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COHOMOLOGICAL ASPECTS OF HYPERGRAPHS

F. R. K. CHUNG AND R. L. GRAHAM

ABSTRACT. By a k-graph we will mean a collection of k-element subsets of
some fixed set ¥. A k-graph can be regarded as a (k — 1)-chain on 2V, the
simplicial complex of all subsets of ¥, over the coefficient group Z/2, the ad-
ditive group of integers modulo 2. The induced group structure on the (k — 1)-
chains leads to natural definitions of the coboundary ¢ of a chain, the cochain
complex of C = {Ck, 8} and the usual cohomology groups H*(C; Z/2).
In particular, it is possible to construct what could be called “higher-order”
coboundary operators (), where () increases dimension by i (rather than
just 1).

In this paper we will develop various properties of these 5 | and in partic-
ular, compute the corresponding cohomology groups for 27 over Z/2. It turns
out that these groups depend in a rather subtle way on the arithmetic properties
of i.

1. INTRODUCTION

Among the most fundamental objects occurring in combinatorics are the so-
called k-uniform hypergraphs, or k-graphs, for short. A k-graph is simply a
collection of (distinct) k-element subsets, called edges, of some fixed set V.
Because of the great generality of this definition, virtually any problem in com-
binatorics can be phrased in terms of a corresponding question about an ap-
propriate class of k-graphs. For example, much of the field of Ramsey theory
(cf. [GRS90]) can be interpreted simply as the study of chromatic numbers
of certain k-graphs (where the chromatic number of a k-graph is the mini-
mum number of classes into which V' can be partitioned so that no edge is
contained entirely in one class). For a full discussion of k-graphs, the reader
should consult Berge [B89].

From a somewhat different point of view, k-graphs can also be regarded
as (k — 1)-chains on 2", the simplicial complex of all subsets of ¥, over
the coeflicient group Z/2, the additive group of integers modulo 2 (so that the
orientation of simplices is irrelevant). From this perspective, the induced group
structure on the (k — 1)-chains leads to natural definitions of the coboundary
0 of a chain, the cochain complex C = {C k.S } and the usual cohomology
groups H*(C; Z/2). (For an excellent discussion of these concepts, the reader
is referred to Munkres [M84].)
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In particular, it is possible to construct a class of what could be called “higher-
order” coboundary operators &), where () increases dimension by i (rather
than just 1). Thus, if G is a k-graph then 6)G will be a (k + i)-graph. These
higher order §() were in fact introduced by S. T. Hu [H49, H50, H52] in 1949,
who showed that they satisfy all but one of the Eilenberg-Steenrod axioms for
a cohomology theory.

It turns out that in recent work of the authors and R. M. Wilson [CGW8§9,
CG90, CGI1] investigating aspects of random-like behavior in k-graphs, these
higher-order coboundary operators arose in a natural way, and played an im-
portant role in settling several fundamental conjectures there.

In this paper we will develop further properties of these (), and in partic-
ular, compute the corresponding cohomology groups for 2¥ over Z/2. As will
be seen (Theorem 4), these groups depend in a rather subtle way on the arith-
metic properties of i, and in particular, on the representation of / to the base
2. We point out that there is a considerable body of work dealing with coho-
mological aspects of 3-uniform hypergraphs (cf. [MS75, C77, C78, S76, ST81,
MLS83, Z81, We84, CW86]). In some sense, our results can be considered as
the beginnings of a natural extension of this work to general hypergraphs.

2. DEFINITIONS AND BASIC PROPERTIES

Let V be a finite set of cardinality |V'| = n, and let (;) denote the family
of k-eclement subsets of V. We denote by C; = Ci (V) the vector space over
Z/2 (the integers modulo 2) generated by the X € (}). The elements of Cj
are called k-graphs (on V). Thus, each k-graph G € C; can be written as

G= ) x:(X)X where y¢: (Z) —7/2.
xe()

We will sometimes write this as G = (V, xg), or G = G¥)(n), if we wish to
emphasize that G is a k-graph on a set V' of n vertices. The elements of
E = E(G) = x(‘;l(l) are called the edges of G, and we will also occasionally
write G = (V, E).

For kK < 0 or kK > n, C, consists of the single element 0, the identity
element of Z/2. With the convention that () consists of the single element

@ , the generic element of Cp is

G(O) = Z XG(O)(X)X = XG(O)(Q)Q .
xe(5)

We define G(()O) to be the O-graph having 0 (@) = 0, so that Ggo) =0¢€ (.
Similarly, we define G(10> to be the (other) O-graph having yg0 (@) = 1. Thus,
Ggo) = @ € Cp. (This convention will be useful later.) The group addition in
C, satisfies

X6+6' = X6+ Xo (mod2) forG,G € Cy .
We will often suppress the dependence of quantities on k when the meaning

is clear, e.g., 0 will denote the zero element in C; for every k.
For p > 1, we define the p-coboundary operator 5®) : C;, — Ck4p as follows:
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For G=(V, x6) € Cx, 6WF =(V, xr) € Ciyp where for Y € (.} ),

2.1) xr(Y) =) xe(X).

xe(x)

(As remarked earlier, 6?) should actually be written 6,(6” ). we will omit the
index k when context makes it clear.) It is easily checked that §®) is a vector
space homomorphism, so we have a natural cochain complex (C, 6®)) on C =

Uk Cr
(2.2) L0 e,

(cf. Munkres [M84]).

Actually, (2.2) represents p disjoint cochain complexes, depending on the
residue class of k& modulo p. One of our goals will be to compute the coho-
mology groups of (C, 5®)) over Z/2 (see §5).

Fact 2.1. 6P o) =0 where 0 denotes the map sending everything to the zero
element in the corresponding Cy .

Proof. For G = EXG(’;) xg(X)X € Ci, we have

sPosPG= 3" (Z (Z)xG(X))Z)

ze(uy) Ye(l,) Xe(X

= ¥ wnz= X (P)renz -0

Xcycz xcz
since (2:) =0 (mod2) for p>1. O

More generally, we have the following. For x € Z, write x = Zizo x(i)2¢,
x(i) € {0, 1}, in its usual binary expansion. Define for x,y € Z,

(2.3) x Vy:= z where z(i) = max{x(i), y(i)}, i>0.
Also, define
_J1 if x(i)y(i) =0 for all i,
(2.4) L(x,y)= {O otherwise,
x4y ifL(x,y)=1,
(2.3) Xxy= { *  otherwise,
(2.6) 6™ :=0 (the zero map),
(2.7) B(x):= {i|x(i) =1} .
Fact 2.2.

X+ _
(xisodd)ﬁl(x’y)_l

SxVy=x+y.



368 F. R. K. CHUNG AND R. L. GRAHAM

This is a standard result in number theory (e.g., see [GKP89]). We remark that
setting p =0 in (2.1) shows that 6 is the identity operator, i.e., dOH = H,
a fact we will occasionally use.

Fact 2.3. )
50 6 5@ = goray = [0 if L(p,q)=1,
0 otherwise.
Proof. The proof is essentially the same as that of Fact 2.1, except that here we
get (”;") instead of (2;’ ). Fact 2.2 then implies the desired conclusion. O

It also follows from Fact 2.3 that
(2.8) oW 6 5@ = §@ o 50 :

(2.9)
Ifp= Zzp' , D1 <Ppy<---<p,then §® = @) 6 @) ... 0@

1

Remark (2.9) already suggests the dependence of the properties of %) on the
form of the binary expansion of p. Our first result (in the next section) will
determine the kernel of %) when |B(p)| =1, i.e., p=2' for some ¢ > 0.

3. THE KERNEL OF 6@ : g =2!
The main result of this section is the following.

Theorem 1. If a =2, t >0, and |V|=n>(k+1)a, k>0, and G =
G®(n)=(V, x¢) € Cy then

(3.10) 6@G=0 G=69F forsomeF € Cy_, .

Remark. (3.10) asserts that the kernel of 6,&”) is just the image of 6,(:'_) 20 1€,

s@ . s@
0= Cig— C— Crsa— 0

is a short exact sequence.
At the end of this section, we give examples showing why some restriction
on 7 is necessary.

Proof. The proof will proceed by induction on k. We first consider the case
k=0.

Considering the two different O-graphs G(()O) and Ggo) , 1t is easy to see that
only G = G(()O) satisfies the hypothesis that 6(¥G = 0 (since 5(")GEO) has edge
set (V). However, G(()O) = 0@F (-9 since any such graph F(-9 is 0 by
definition. Therefore (3.10) holds for k = 0.

To quell a potentially uneasy feeling about starting the induction at such a
trivial level, we next give a direct proof of (3.10) for k =1. Let G=(V, E)
be a 1-graph with #n > 2a and assume 6@G = 0.

First, suppose a = 1. Thus, 6(VG = 0 so that every pair {x,y} Cc V
contains an even number of elements of £ . This implies that either £ = &, in
which case G = 5(1)G(()0) ,or E =V, in which case G =d"G”, which shows
that (3.10) holds in this case.
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Now, suppose @ = 2! > 1. If E = @ then G = 0 = 6@F(-9 since
by definition F(1=4 = 0 for a > 1, and (3.10) holds. If E = V' then for
IS| = a+1, xswg(S) = [SNE| =S| =1 (mod 2), which contradicts the
hypothesis that @G = 0. So assume @ # E # V. In this case, however, it is
impossible for |[SNE|=0 (mod 2) forall SC V with |S|=a+ 1 (whichis
implied by 6@G = 0). Thus, (3.10) holds for k =1.

We now assume that (3.10) holds for all values less than some fixed k>2,
and G is k-graph on n > a(k + 1) vertices satisfying 6@G =0.

Let A C V be a fixed (arbitrary) subset of ¥ with |4| =a =2', and let

V:=V\4, G =G+69G(4),
where G(A) denotes the (k —a)-graph (V, xg(4)) defined by

14
xe(Y)=xg(YUA) forY e (k —a) .

Thus,

5@OG =59G +695DG(4) =6@WG=0.
If we prove that G’ = §@F’ then we have

G=G +69G(4) (overZ/2)

=0@F' + §DG(A) = 9 (F' + G(A)),
and (3.10) holds.
Note that no edge of G’ contains 4, since any such edge X of G has X'\ 4

as an edge of G(A), and so is cancelled in G’ = G + 89 G(4).

So we may henceforth assume that this normalization has been made, and
therefore that

(3.11) G has no edge containing A4 .

Observe that for all B C 4, X is an edge of G(B) if and only if BU X is an
edge of G.

Define 8 := 6@};. That is,
(3.12) 3F=3 Y a0y
ve(}) X€(ils)
Fact 3.1. For e # B C A,

(3.13) 5968 =35 "6(C)
cCB
where b = |B|, ¢ =|C]|.
Note that for B = A4, (3.13) gives

(3.14) 5964 =3%=0=33"6(C).
G4
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This implies that if G := G5 then by (3.11),
(3.15) G= Y %c

B#CCA

Proof of Fact 3.1. Consider W = BUW where W cV, [W|=k+a-b.
Observe that all edges of G in BU W are of the form CUZ , where C C B
and Z C W . Thus, we have

0 = xswg(W) (since 690G =0)

= Xsag(BUW)

(3.16) = Z Xsa-sra6(c) (W)

CCB

= Z Xza-bragc W) (since W C V).

CCB
Therefore,
a)G(B Z Xé(a b+c)G )
= Z Kze-reae) () by (3.16) .
CCB
Since W C V with |W| k +a — b was arbitrary then we conclude
“emB) =3 3"6(C)

CSB
which proves Fact 3.1. O

Fact 3.2. There exist graphs Fc for @ # C C A such that for all B C A,
B # @, we have

b (a— b+c
(3.17) Z
where
Y. Fc if La-b,c)=0
Fr = ) o#CCB
¢ Z Fo if L{(a-b,c)=1
@#CEB

and ¢ =|C|.
Proof. Induction on b :=|B|. Suppose b =1. Applying Fact 3.1, we have

(a) (a—1)—

sG(B)=3"""G=0.

Since G(B) isa (k—1)-graph on ¥ with [V|=n-a>(k+1)a—a=ka
then we can apply Theorem 1 for (k — 1)-graphs and conclude that G(B) =
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3(a)FB as required. This, in particular, defines Fg for |B| = 1. Next we
assume that Fact 3.2 has been proved for all values less than some b > 2, and
suppose B C 4 has |[B| =5

From Fact 3.1 we have

G(B) =Y. 3 7"%(c)
CCB
=56+ Y §UM%G0)
2#CGB
—<(a—b+c)—= —<(a=b+c)==
= > l(a-b,c)p GO+ > 6 G(C)

z#CgA z#ch
c<b

()

since by (3.15), G = Yorcgad G(C) and since L (a—b,c)=0if c>b.

Next, for ¢ < b, we obtain

5(0 b+c) (C) a b+c)25(a C+l)

i=1
by the induction hypothesis (since ¢ < b). Therefore

—<(a—b+c) —<(a—b+c)<

5 G(C)=3 5% F,

by the definition of F;* since for i <c and a—b+c<2',if
l{a-b+c,a-c+i)=1

thenwehave (a—b+c)+(a—c+i)=2a-b+i<2'=a,ie, a<b whichis
a contradiction. (This implies that for i <c,wehave L (a—b+c,a—c+i)=
0.) Thus,

—(a—b+c)

59GB)= 3 La-b,08" "R,
B#CGA
c<b
n Z g(a—b+c)g(a)F
z#ch

b—1
=l —<(a—b
S ST )
c=1

by definition of F* (where the two cases L (a—b,c)=0 and L (a—b,¢)
=1 are considered separately).
Therefore, we can apply Theorem 1 for (k — b)-graphs and conclude that

b—1
— —(a—b —
G(B) =Y 3"k +3“Fp

c=1
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for some Fp (this is the definition of Fp).
— b —<(a—b+c)
G(B)=)»_0 F*
c=1

as required, since F;* = Fp. This completes the induction step and Fact 3.2 is
proved. O

Fact3.3. For 0<c<b<a=2',and b>2

(3.18) Z(l;) _ (b;1> (a—b+c

3 (%)

i=0

1l

) =1l (a-b,c) (mod2).

Proof.

I

(G )
(since b >2 where (%)) :=0)

_(b-1 b-1\ _(b-1
:(c)+(—l):(c> (mod 2).
It remains to show (by Fact 2.2) that

(3.19) (b - 1) = (“ ‘f”) (mod 2).

c
However, this follows easily by inductionon . O

Definition. For J C 4, @ # C ;Cé A, define FCJ to be the graph having as its
edges all sets of the form J U X where X is an edge of F, the graph defined
in Fact 3.2.

Thus, for J =@, FZ = Fc. Also define j:=|J|.

Fact 3.4.
(3.20) G= Y ore=iFs.
@#4CCA
C¢J§A
Jj<c

Proof. We first consider an arbitrary set X € (Z) .
Then, since G = Y orcca 59G(0),

X6(X) = 200) = Xy, 050, %)

(3.21) (X)

- XE@#C%A 395, 3 Ey
(X)

- XZ@#CQA g(a)g(c)FC
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because L (c,a—c+ i) =0 for i < ¢. On the other hand, for the right-hand
side of (3.20),

X isanedgeof Y S@+IF]
2#CGA
c#ICA
j<e

if and only if
X is an edge of Z b LCan2y o

B#CGA

if and only if (by (3.21)) X is an edge of G.

Next, suppose X = BUX where @ #BC A4, XV, |X|=k. Assume
first that B = A. Then by (3.11) we have yg(X) = 0. On the right-hand side
of (3.20), for each edge Y of F¢ in X, the number of J for which JUY is
in X is exactly

)+ () ++ (8-

(the —1 coming from the requirement that J # C)

E(“;l)—lzomodz)

by Fact 3.3, since all the digits in the binary expression of a — 1 are 1.
Now, suppose @ # B G 4. Then

(3.22) 16(BUT) = iy (X) = 2 ge-siag (X).

On the other hand, consider the right-hand side of (3.20) for BUX, i.e.,

(3.23) XS icca sare-nps (BUX) = XS icca sase-n gl (BUX)
c#IG4 c#IGB
j<E i<t

since any edge of F by definition contains J . For a fixed C C B, the number
of J sothat j<c¢ and C #J C B is just

P (3>+<Z;)++<§>—1 (since J # C) ,

while for C € B, the corresponding number is just A+ 1. By Fact 3.3.

/1+15<b_1)
c

(“‘b”) =i (a—b,c) (mod?2).

C
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Continuing (3.23) we get

XZZ#CCA 6(a+c—j)FC.{ (B U X)
#

C#JCB
j<c

= XEQ#CQB Ag(a_b+C)FC+Ez¥ch(A+I)S(a_b“)FC (X)
(3.24) =S s TRt S e s Lamb 05 (K)
= <la-— C, 7

X5 b+)(EE,#CQBFC+EZ,#CQAJ.(a—b,c)Fc)( )

=X g (X) by the definition of F*

= x6(BUX) by (3.22).
This completes the proof of Fact 3.4. O

To finish the proof of Theorem 1, observe by Fact 3.4 that in fact

ng(a)( Z §(c—j)FcJ)

2#CSA
C#JG4
Jj<c

since 0 <c—j<a=2" implies L (a,c—j)=1.
The other direction of (3.10), namely that

G=069F =60G=06@s9F =0

follows from Fact 2.1. This completes the proof of Theorem 1. 0O

There are a variety of examples known to show that some size restriction on
n is necessary in order for the conclusion of Theorem 1 be valid. One such
family of examples is the following. Define

V={x1,x}Uz/2"" fort>1,
G = G¥+D = (V| E) with the edge set
E={x;u{i+1,...,i+2'}|j=1,2and i€ Z/2"*"}.
Thus, G has 2+? edges, each of which is a (2’ + 1)-set in V. A simple

calculation shows that 629G = 0. However, G # 62)G() for any 1-graph
G() since no (2! + 1)-graph of the form d@G() can have exactly 2+2 edges.

4. THE KERNEL OF 69 : GENERAL

In this section we complete our analysis of kerd(a). In order to do this, we
require an auxiliary result, of interest in its own right.
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Theorem 2. Suppose a,, aa, ... ,ar >0 and G; isa (k —a;)-graphon V with
|Vi=n >4k +1)*. Then

,
(4.25) > 6“G; = 0 « there exist Kij = Kji such that
i=1
(4.26) oGy = 6 @VUK;; .
J';fi
Proof. The proof will be a multiple induction on r, }~;a; and k. The desired
conclusion holds for 7 = 1 by Theorem 1. Also, Theorem 2 is immediate for

k = 0, so we will always assume henceforth that £k > 1. We will first require
several facts which will be proved under our induction hypotheses.

Fact 4.1. Suppose a <max;a; and G is a k'-graph with a+ k' < k. Then

(4.27) s9G=0eG= Y 0®F forsomeF,.
teB(a)

Proof. The result is immediate for |B(a)|

min{¢|¢ € B(a)}. By Theorem 1 (since n

1. Suppose |B(a)] > 1. Let u:=

>Lk+1)?>2¢k'+a-2"+1)),

1
3
8@29G = @) F for some F ,

i.e.,
0G4+ 6MF=0.

Now by induction (since k' +a — 2% < k), (4.26) implies
0@2G = §WE, ,

1.e.,
5@2)G+6@VF)=0.

By induction within the proof of Fact 4.1, we have

G+ F,= Y 69F.

1€B(a—2")
Therefore,
G= Y §%F
teB(a)

as required. O

Fact 4.2. Suppose all the edges of G and F;, 1 <i<r,arein V=V \{v}.
If

,
G= Gly = zg(bl)Fi
i=1
then

r r
(4.28) G = Za(b,)pi + Za(b,—l)Fi+
i=1 i=1
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where F;* has edge set {e U{v}le € E(F;)}, and " = 0®\5 as given in
(3.12).

Proof. 1t is straightforward to verify (4.28) for the two possible cases, namely,
edges which belong to 7, and edges of the form ¢’ U{v}, ¢/ CV. O

g(avb)

Fact 4.3. Assume a < a; for some i, and a is even. Suppose g(a)F = G,

and all edges of F and G are contained in V. Then
S@HE _ savb+h if'b is even,
s@bh G+ ifb is odd.

(avh) (avb—a)

proof 8°“F = 8“PG implies F = 3 G + K' where K’ € kero™.

Thus, by Fact 4.1, we have
(4.29) F=3""+ Y% 3%k,.
teB(a)
By Fact 4.2, we have
F=0@b-aG4 3N §@0K, +o@vb-a-bgr + Y s@-Dk; .

t€B(a) teB(a)
Thus,
SO _ glath=@vo-a) g Z st g
1€B(a)
(4.30) 4 glarhxavb—a—)G+ o Z et =1 g+

teB(a)
— §(a+1)*(avb—a)G + 5(a+1)*(avb—a—1)G+ .

We consider two cases:
Case 1: b is even. Therefore

5(‘”1)17 — §(a+1)*(avb—a)G — 6(”Vb+l)G .
Case 2: b is odd. Therefore
§(a+1)F — 5(a+1)*(aVb—a—1)G+ — a(avb)G+

as required. This proves Fact 4.3. O

Our next step will be to “normalize” the statement of Theorem 2. We first
claim that it is enough to prove Theorem 2 in the case that all the a; are distinct.
To see this, assume Theorem 2 holds in this case, and suppose a; = a; for some
i < j. Thus, by hypothesis

@G+ Gj)+ Y, 6@G =0.
I#i,j
By induction (on the number of summands), we can find W, , for u,v # j
so that
6@ G, = Zé(auVm)Wu /
uz#l
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and
5(‘")(Gi + Gj) - Z 5(aivau)I/I/i’u .
uti, j
Now define

Gj lf{m>l}={la.]},
0 if {m,l}={u,j}, u#¢i.
It is easily checked that (4.26) holds with these choices.
Next, we show that in fact, it suffices to prove Theorem 2 for the case that
all the a; are distinct powers of 2. For, suppose a; = 2/ + b where ¢ € B(a;)
and b > 0. Then, by hypothesis,

@G+ 6@WG =0,

i>1

Wm,l lfmyl#jy
Km,1=

By induction (on ), a;), there exist W;; such that

(4.31) sOEOGy) = s@valwy,
i>1

and for i > 1,

(4.32) a(a,-)Gi — Zj;gi la(aiVaj)VVij +§(2tva,)VVli .

By (4.31),
WG, = Z s@Vva-Mypy. 4 VK
i>1
for some K. We now apply the induction hypothesis of Theorem 2 (for a
smaller value of k, namely k — 2¢), and conclude there exist U;;, 0<i<j <
r, with

(4.33) obG, = Za@'Vai—Z')VbU” + a(bvz')U01
i>1
and for i > 1,
5(21vai—2’)I/Vl,~ = Z 5(2'va,Va,—2t) Uij +5(21vai—21)vali +6(2tvai)U0i '
j#1
Therefore,
§(a1)G1 — Zé(a,-Val)U”
i>1
and for i > 1 (by (4.32)),
a(ai)Gi = Z 5(aivaj)I’Vij +6(2'Va,)mi
J#i,1
= Z S@vVa W, + Z s@vava) . + s@valy,
Jj#i,1 ji,1
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So, if we choose
k.= [Wi+0®U; ifi, j#1,
Y Uy; ifi>1, j=1,

then (4.26) is easily verified.

Finally, suppose some a; vanishes, say a; = 0. Then by choosing Ki; = G;
if i=1,j>1,and K;; =0 otherwise, the implication (4.25) = (4.26) is
immediate.

Thus, we may assume in the proof of Theorem 2 that a; = 2% with 0< b; <
by < --- < b,. We now return to the main line of the proof.

Define for 1 <i<vr,

Fi=G(v), F=G+3VF

where v is an arbitrary (fixed) vertex of V. It is easy to see that F; and F/
have edge sets entirely contained in ¥ := V' \ {v}, and

(4.34) Gi=F;+0WF, .
Hence,
> @G =0
i
implies

(4.35) Z a(al)E + Za(ai+l)l;‘i/ =0.
i i

4

We first apply (4.35) to edges of the form X U {v} for X ¢ (,Zl) . Thus,

(4.36) S5 VE+ Y5 0.
i i

We consider two cases.
Case 1. by = 0. Thus, a; = 1 and §@)G| = 6(VG, = §(DF, (since we can
assume F/ = 0). Applying 5" 1o (4.36), we have
(4.37) VR +3 5 E 0.
i>1
Together with (4.35) we find
(4.38) S 3R =0.
i>1

We can now apply Theorem 2 since (4.38) involves r — 1| summands. This
implies that there exist W; j, i, j > 1, so that for i > 1,

SR = Y 5w,

g
J#1,i
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Hence, by Theorem 1 (since a; = 2%),
= —(aivaj—a; <(a

(4.39) Fii=Flp= 3 8" " w,; +3“K

#jl,t'
for some K;. By Fact 4.2, we obtain

F; = Z slava—a W, + E g(azva;—af—l)u/i}r +0@EK; +6@-VKF
J J
J#£1,i J#£L1,i
Therefore, for i > 1,
(4.40) O0@F, = Z PICAZR) 7 z 5(aiv(aj_1))l/l/i}' +3@a-hKH
j;ﬂ,i 1<§<i

and

(4.41) se g Zg<a,-+a.—1>Wij L 3D
J

K;.
j>i
Substituting into (4.36) we have

S S SO0 S PO sl ELE

ij i>1 i>1
I<j<i
i.e.,
(4.42) Fi+Y 5% ( S5 w45 K+ ‘FQ) =0.
i>1 J
l<j<i

Now, define for i > 1,

(443 L= 8wy + 3K+ T
Jj

1<j<i
Then
F,= Zg(a:)Li ,
i>1
and for i> 1,
Fi= Y 3 "wy; 43" K+ L.
1<
Using Fact 4.2, we obtain

(4.44) F=Y0@L+Y 6@ VL}.

i>1 i>1
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Also, for i > 1,

59 = S 39 Vw4 5% VK + 5L
1<
By Fact 4.3,
(4.45) d@tVF = Y s@ra-bpt 4 sCa-DKH 4 5@l
1<§<i
Now, choose

o2 Wy it >,
UE\L ifi>l, j=1

Thus for i > 1 we have (by (4.40) and (4.45)),
8@G; = §@F, + 5@+ F!
_ Z a(a,-vaj)mj + Z slavigi—1) Wi}L
J J
j#l,i I<j<i
+ 5(2ai—1)Klj" + Z §(ai+aj_1)n/}'}'
J

1<j<i
+ o@a—hg 4 gty
= Za(aivaJ)Kij .
j
j#i

Finally, by (4.44) we get
0@G =sWF =3 s@hL, =) slatalk,

i>1 i>1
and the proof for Case 1 is complete.

Case 2. a; =2 > 1. We apply 5" 10 (4.36). Thus,

(4.46) S5 E =0,
i

Hence, by (4.35) (restricted to V), we have
(4.47) S5 F=0.
i

Now, rearranging (4.36), we obtain

(4.48) Zg(ﬂi)Fi, - Zg(ai—l)Fi _ 3(“1—1) (Z g(a'_al)Fi) ]
i i
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We next apply Theorem 2 to (4.48) (which has a smaller value of k). Thus,
there exist Wj;, 0 <i < j<r, such that

(4'49) (al 1) (Z 5(0, ap) ) Za(al"'al I)I/I/IO ,

and

(4.50) (a) 25 a,+a,) W, +38 (a +a;— I)VViO ]
J#

Hence, by Fact 4.3,

(4.51) sw+h 25(11 +a,+1)W + olata-1) W0 .
J#i

Applying Fact 4.1 to (4.49), we have

(4.52) z(s"' “F, = Za“’mo+ Y 3k,

tGB(al 1)
for some K;. Applying 3 1o both sides of (4.52), we obtain
(4.53) §R =38 W+ 38k
i>1 t<b
Using (4.47), we have
(4.54) Z(s (6@ W + F) + Za (6K, =0.
i>1 t<by

Since 3, 2 < a1, we can apply the induction hypothesis of Theorem 2.
Therefore, there exist X;j, Vi, ¥/, 0<¢, 1/ < by, i,j>1, satisfying:
For i> 1,

(4.55) s W+ F) = Z sty +Za‘2 Wy,
1961 i
(4.56) 5 (2'+ay) K, = Z 5(a,+2 Y, + 25(2 +2¢ tt, .
i>1 t'#t

This implies by Theorem 1 that
(@) <(a;) =(2")
(4.57) 5K =Y 8"Y+> 0 3,
i>1 t#t

for some J;. Applying the induction hypothesis of Theorem 2 to (4.57) (since
k is smaller), we have:
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For i>1,
(4.58) 3y, = 38 Z0 4 Za("'” g1,
J#i
for Zl(; y Zly, 0<t,t <by, 1 <j. Therefore,
(459) g(ai+2)),it — Z 5(a,+a,+2 )Z,(]) Zé(a,+2 +2! ) w )
J#l,i 't

Substituting into (4.55) we obtain
(4.60) 3“6 @WW + F) = Z 54t x, + Z garerzo.
1961 i j z
Therefore, by Fact 4.1, we have
@61)  Fi=3"Wo+ 3 5%, + 3 5920 4597,
j#’i i jii',i

for some T;.
Hence, by Fact 4.2,

(4.62)
F; =3 Wy + Z S X+ Y 8@z 4 s@r,

it
1#1 i J#1,i

5“' 1)W++ Z aa,—l)Xl-i-_+_ Z 6a1+2—1 Z'(;)Jr-l-a(ai_l)Ti-'— .

J
j#l ) j#l ,i
Thus, for i > 1,
S F; = glataly, 4 Z slaral x,;

J#1,i
(4.63) + Z J(a‘+aj+2t)Zi(;)+§(ai+al_l)Wi-6
e
tGJB;(éal—ll)

+ Z 5(a,-+a,-—1)Xl_-;+ Z a(a,+a,+2’—l)Zi(]{)+ +5(2a,-—I)Ti+ .

l<j<i J#1,i
teB(a;—1)

Now, by (4.63) and (4.51), we have for i > 1,
8@)G, = 5@ F, + 5@V

J#i,1 teB(a—1) 1€B(a;—1)

+ Slaivar) (Wio +oOwW; + Z g(aj—an—l)X$ + 5(a,—a1—1)Tj+) .

1<j<i

)

= 3 sava) ( Xgt+ S a®z04+ ¥ 500z 4 s,
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Now, choose

Xij + 6w + Z 5(2')Zl§]{)+ Z 5(2‘—1)21_(]{)+

tEB(al—I) tEB(al—l)
fori,j>1
H.. — H — 3 s
i Ji u/i0+6(l)u/i1 + Z 5(a,—al—1)X;)j—_+5(a,—a1—1)Ti+
1<j<i
for j=1andi> 1.
Therefore,
6@G; =" s@valK,; fori>1.
J#i
Since
s@@G, = 25("‘)@ = Zg(alvan)Kil
i>1 i>1

then the required H;; have been exhibited, i.e., (4.26) holds. This completes
the induction step and the proof of Theorem 2 is complete. O

We can now use Fact 4.1 (which holds for all k) to characterize the kernel
of 6@ for general a.

Theorem 3. Suppose G is a k-graph on n > %(k +a+ 1)? vertices. Then

s9G=0eG= )Y 5K, for some choice of K,’s .
t€B(a)
Proof. “ =" The lower bound (which is actually rather generous) comes from
that of Theorem 2, since 64 G is a (k + a)-graph. Fact 4.1 gives the desired
implication.
“ «” Immediate, using Fact 2.3. O

Perhaps one could characterize those G satisfying @G = 0 but with G #
ZteB(a) J? K;.

5. THE COHOMOLOGY GROUPS H,f 4

Given a portion of the (generalized) chain complex at Cy:

F12 s
""’Ck—p — Ck s Ck+q""" s

it is natural to ask about the cohomology group H?*? :=kerd@ /imé®) . Here,
we assume that B(p) N B(q) # @, i.e., the binary expansions of p and g share
a common one, since otherwise we can have §®)(5@(.)) # 0, i.e., im 6® ¢
kerd@ , sothat HY*? is not well defined. It is easy to see under this assumption
that . HY»? & (2/2)4?-4:%) where d(p, q; k) is the dimension of the quotient
space kerd@/imd® (with kerd@ and im §®) considered as vector spaces
over Z/2). Thus, we need to compute the dimensions of kerd@ and im 6.
In order to do this, we need to introduce the following class of matrices W =
W, s. For a fixed n-set V', the rows and columns of W are indexed by the sets
(") and (¥), with r>s. For X € ("), Ye(¥), the (X,Y) entry W(X, Y)

r
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of W is defined by

1 ifXDY,

0 otherwise.

These inclusion matrices occur commonly in algebraic combinatorics (e.g., see
[K72, GJ73, GLL80, LR81, F90, Wi*]). What will be of interest to us is the
mod 2 rank w, ; of W (i.e., the rank of the integer matrix W over Z/2). This
was first determined by Linial and Rothschild [LR81]. Subsequently, Wilson
[Wi*] determined the (mod p) rank of W for every prime p, and expressed
the rank w, ; in a form which will be especially convenient for our purposes
(a very elegant proof also appears in Frankl [F90]).

Theorem 4 (Wilson [Wi*]). For 0<s<r<n-s,

s o= 2(()-(20)

summed over all i such that ({”%) is odd (where () :=0).

W(X,Y)={

As an immediate consequence, we have
Fact 5.1. dim(imdé®) = wy 4_,.

Our main effort will be in determining dim(ker ). To begin, write B(q) =
{¢1 <q2<--- < g}, sothat g =3 _ 2% . Form the matrix W* by concate-
nating the r matrices W 4_2,, 1<i<r,ie,

W* =W k—2a Wi k202 Wi k—2ar
It is not hard to see that by Theorem 3,
(5.65) dim(ker 69) = rank, W*
(where rank, denotes the mod2 rank). Now by inclusion-exclusion we have
rank, W™ = Zwk,k—Z"r - Zwk,k—qu -2 t Z Wy fe—29—2% —21
(5.66) i i<j i<j<l
= (=D g kg -

Now, consider a typical term

(5.67) Wk k—c = Z ((7) B (ziz 1))

where ¢ = 2% + ...+ 2% and the sum is taken over all / such that (k’:—ic) is

odd.
Changing the summation index in (5.67) from i to k — i, and using Fact 2.2,
we' can rewrite (5.67) as

(5.68) wk,k—c=;((krii>_<k—’;—l>>

summed over all i such that (iic) = (é) is odd, i.e., such that {s,..., s} =
B(c) C B(i) (by Fact 2.2). Of course, for all our ¢’s,

B(c) € B(q) .
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Thus,
(5.69) B(c) CB(iyn B(q) .

Letting {k — i} denote (,”,)— (,_%_,) , we now count how often {k — i} occurs

in the various terms in {5.66), of which (5.67) is typical. Let ¢ := |B(i)n B(q)|.
If ¢ =0 then no ¢’s contribute to the {k — i} count, so suppose ¢ > 0. In this
case, there are exactly (f) different ¢’s with B(c) C B(i)NB(q), |B{(c)|=1, for
which {k — i} occursin wy x_.. More exactly, it occurs with the sign (=D)L,
which comes from the corresponding /-tuple sum in (5.66). Therefore, the total
contribution of {k — i} in (5.66) is just

(-1 (;) —1 if >0,

I>1

and Qif t=0.
In particular, we obtain

(5.70) ransz*:Z:((k'ii) - (k —7—1»

summed over all { such that B(g)NB(i) # &.
By Fact 5.1, we need to express wy y_, in a similar form. This is given by
(5.68):

(5.71) wk,k—p:;<(kril‘)_ (k~’;—l>)

summed over all [ with B(p) C B(i).
We can now put everything together for the main result of this section.

Theorem 5. When B(p) N\ B(q) # @, and n > (k +q + 1)* then
H = kerd'D /im ) = (7,/2)4w.4:5)

where

(5.72) d(p,q;k)=Z<(k’i,->‘(k_’:—l))

i

summed over all [ such that
(5.73) ‘ B(p) ¢ B(i) and B(q)NB(i)#@.
Proof. Since
d(p, q; k) =dim(ker§9) — dim(im %))

then by (5.70) and (5.71), we simply have to keep track of the coefficients of
((.",) - (,%_))) in the sums for dim(kerd@) and dim(im §%?)).

Since by hypotheses, B(p) N B(q) # @, then it is easy to see that the only
indices i which contribute to the sum satisfy (5.73). O

Condition (5.73) can be expressed in words as saying that in the binary ex-
pansions of p, ¢ and i, some O of /i corresponds to a 1 of p, and some 1
of i corresponds to a 1 of g. Of course, if p=¢ = 2' then no such i exists,
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so that the sum in (5.72) is empty, d(p, g; k) =0, and H}'? is trivial (as we
already know by Theorem 1).

6. APPLICATIONS

In this section are describe several applications of the preceding ideas, which
in fact provided some of our initial motivation for investigating cohomological
aspects of hypergraphs.

To begin with, given a k-graph G = (V, E) we define the multiplicative
edge function u = pug: V*k - {1, —1} by setting

_ -1 if{x,... ,x}€E,
H(X1s e s Xi) = { 1 otherwise.

With |V| = n, we define the deviation of G, denoted by dev G, by

(6.74) dev G := n%k > II w@ier), ..., viler)) -
v;(0),v;(1)eV ¢,€{0,1}
I<i<k  1<j<k
It turns out that dev G is a fundamental invariant of a k-graph G, and gives
in many ways a quantitative measure of how much G behaves like a “random”
k-graph Gy, on V (e.g., one in which each k-set X € (}) is selected indepen-
dently with probability 1/2 to be an edge of G, ;). In particular, 0 < dev G < 1
always holds, and the closer dev G is to 0, the more like a random k-graph
G is. Families of k-graphs G®*)(n) for which dev G®(n) - 0 as n — oo
are called quasi-random. (For a fuller discussion of these ideas, the reader can
consult [CGW89, CG90, CG9I1].)
In [CGI1], it was important to characterize those k-graphs G*) with the
largest possible deviation, i.e., satisfying

(6.75) devG® =1 .
The following result gives such a characterization.
Theorem 6.
dev G*) =1
if and only if
Go — Xk: SO g k=)

i=1
for some choice of (k — i)-graphs K*-9, 1<i<k.

For a proof, see [CGI1].

One property a quasi-random family of k-graphs G*)(n) = (V,, E,), n —
oo, satisfies is the following. For any fixed k-graph H®)(m) = (V, E), the
number #{H®(m) < G¥(n)} of maps 1 : ¥V — V, such that X € E &
MX)€E,, X € (}), satisfies

#HO(m) < GP(n)} = 1 +o()n"/2E) ,  n—oo.

In other words, all k-graphs on a fixed number m of vertices occur (asymp-
totically) equally often as induced subgraphs of G%*)(n) as n — co. In fact, it
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is shown in [CG91] that if this holds for all H*)(2k) on 2k vertices, then it
holds for all H®)(m) for any fixed m . Furthermore, the value 2k is critical,
in the sense that there exist non-quasi-random families G*)(n) for which

6.76)  #{H®(s) < GPn)} =1 +o(1)n*2®) |, 1> oo,

forall s<2k-1.

One way of constructing such families for the case s = 2k — 1, when k # 2¢
for any a, is the following.

For 1 <t <k -1, choose a “random” ¢-graph G(172 on aset V, of size n,

ie., each r-set X € (") is designated as an edge of th/)z independently with

probability 1/2. Define
k—1
(6.77) G®(n) =3 80GH(n) .

t=1
Theorem 7 [CG91]. For almost all choices of G(lt/)z(n) , G®)(n) satisfies (6.76).

In the case that k = 27, a slight extension of this construction gives the
required family (see [CG91] for details).

7. CONCLUDING REMARKS

It would be natural to investigate the corresponding results for more general
coefficient groups, e.g., Z/p or Z, as opposed to Z/2, which is the simplest
choice (and the one for which we had natural applications). A good beginning
in this direction has very recently been taken by Dale Darrow, to whom we also
wish to thank for a careful reading of an earlier draft of this paper. It would
appear that the continuation of these investigations in the directions of the work
of Cameron [C77, C78] and others (who dealt with the case k = 3) looks quite
promising.

REFERENCES
[B89] C. Berge, Hypergraphs, North-Holland, Amsterdam, 1989.
[C77] P. J. Cameron, Cohomological aspects of two-graphs, Math. Z. 157 (1977), 101-119.

, Automorphisms and cohomology of switching classes, J. Combin. Theory Ser.
(B) 22 (1977), 297-298.

[CW86] Y. Cheng and A. L. Wells, Jr., Switching classes of directed graphs, J. Combin. Theory
Ser. (B) 40 (1986), 169-186.

[CG90] F. R. K. Chung and R. L. Graham, Quasi-random hypergraphs, Random Structures and
Algorithms 1 (1990), 105-124.

[CGI1] , Quasi-random set systems, J. Amer. Math. Soc. 4 (1991), 151-196.

[CGW89] F.R.K. Chung, R. L. Graham and R. M. Wilson, Quasi-random graphs, Combinatorica
9 (1989), 345-362.

[F90] P. Frankl, Intersection theorems and mod p rank of inclusion matrices, J. Combin.
Theory Ser. (A) 54 (1990), 85-94.

[GLL80] R.L.Graham,S.Y.R.Liand W. C. Li, On the structure of t-designs, SIAM J. Algebraic
and Discrete Method 1 (1980), 8-14.

[GKP89] R.L.Graham, D. E. Knuth and O. Patasknik, Concrete mathematics, Addison-Wesley,
Reading, Mass., 1989.

- [CT8]




388

[GRS90]
[GI73]
[H49]
[H50]
[H52]
[K72]
[LR81]
[MS75]

[ML83]

[(M84]
(S76]
[ST81]
[We84]
[Wi*]

[Z81]

F. R. K. CHUNG AND R. L. GRAHAM

R. L. Graham, B. L. Rothschild and J. H. Spencer, Ramsey theory, (2nd ed.), Wiley,
New York, 1990.

J. E. Grover and W. B. Jurkat, The module structure of integral designs, J. Combin.
Theory Ser. (A) 15 (1973), 75-90.

S. T. Hu, 4 cohomology theory with higher coboundary operators. 1 (Construction of the
groups), Nederl. Akad. Wetensch. Proc. 52 (1949), 1144-1150.

» A cohomology theory with higher coboundary operators. 11 (Verification of the
axioms of Eilenberg-Steenrod), Nederl. Akad. Wetensch. Proc. 53 (1950), 70-76.

,» A cohomology theory with higher coboundary operators. 111 (The homotopy
axiom and the groups for spheres), Nederl. Akad. Wetensch. Proc. 55 (1952), 123-129.
W. M. Kantor, On incidence matrices of finite projective and affine spaces, Math. Z. 124
(1972), 315-318.

N. Linial and B. L. Rothschild, Incidence matrices of subsets — a rank formula, SIAM
J. Algebraic and Discrete Methods 2 (1981), 333-340.

C. L. Mallows and N. J. A. Sloane, Two-graphs, switching classes and Euler graphs are
equal in number, SIAM J. Appl. Math. 28 (1975), 876-880.

W. Mielants and H. Leemans, Z,-cohomology of projective spaces of odd order,
Combinatorics ‘81 (Rome, 1981), North-Holland Math. Stud., 78, North-Holland,
Amsterdam, 1983, pp. 635-651.

J. R. Munkres, Elements of algebraic topology, Benjamin/Cummings, Menlo Park,
Calif., 1984.

J. J. Seidel, 4 survey of two-graphs, Colloquio Internazionale sulle Teorie Combinatorie,
vol. 1, Accademia Nazionale dei Lincei, Rome, 1976, pp. 481-511.

J. J. Seidel and D. E. Taylor, Two-graphs, a second survey, Algebraic Methods in Graph
Theory (L. Lovdsz and V. T. Sos, eds.), North-Holland, Amsterdam, 1981.

A. L. Wells, Jr., Even signings, signal switching classes and (—1, 1)-matrices, J. Combin.
Theory Ser. (B) 36 (1984), 194-212.

R. M. Wilson, 4 diagonal form for the incidence matrices of t-subsets vs. k-subsets,
European J. Combin. 11 (1990), 609-615.

T. Zaslavsky, Characterization of signed graphs, J. Graph. Theory 5 (1981), 401-406.

BELL COMMUNICATIONS RESEARCH, MORRISTOWN, NEw JERSEY 07960
E-mail address: frkc@bellcore.com

AT&T BELL LABORATORIES, MURRAY HILL, NEW JERSEY 07974
E-mail address: rlg@research.att.com





