Do Stronger Players Win More Knockout Tournaments?

F. R. K.. CHUNG and F. K. HWANG*

We study knockout tournaments using a set of players with which a
(pairwise) preference scheme is associated. We show that if the
preference scheme is of the Bradley—Terry type, then for any knock-
out tournament, if player ¢ has a larger merit value than player j,
he also has a greater probability of winning the tournament. When
the preference scheme is not of the Bradley-Terry type, counter-
examples are given for several of the main results.
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1. INTRODUCTION

A knockout tournament (David 1963, Hartigan 1966,
Hwang 1977, Moon 1968) among n players can be
defined as a partially ordered set of games, each involving
two players, which satisfies the following properties:

(i) Each game has a winner and a loser; a loser
of a game is not involved in any further game.
(ii) The tournament ends when all players but one
have lost a game; the player left is the winner
of the tournament.
(iii) The subset of games involving any one player
are linearly ordered.

It is easy to verify that a knockout tournament among
n'players will end after exactly n — 1 games.

It is convenient to describe this problem in the termi-
nology of graph theory. For our purpose, we represent a
knockout tournament among n players by a rooted
binary tree with # terminal nodes (a terminal node is a
node of indegree one and outdegree zero) each labeled
with a distinet player. Thus the set of terminal nodes
represents the starting positions of the players in the
tournament. The tournament starts with any pair of
labeled nodes which have the same father-node (a node
whose two outgoing links connect the pair). This pair
of nodes and the links which go to them are then elimi-
nated from the binary tree, while the winner of the game
now labels the father-node. Thus the tournament among
n players is reduced to a tournament among n — 1
players, and we proceed inductively until the only node
with indegree zero (called root) of the rooted binary tree
is labeled by the winner of the tournament.

The rooted binary tree, ignoring the assignment of
players to nodes, is called a knockout tournament plan.
Thus a knockout tournament plan for n players can
generate n! knockout tournaments, each with a distinct
assignment.
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Let m;; denote the constant probability that player C;
beats player C; in a game, so that =;; + m;; = 1. Then
7 = {m;} is known as a preference scheme. David (1963)
considers the following types of preference schemes:

@A If 7;2% ap>i=ng>3% =« is sald to
satisfy stochastic transitivity.

If mi; 2 3, mx 2 3= 7o 2 max(wy, 74), ¥ is
said to satisfy strong stochastic transitivity.
Suppose that player C; has true merit M; when
judged on some characteristic, and . can be
expressed for all ¢, j as H(M; — M;), where
H (x) increases monotonically from H(— ») =0
to H(eo) =1, and H(—z) = 1 — H(z). Then
7 is said to be a linear preference scheme.

(ii)
(i)

It is clear that strong stochastic transitivity implies
stochastic transitivity, and a linear preference scheme
always satisfies strong stochastic transitivity. When a
linear preference scheme satisfies

w0

1 )
HOM: — M) = [ sech? 3ydy

—(Mi—Mj)
we obtain the important subcase (known as the Bradley—
Terry model (1952)),

wi; = m/(wi + ) ,

Which has been extensively studied in the literature (see
Bradley 1976, David 1963, Davidson and Farquhar 1976
for some references). We will call such a = a B-T prefer-
ence scheme.

Let T, denote a knockout tournament plan among n
players and A an assignment of players to the starting
positions. Let P.(T,., A; w) be the probability that
player C; wins the tournament (7., A) under the prefer-
ence scheme 7. Presumably, P;(T ., 4 ; 7) depends on the
starting position of C; in the tournament. So if we only
want to compare the players, we can neutralize the
effect of the starting positions by averaging over all n!
assignments. Thus we define

where #; = eM: |

1
Pi(Taym) = — 2 Pi(Ts, A5 ) .
n' A

If = is such that the players can be naturally ordered,
such as in the three cases David (1963) has considered,
then a stronger player by that ordering should have a
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larger P;(T,, =) for any T,. However, it is easy to see
that the property of stochastic transitivity cannot
guarantee this result—counterexamples are readily
found; e.g., w12 = m3 = .5+ ¢ and ms =1 — e for
small e in a three-player tournament. We believe that the
property of strong stochastic transitivity for « is sufficient
to preserve the ordering in {P;(T,., x)}. But this is a
surprisingly difficult conjecture to prove. The main
result of this note is a proof that if x is a B-T preference
scheme, then C; stronger than C; in = implies P;(T,, =)
> Pi(T,, =) for any T ..

2. THE BRADLEY-TERRY PREFERENCE SCHEME

If T, is of the form shown in Figure A ; i.e., the corre-
spondence of T, to a sequence of games is unique, then
T, is called a ladder tree and is denoted by L,. We name
the highest terminal node v,, the second highest v,_;, and
80 on; we name the internal nodes s, ..., us, where u;
is the father-node of v;. Consider the assignment 4 to L.:
C,—uvfori=1,...,n

A. A Ladder Tree L,

Lemma 1: Let = be a B-T preference scheme and =’
another B-T preference scheme obtained from = by
changing 71 to x’. Then we have

mn+ m’  Pu(ln, A7) > o — 71
ot 11 Pa(ln, A;7) — w4+ m
The proof is given in the Appendix.

lf 1r1' Z w1 .
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Only the left inequality is needed in the rest of this
article (chiefly in Lemma 2). However, the right in-
equality is necessary in our induction proof of the left
inequality.

Lemma 2: Consider the ladder tree L, with assignment
4:C;—v,7=1, ..., n, and a B-T preference scheme
w. Let A,; be the assignment obtained from A by inter-
changing C,; and C;. Then =, 2> =1 implies

(i) Pu(Ln, A1n; ) 2 P1(La, A; )5
(ll) Pt(Ln; Aln, 7r) ._>_ Pi(Lm A; 7r) fOI‘ 1= 2; sy
n—1;
(i) Py(Ln, A1n; w) < Po(Ln, 4 7).

Proof: Lemma 2 is trivially true for n = 2. Assume
n 2> 3. Let A° be the assignment A restricted to the
terminal nodes of L.

@) Pn(Ln, A1n; ™)

n—1 Tr

j=1 Tn + T j=2 ‘ll'1+1l'j '
(i) Pi(Ln, Ain; )
Pi(Liy Auis ) — = [ —
= I {ds 2ty T
P T + M1t i + TG
T n1 ™

2 Pi(Li, A% 7)

T+ To joip1 T+ T

= P,(L., A; ) by Lemma 1 .

(il) P1(La, Ara;m) =1 — 2 Pi(Ln, A1a; m)

1 =2

<1— 2 PLn 4A;7)

=1
P,(L., A; 7) by using (i) and (ii) .

Theorem: Let r be a B-T preference scheme and 7T,
a knockout tournament plan for n players. Then

mi > w5 = Pi(Ta, A;w) 2 Pi(Thy Ay; )

for any A.
Proof: The theorem is trivially true for n = 2. We
prove the general case by induction.

Case 1: There exists a first-round game involving
neither C; nor C;. ’

Let € and C; be the two players involved in a first-
round game, where {h, k} N {7, j} = 0. Let T,_1 be the
tournament plan obtained from T, by deleting the two
terminal nodes labeled C,, and C), under A. Let A ® (A ®)
be the assignment on T'._; obtained from A by assigning
C) (Cy) to the new terminal node. Then

T
PiTw A;7) = ———— Pi(Tus, A®; 1)
wh+ Tk ‘
T
—I'- il Pi(Tn__l, A(k); 1l')
Th -+ Tk
Th
> ——— Pi(Tuy, Aij¥; )
mh+ T
T
+ Pi(Tay, Aij®; w)
T+ T

P;i(T.,, A;;; =) by induction .
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Case 2: Every first-round game involves C; or ;.

There are two possible subcases. In the first, there is
exactly one first-round game involving either C; or C;
(or both). In the second, there are exactly two first-
round games that involve C; and C; separately. These
two subcases can be treated together.

Let a and b be the two terminal nodes in T, labeled
by C; and C;, respectively. Suppose M is the root of the
smallest subtree of T, containing both nodes a and b.
Let T, denote this tree rooted at M, and T¢ (T) the
largest proper subtree of T, containing node a (b). Then
Te and T? are both ladder trees. Furthermore, the tree
L obtained from T,, by replacing T° by a simple node is
also a ladder tree. Finally, let T* be the tree obtained
from T by replacing T, by a single node.

Suppose 4 is an assignment on 7. Then let A™, AL,
and 4* be the assignments on T, L, and T* obtained by
restricting A to the terminal nodes on these respective
subtrees. (In the cases of AL and A*, the new node is
assumed to be labeled by C;.) The set of players assigned
to T* by A, except C,, is denoted by Ce Then clearly,

PiTa, A;7)  PTwm, A™; 1) Pi(T* A%;7)
Pi(Tay Aii;w)  Pi(Twm, Aijm; 1) Pi(T*, Ai*; m)

It is easy to show by induction that
Py(T* A*;m) 2 P,(T* Ai*;m)

when = satisfies strong stochastic transitivity. Further-
more,

Pi(Tm A%;m) = TI ——— Py(L, A%;7)
CrEce Wi + Tk
L
> — Py(L, Aijt;7)

cxE€ce T + Wk

= Py(Tn, Aij™; 7) by Lemma 2(iii) .
By averaging over all possible assignments, we obtain :

Corollary: w; 2 mj = P{(T,, )y > PA(T,, n).

3. CONCLUSIONS

We proved the theorem and its corollary when the
preference scheme is of the Bradley-Terry type, and we
showed that they do not hold if only stochastic transi-
tivity is assumed. We conjecture that the corollary to the
theorem is still true if strong stochastic transitivity is
assumed. However, the approach used in this paper does
not extend easily to this case because:

(i) Lemma 2(iii) and the theorem are not true if
only strong stochastic transitivity is assumed.

(ii) The left inequality of Lemma 1 does not hold
even if r is assumed to be a linear preference
scheme.

To see (i), consider the ladder tree Ls and the assign-
ment A in Figure B. Suppose = is the following matrix
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B. The Tree L; and an Assignment

{mi}:

1 2 3 4 5
1 D4 e 1 1 1
2 b4+ e 1 ——€e 1—c¢
3 SD+e 1 —¢
4 D+ e
where ¢ < .25.

Then it can easily be shown that

P4(L5; A H m) — Ps(Ls, d4s; 1r)
=—e(.b— (5 —2¢* <0 .

However, this is not a counterexample to the corollary.

To see (ii), consider the following counterexample
supplied by a referee. Let H (x) = } + z for z € [}, 371;
i.e., a uniform probability distribution over the pre-
scribed interval. Then when n = 3 with (M., M., M,,
M) = (3, 1,0, 1), it follows that

H(Ma _— Ml) _ 2 < 9 _ P3(L3,A;1l')

HM; — M) 4 Py(Ls A;7)
where A assigns C; to v;, 7 = 1, 2, 3. It is easily verified
that this is not a counterexample to Lemma 2.

‘We summarize our results in the accompanying table.

N

H

A Summary of Proven Results

Left inequality

Property of Lemma 1 Lemma 2(iij) Theorem  Corollary
8T false false false false
SST? false false false unknown
LPSP false unknown unknown unknown
B-T true true true true

* (S)ST = (strong) stochastic transitivity.
b LPS = linear preference scheme.
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The two counterexamples indicate the difficulty of the
question posed in the title to this article. A fresh ap-
proach is needed to attack the problem in its full
generality.

APPENDIX

Proof of Lemma 1: Lemma, 1 is easily verified for n = 2.
We prove the general case by induction on n.

Let 7; denote the tournament obtained from (L., A)
by replacing L, with root us by a single terminal node
labeled C;, where 7 = 1 or 2. Then by induction,

Po(Ln, A; )
PulLn, A; ')

1
"(717 7r) + P (TZ} 1l')

w4+ 7 1r1+1r2

D Pu(re) + Po(rs; 1)

m + 7 T+ m

Lo Y Y

P(n,r)+

m 4+ T T+ m 1+1rz

= 1r]_’

P (7'27 1l')

™
Po(r;7') + — Po(re; 7)

m + w1 + mw

(A.1)

Therefore it suffices to show that the right side of
(A1) is less than or equal to (w, + m')/ (7 + ™).
Since P,(r2; ) = Pa(r2; 7’), this is equivalent to

(rn — 7)) Pr(r2;m) < (wu + 7 )Pu(ri;7) . (A2)
When 7' > &3, or 7/ < s, then by induction
Pu(re;m)  wn4m/ Po(r1; ') 5 From
Pu(ri;7) 7 wn 4w Pu(rsm)  wntm’

respectively. In either case, (A.2) follows immediately.
To prove the other inequality in Lemma 1, we use
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induction to obtain

P,(L., A;m)
Po(Ln, A; )
T T i)+ Pu(ras )
Tt T w. M TI’W w1+ 72 T
2 y
—-——P (r1;7) +— Po(re; w')
T+ m ™ /' + 7 (rs;w (A3)

Therefore it suffices to prove that the right side of (A.3)
is greater than or equal to (v, — #1")/ (7. + 1), which
is equivalent to

{ra(m — m1) + 2mmt’ + me(wr + 1)} Palre, )

2 (o — w1} (' — w)Palry, ') . (A4)
When 7' 2 73 or w1/ < s, ‘
Po(re; ) S T = T’ Po(ry; ") < + m
Pu(ri;7")  wu 4 m Pu(r;m) ~ watmi

respectively. Since

mo(ml’ — 7)) + 2mmd + wa(m + 7)
> (mn + m2) (w1 — 7))

(A.4) follows immediately in either case.
[ Received December 1976. Revised February 1978.]
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