* with p(P*) = p
and {a,B,C,D} C P*. n

Consider a minimal RST t' for P'. We may assume the inter-
section of t' and the open rectangle AZXU' is of length zero
according to the dimension reduction theorem in [6]. sSuppose
the intersection g of t' and the closed rectangle UU'XX' is a
forest of length not less than the sum of d(¥,x') and 4(U,X").
Let t be the union of t' -q with line XX' and UX'. Then

2 (B") > 2(t) > 2 ().

Therefore we may assume that q is of length less than the sum of
d(x,X') and d(U,X'). Let q' be a connected component of g which

contains U'. Then clearly q' does not contain X', for otherwise
q' would be longer than q. Let G be a point on line XX' or line
UX' and suppose G is in q'. Without loss of generality we may

assume G is on line XX'. Then
2{g) > d(U'x) + d(G,X).

Let t be the union of t' -q and lines UX',GX. Then t is a
Steiner tree for P. Hence

L (BT > a(t) > ¢ (P),

and Lemma 4 is proven.



26 CHUNG AND HWANG
3. p FOR6 <n <8

Theorem 2: = 5/3.

e
Proof: First, we have fg > 5/3 by letting a =3 and b = 2 in
Lemma 2.

Let P = {a,B,C,D,X,Y} be a set of points with p(P) = Pg-
From Lemma 4, we may assume that R(P) is the rectangle ABCD as
shown in Figure 4. Label the other two points from left to
right by X and Y.

TA

<

Fig. 4
Let t be an RST for P as shown in Figure 4. We have
2(t) < 2d4(a,B) + d(a,D) + 4 (@a,y).
Similarly we have
2(t) §_2d(A,B) + d(a,D) + dx(C,X).

Let t' be an RST for P as constructed in Figure 5.

Fig. 5

We have

2(t') < 4d@,B) + 2d(a,D) + dX(X,Y).
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Therefore
32 (R) < &(E) + &(t) + 2(t")
< 54(a,B) + 44(a,D) + dx(D,x) + dx(x,Y) + dx(Y,A)
= 5(d(A,B) + 4(a,D))
= 5% (P), or

ZS(P) 5
p. = < <.
(P) — 3
r

o]
P

This proves the theorem.

Theorem 3: 0, = 7/4.

Proof: Let Q be the set of points as shown in Figure 6. Then
we have p_ > p(Q) = 7/4.

2— o . [

4 - . .

O— o .
[
o 1 2
Fig. 6

Let P = {A,B,C,D,X,Y,Z2} be a set of points with p (P) = P e

From Lemma 4, we may assume that R(P) is the rectangle ABCD as
shown in Figure 7. Label the other three points from left to
right by X,Y and Z.

Fig. 7
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Let t be an RST for P as constructed in Figure 7. We
have

2(t) < 2d4(a,B) + 4(A,D) + dx(D,X) + dx(Z,A).
Let t' be an RST for P as constructed in Figure 8. We
have
2(t') <24(a,p) + 4(a,B) + dx(x,z).

D A
X o——o|
Ye¢
_—..Z
c B
Fig. 8

Therefore
2%@)i2&)+2&ﬂ
§_3d(A,B) + 3d(a,D) + dx(D,X) + dx(X,Z) + dx(Z,A)
= 3d(a,B) + 44(a,D).
Similarly we can show
ZQS(P) < 4d(a,B) + 34(a,D).
It follows that

45_(P) < 7g_(P).

The theorem is proven.

Theorem 4: = 11/6.

Pg

Proof: Let Q be the set of points as shown in Figure 9. Then
we have pg > p(Q) = 11/6.
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Fig. 9

et P={A,B,C,D,E,F,G,H} be a set of points with p (P) =pg-

From Lemma 4, we may assume that R(P) is the rectangle ABCD as
shown in Figure 10. Label the other four points from left to
right by E,F,G and H.

De F —e A
&H
Ee
>~—|
Co—— G L oB
Fig. 10

Let t be the RST for P as constructed in Figure 10. Then
2(t) = 2£r(P) - dx(E,G).

Let t' be the RST for P as constructed in Figure 11.

D.___ .——.A
.F'
b H
E¢ -
co— ¢ L8
Fig. 11

Then

(') = 22r(P) - dx(F,H).
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Let t" be the RST for P as constructed in Figure 12.

De— -o A

Fo——

Then
B(E") = 2, (B) + d(A,D) + d (E,6) +d (F,H).
Therefore,

3QS(P) S R(E) + (L") + (M)

| A

52r(P) + d(a,D).
Similarly we can show
32_(P) < 5% (P) + d4(a,B).
s — r
It follows that
GZS(P) 5_112r(P).
The theorem is proven.

4. p. AND p

9 10

Theorem &: = 2.

Pg =Py

Proof: By setting a =b = 3 in Lemma 2, we obtain P10 Z_pg >
Therefore, it suffices to prove P10 < 2.

Let P = {a,B,C,D,E,F,G,H,X,Y} be a set of points with

p(P) = P10° By the Corollary of Lemma 3, we may assume that

R(P) is the rectangle ABCD and E,F,G,H are on the four sides
of R(P) respectively as shown in Figure 13. Label the other
two points by X and Y with X being the lower point.
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DT ? l v (i
6 X
[ 13
(o} Fe B
Fig. 13

Without loss of generality, we assume d(a,B) < d(A,D) and
Y is in the first quadrant.

Case (i): X is either in the first or the second quadrant.

Construct t as in Figure 13. The only requirement is that
F should be connected to either B or C depending on which point
is closer. We have

2(t)

Il

d(A,D) + 24(A,B) + dx(F,B) + dy(H,X)
1 1

< d(a,D) + 24(a,B) + Ed(A,D) + —z-d(A,B)

<20 (P).

Case (i7): X is in the fourth quadrant (see Figure 14). With-
out loss of generality, assume 4(A,E) < 4(g,B).

De o A

G
I X
Ce F *B
Fig. 14

(a) H is to the left of Y and X.

Construct t as in Figure 14 where G is connected to C or D
depending on which is closer. If line AE is too short to meet
the horizontal line from Y, then extend it to meet. Clearly we
have £ (t) 5_22r(P). If Y is to the left of X, then the line

segment g should be shifted to the right.
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(b) X is to the left of Y and H.

Construct t either as in Figure 15 or as in Figure 16
depending on whether H is to the left of Y or not.

D H A D H A

[ ] |
_I__;E ' 3% |
E
G G Xo—
Xo—
c4 : *s ¢+ °s
Fig. 15 Fig. 16
We have
L(t) =

d(a,D) + 24(a,B) + dx(E,X) + Max{dy(A,E),dy(A,Y)}

< d(A,D) + 24(a,B) +-%d(A,D) + %d(A,B)
5_22r(P).

(c) Y is to the left of X and H.

Construct t as in Figure 17. (If H is to the right of
X, extend AH to meet the vertical line through X.)

D H A
[ SE—Y
G Y._f————oE
*X
¢ F B
Fig. 17

We have

2(t) = 4(a,b) + 24(a,B) + dx(E,Y) + Max{dx(A,H),dx(A,X)}

A

d(a,D) + 2d(A,B) + %d(A,D) + %d(A,D)

22r(P).
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Case (i11): X is in the third quadrant.
Suppose F and H are in the same vertical half in R(P), say
on the left half. Then construct t as in Figure 18.

D H A
Y
Go— E
1
c —eF B
Fig. 18

Clearly
< .
L(t) __2£r(P)
Therefore from now on, we assume F and H (E and G) are in dif-

ferent halves of R(P). We also assume without loss of generality
that

d(a,H) + 4(B,F) i_d(H,D) + d4(c,F).

There are five subcases to be studied.
(a) Y is to the right of H and F.

Construct t as in Figure 19.

Fig. 19
2(t) = 2d(a,B) + 4(A,D) + d_(A,H) + 4 (B,F) < 24 (P).
X X - r

(b) H is to the right of Y.

Construct t as in Figure 20 if F is to the left of X.
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D H A
G Y ®F
X4
(o 3 B
Fig. 20

&t) = 3d(a,B) + a(a,D) < 2,Q,r(P).

Construct t and t' as in Figures 21 and 22 if F is to the
right of X and to the left of Y.

DL d - A
Gq ———eY E
X
c* % B
Fig. 21 Fig. 22

22 (P) < o(t) + 2 (t') = 4g (P).
S -_ X

{(c) F is to the right of Y. E is above Y.

Construct t as in Figure 23.

D, H A
o E
Ge i
ol %
Fig. 23

2 (t) 2d(a,B) + d(a,D) + dx(A,Y) + dx(H,D)

2d(a,B) + d(a,D) + %d(A,D) + %d(A,D)

22r(P).
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(d) F is to the right of Y. E is below Y. G is above X.

Construct t and t' as in Figures 24 and 25.

‘I_J ‘Y
G E

Xe

[ oo
>

Oe—— o0
x4
.——

ﬁB

me

Fig. 24 Fig. 25

20, (P) < &(t) + 2(t') = 42 (P).

() F is to the right of Y. E is below Y. G is below X.

Construct t as in Figure 26.

Oy H A
oY £
GI X j
c £ °s
Fig. 26

2(t) = 2d(a,D) + 4(A,B) + d(A,E) + dy(c,x)

<2d(A,D) + d®,B) + 24(a,B) + 2a(a,B)
= er(P).

Thus all cases have been covered and the theorem is
proven.

We have not been able to determine P11 except that the

set Q of eleven points in Figure 27 shows P11 >p(Q) = %%.
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