Subgraphs of a
Hypercube Containing
No Small Even Cycles

Fan R.K. Chung
BELLCORE
MORRISTOWN, NEW JERSEY

ABSTRACT

We investigate several Ramsey-Turan type problems for subgraphs of a
hypercube. We obtain upper and lower bounds for the maximum number
of edges in a subgraph of a hypercube containing no four-cycles or more
generally, no 2k-cycles C ». These extremal results imply, for example, the
following Ramsey theorems for hypercubes: A hypercube can always be
edge-partitioned into four subgraphs, each of which contains no six-cycle.
However, for any integer t, if the n-cube is edge-partitioned into ¢ sub-
graphs, then one of the subgraphs must contain an eight-cycle, provided
only that n is sufficiently large (depending only on ).

1. INTRODUCTION

Let O, denote the n-cube with node set N = N(Q,) consisting of all binary
n-tuples and edge set £ = E(Q,) consisting of all pairs of n-tuples that dif-
fer at exactly one coordinate. So, Q, has [N(Q,)| = 2" nodes and |E(Q,)| =
e(Q,) = n- 2" edges.

Paul Erdos raised the following question about 15 years ago [6]:

How many edges can a subgraph of O, have that contains no 4-cycles?

This problem has been studied by many researchers [1,2,5,9,11,13] and
we note that it is in fact related to various fault-tolerant properties of hyper-
cubes when used as parallel computation architectures [13, 15]. In this paper,
a number of results related to the above question are obtained.

Theorem 1. A subgraph of Q, containing no C, can have at most (a +
o(1))n2""! edges where a ~ .623 satisfies 9a* + 5a° — Sa — 1 = 0.

Let f(n) denote the maximum number of edges in a subgraph of Q, con-
taining no C,. For small n, it is known that f(1) = 1, f(2) = 3, f(3) = 9,
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f(4) = 24 and f(5) = 56 (see [5]). The best construction known so far is
due to Guan [11], yielding f(n) = (n + 3)2"* + l.o.t. where the lower order
term (l.o.t.) has a lower bound of —(n — 3|(n — 1)/3)2%""Y"] The con-
jecture of Erdds—“f(n) = ( + o(1))e(Q,)?”—remains unresolved.

It seems natural to consider the question of determining the maximum
numbers fy(n) of edges in a subgraph of O, containing no Cy. Clearly,
f« = fand only even cycles are of interest since (, is bipartite. Erdds asked
that if it is true that every subgraph of Q, containing ee(Q,) edges must
contain C, for every & > 0 provided rn is sufficiently large. This question is
answered in the negative. Theorems 2 and 3 give upper and lower bounds

for fe(n).

Theorem 2. A subgraph of Q, containing no C, can have at most (V2 —
1 + o(1))n2""" edges.

Theorem 3. The edge set E(Q,) of Q, can be partitioned into four sub-
graphs, each of which contains no Cs.

As an immediate consequence of Theorem 3, we have fs(n) = 1e(Q.,). It
turns out that the above question by Erdds can be answered affirmatively
for cycles Cu, k = 2.

Theorem 4. Every subgraph of Q, containing cn™'"*e(Q,) edges must con-
tain Cy and, in general all Cy,, for 2 =< ¢t < k, where the constant ¢ depends
only on k.

Theorem 4 can be strengthened as follows:

Theorem 5. Every subgraph of Q, containing cn'"/?*e((),) edges must
contain Cy for k = 2.

Theorem 5 leads to the following Ramsey-type result:

Theorem 6. For any integer ¢ and an integer k = 2 if Q, is edge-parti-
tioned into ¢ subgraphs, then one of the subgraphs must contain Cy pro-
vided that n is sufficiently large (depending only on ¢ and k).

We observe that, for m < n, Q, can be covered by Qs so that each edge
of O, is contained in the same number of Q,’s. Consequently, we have

fu(n) _ fu(m)
e(@n)  e(@m)

form=n.

Therefore oy = lim,—«(fx(n))/(e(Q@.)) exists. While ¢, and o4 are unde-
termined, we show that o4 = 0, for any & = 2. Many questions in the spirit
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of Erdos-Stone [7, 8] can be asked for subgraphs of an n-cube. Numerous
related questions remain open, some of which we mention here.

(i) Is it true that f5(n) = fu+2(n)? Does the strict inequality hold?

(ii) From Theorem 2, we have V2 — 1= o5 = 1/4. Is it true that
Te = %?

(iii) From Theorem 5, we have o5 = 0. So, the next unsettled case is oo.
Is it true that o,y = 0? Does Theorem 6 hold if we consider 10-
cycles instead?

(iv) Of course, the most interesting question is to determine o,. We
know that .623 = o, = 1/2. Is it true that o, = 1/2?

(v) A graph A is said to be +-Ramsey if any edge-coloring of Q, in f colors
must contain H, provided that » is sufficiently large. We have shown
that C4, for k = 2 is +-Ramsey for any ¢ and C; is 2-Ramsey but not
4-Ramsey. Is C¢ 3-Ramsey? It would be of interest to characterize
t-Ramsey graphs for each ¢.

The paper is organized as follows: Theorem 2 and Theorem 3 are proved
in Section 2, which deals with subgraphs of Q, containing no 6-cycles.
Theorems 4, 5, and 6 are given in Section 3, which considers C;-free sub-
graphs of Q, for general k = 4. In Section 4, we establish upper bounds for
the number of edges in a C4-free subgraph of Q, by proving a series of facts
that lead to Theorem 1.

2. SUBGRAPHS OF @, CONTAINING NO 6-CYCLES

Suppose G is a subgraph of Q,. Let d, denote the degree of vertex vin G,
and let « denote the edge density of G. In other words 2,d, = an2". We
also denote d, = n — d,. Suppose H is a subgraph of 0,. We let G N H de-
note the graph with vertex set V(G) N V(H) and edge set E(G) N E(H).

We consider subgraphs of G in a subcube Q, of Q,. There are (5)2">
such Q7’s in Q.. Let xo, x1, X2, X3, X3, and x4 denote the fraction of the total
number of Qs with G N Q, isomorphic to the graphs in Figure 1 (a), (b),
(), (d), (e), and (f), respectively. For example, there are xo(3)2" > Q.5 in Q,
with G N @, isomorphic to the graph shown in Fig. 1(a) containing no edges.

We have
Xotxitxit xo+ xs+ xa=1. 1)

Let us assume G is a subgraph of Q, containing no Cs. We will first prove
Theorem 2 by showing G has at most (V2 — 1 + o(1))n2""" edges.

Proof of Theorem 2.

Fact 1. xs = o(1) and x; = o(1).
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(a) (b)

(d) () (f)

FIGURE 1
Proof. For each {u,v} € E(Q,) there is at most one 2-subcube Q, in Q,
so that E(Q,) — {{u,v}} contains three edges of G, since G is Cs-free.

Therefore we have

nonl = e(Qn) = (dys + X3) (’21)2%2.

This implies x4 = 1/n and y3 < 4/n.
By counting the number of edges in O, N G ranging over all 2-subcubes

0, in Q,, we have:

(Axs + 3x3 + 2x2 + 2x2 + x1) <;>2”_2 = a2"_1n(n - 1),

i.e.,
s + 3x3 + 202 + 20 + x1 = da + o(1).

Thus, by Fact 1 and (1) we have
2+0(1) =2+ 20+ x1 = 4a + o(1).

This implies @ =< § + o(1).
To improve the above bound, we proceed as follows:

+ 0(1) = 4a® + o(1).

Fact2. x,=
n
2n—2
()
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Progf. We consider the number of paths of two edges in G in subgraphs
Q> of Q,. We have

n\.,. ., d,
(4xs + 2xs + x2) (2>2 = §<2>

Fact 2 follows immediately by using Fact 1 and the Cauchy-—Schwarz
inequality.

For each node v we define a graph G, with node set M(v) = {u: {u,v} €
E(Q.), {u,v} € E(G)}. For two nodes u and w in M(v), we say u is adjacent
to w in G, if the four-cycle containing u, v, w contains two edges. Since G
contains no Cs, G, contains no triangle for all v. Turdn’s theorem [15, 16]
implies that the number of edges ¢(G,) in G, satisfies the following:

(n —d,)

G, =M S’” y

Therefore, by Fact 2 we have

20— d) = 2eG,) = Xz(’;)z"z + lo.t.

> 2(‘?) + Lo.t.

Consequently,

Inr = inyd,=1Xd? + lot.
Using Cauchy—-Schwarz again, we have

n’2 — an®2"' = 12%a’n’ + lodt.
Therefore

1-2a-a*+o0o(1)=0
and
a=V2-1+o(l).

This completes the proof of Theorem 2.
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To establish a lower bound of (; + o(1))e(Q,) for fs(n), we construct four
graphs A, B,, C,, and D,, satisfying the following conditions:
(i) A, B,, C,, and D, have the same node set as N(Q,).
(ii) A; = @1, B1 = C; = D; = the trivial graph with no edge.
(iii) A,, B,,C,, and D, each consists of one distinct edge of Q,.
(iv) Aus2, Busa, Cusz, and D, are constructed recursively as shown in
Figure 2.
For example, 4, ., can be viewed as the union of two copies of 4,, denoted
by A4,(0,0), 4,(1,1) (on nodes with prefix 00 and 11, respectively) and two
copies of B,, denoted by B,(0, 1), B.(1,0). Between A,.(0,0) and B,(0, 1),
there is an odd matching (where an edge is said to be odd if the total num-
ber of coordinates with value 1 in both of the end points is odd, otherwise it
is said to be even). Also, between B,(1,0) and A,(1,1), there is an odd
matching. It is easy to verify that 4,, B,, C,, and D, satisfy the following
properties:
(a) E(A,), E(B,), E(C,), and E(D,) are disjoint and the union of all of
them is E(Q,).

\ 7/
|
even Il II even
odd
\ ____/
|

n+2 Bn+2

(0,) (o)
T
/ \
odd ll II odd
even
\ 7/
1
(%) (o)

n+2 Dn+2
FIGURE 2
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(b) E(4,) U E(B,) and E(C,) U E(D,) are C,-free.
(c) A,, B,, C,, and D, are Cs-free.

The proofs of (a), (b), and (c) are by induction on n. It is easy to see that (a)
holds trivially, and (b) follows from (a), and (c) follows from (b). This com-
pletes the proof of Theorem 3.

3. SUBGRAPHS OF Q, CONTAINING NO C,, k = 4

For k = 4, suppose G is a subgraph of O, containing no Cy. We will estab-
lish upper bounds of fu(n) by proving Theorem 4.

Proof of Theorem 4. We will first show that if e(G) = ee(Q,) for any
e > 0, then G contains Cy for fixed k = 2, provided n is sufficiently large.

We consider a graph H,, for each node v, defined as follows: (We note
that H, is similar to but different from G, as defined in Section 2). The
node set of H, consists of all u so that {u,v} € E(Q,), and « and w are adja-
cent if the Q, containing u,w,v has the property that E(Q») — {{u, v},
{w,1}} contains two edges in E(G). Since G is Cx-free, H, cannot contain
k-cycles. Therefore, for k = 4, and k = O(mod 2) H, can have at most
n'*% edges (see [3]). Therefore we have

> (dz"> = (4xs + 3x3 + x2) (Z)Z"'z = Ee(Hu)

= n1+(1/k) Lo

Therefore, x. = o(1), x3 = o(1) and . = o(1). By using similar arguments
as in the proof of Fact 2, we have

4a* + o(1) = 8n MK
Hence,
a < (V2 + o(1))nt 121020,

and Theorems 4-6 are proved.

4. SUBGRAPHS OF Q, CONTAINING NO 4-CYCLES

In this section, we assume that G is a subgraph of O, containing no C,. We
want to establish upper bounds for the number of edges e(G) of G. We fol-
low the notation in previous sections and we note that y, = 0. First, we will
prove some helpful facts.
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Lemma 1.

8 d,

n(n — 2" %

Proof. The number of K, ; (i.e., a path with 2 edges) in G is equal to
2.(5%). Since each K 1,2 is contained in exactly one subcube Q) of Q,, the
number of K ; is exactly (2x; + x2) (3)2" % Therefore Lemma 1 holds.

Lemma 2. Letd,=n — d,.

8 d,
+ 20 F o= ——— :
X2 20+ 4 n(n — 1)2" zv: (2)

Proof. We count the number of K , in G, the complement of G in Q,, in
two ways as in Lemma 1.

, 4 d, d,
a2 (9 )

This implies xo — xz = 2a — 1)* + O(1/n).

Lemma 3.

Proof. This follows from (1) and the addition of two equalities in
Lemmas 1 and 2.

Lemma 4. Any subcube Q; in Q, can contain at most two nodes of
degree 3in G N Q5.

Proof. Suppose vis of degree 3in G N Q3. We consider two possibilities.
Case 1. If no neighbor of vin G N Q5 is of degree 3 in G N Q3, no ver-
tex of distance 2 from vin Q3 can have degree 3 since G does not contain a

4-cycle. Therefore there are at most two vertices of degree 3 in G N Qs.

Case 2. vhas a neighbor of degree 3 in G N Q5. It is easy to check that
no other vertex can have degree 3 in G N Q5. Lemma 4 is proved.

Let a; denote the fraction so that a;(3)2" subcubes Q; of Q, contain i
nodes of degree 3 in G N Q5 where i = 0,1, and 2. By definition, we have
a; + a; + a9 = 1 and the a;’s satisfy the following:

Lemma 5.

4 v
2(12+(11= 8 2<d)

nin—1n-2)2"7\3
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Progf. We consider the number of degree 3 nodes in G N Q5 ranging
over all 3-subcube Q3 in Q,. On one hand, this number is (24, + a,) (5)2" .
On the other hand, each K, ; (i.e., a star with 3 edges) is contained in a
unique 3-subcube and therefore the above number is equal to the number of
occurrences of K ; in G, which is exactly E,,(g’"). Lemma 5 is proved.

From Lemma 5, we can deduce a simple (but weak) upper bound for « as
follows:

Lemma 6. Suppose a subgraph G of Q, contains no 4-cycles and has
an2'™' edges. Then «a satisfies (n — 1) (n — 2) = 4a’n’ — 12a’n + 8a.
This implies @ < (1 + 0o(1)) (3)*” = .630.

Proof. From Lemma 5 we have

18 d,
2_a1_2a02n(n——1)(n—2)2"2.,(3>' @

Since T,($) = 2(¥"), we have

n(n — 1)(n — 2) = dan(an — 1) (an — 2).
If we focus on the first order terms, we get
1+ o(1) = 4a’.
That is,
a<(1+o0(1)H"~.630.

In order to improve this bound, further work is needed. For each vertex v,
we consider M(v) and G, as defined in Section 2. That is, M(v) = {u: u is
adjacent to vin Q, but u is not adjacent to vin G}. For each pair u and w in
M(v), we say {u,w} is blue if the unique 4-cycle containing u,v,w contains
two edges of G other than {u, v} and {v, w}.

For each v we consider triples {t, u,w} in M(v). We say {t, u,w} is of type
(v, i) if exactly i of the three pairs {t, u}, {t,w}, {u,w} are blue.

In a 3-subcube Q5 in Q,, we say a node v is admissible if there are three
nodes ¢, u,w in Q5 and {t, u,w} is of type (v,3) or type (v,0).

A result of Goodman [10] states:

Lemma 7. Let X be a graph on 7 nodes with p(3) edges. Then, the number
of monochromatic triangles (i.e., triples with all pairs being edges or all be-
ing nonedges) is at least (1 — 3p + 3p*) ().

The proofs for the following three lemmas are by case-to-case analysis,
which is quite straightforward and will be omitted.
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Lemma 8. In a 3-subcube Q; of Q,, if G N Q5 contains two nodes of
degree 3, then it contains no admissible nodes in G N Qs.

Lemma 9. If G N @; contains one node of degree 3, then it contains at
most one admissible node.

Lemma 10. If G N Q; contains no node of degree 3, then it contains at
most eight admissible nodes.

Summarizing Lemmas 7-10, we have the following:
Lemma 11. (a; + 2a0) ()2 = (1/16)Z.(%).

Proof. We consider % times the total number of admissible nodes in Q3

of Q.. From Lemmas 8 to 10, this number is no more than (a; + 2a) -

(5)2"°, while Lemma 7 provides the lower bound since 1 — 3p + 3p® = ;

for 0 = p = 1. Lemma 11 is proved.

We can improve Lemma 6 as follows:
Lemma 12. Suppose a subgraph G of (), contains no 4-cycles and has
an2""! edges. Then asatisfies (5a® + a? — a — Dn* + (5 — 2a — 9a?)n +
10 — 2 = 0. This implies a = .628.

Proof. From (2) and Lemma 11 we have

48 d,
n(n—l)(n—2)2"2< >+‘“+2“°

1 d,
e 2)2"(482< )”@(3))

1 (1 - an
n(n—l)(n—z)(48< )”( 3 ))

e +a’*—a—DYn*+ (—9a* - 2a + 5+ 10a —2 =<0,

This implies

and o = .628 provided # is sufficiently large.

To improve upon Lemma 11, more careful analysis is needed. We will de-
fine weighting functions to help keep track of various counts in subgraphs
of G. Although the weighting functions look a little complicated, they serve
as convenient and useful tools.
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For each node v and a 3-subcube Q3 and Q,, we define

1, ifvis of degree 3 in G N Qs;
i, if vis admissible;
0, otherwise.

f(v’ Q3) =

A second weighting function g is defined on a pair u, v of nodes in a 3-
subcube Qs in Q4. We say g(u,v,Q3) = 0if {u,v} € E(G). Suppose {u, v} &
E(G). We define g(u,v,Q;) = 4 if each Q, containing u,vin Q3 has exactly
two edges of G where one of the edges contains # and both edges share a
node (see Figure 3) and 0 otherwise.

The weighting functions defined above satisfy the following properties.

Lemma 13. For a subcube Q5 in @, we define

f(Qs) = %f(v, 03)

and

8(Qs) = {%g({u,v}, Qs).

Then for every Q; in 0, we have

f(Qs) + g(Qs) =2. &)

We note that Lemmas 4, 8, and 9 yield f(Q5) = 2. Still, there is some gap
between f((Q3) and 2 in many cases depending on the occurrences of edges
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in G N Q;. Roughly speaking, the way that g is defined is intended to cap-
ture such gaps.

Proof of Lemma 13. There are several possibilities.

Case 1. 1If there are two nodes v, and v; of degree 3 in G N Q3, v, and
v, are of distance 1 or 3. In either case it is easy to check that for v # v,
and v,, we have f(v,Q;) = 0 and g(u,v,Q;) = 0 for all v.

Case 2. If there is exactly one node v; of degree 3 in G N Qs, there is at
most one node vwith f(v, Q5) = ;. If there is one node vwith f(v,Q;) = 1,
it is done since there is at most three pairs u, vwith g(u, v, 03) < ;. We may
assume there is no node v with f(v,Q3) = ;. It can be checked that there
are at most two pairs u, v with g(u,v,03) < 1.

Case 3. Suppose there is no node of degree 3. If g is nonzero for some
choice of u and v, then there are at most six pairs u, v with g(u,v,Q;) = 4
and at most two nodes v with f(v,Q;) = . If g only has zero value, then
there are at most 8 nodes v with f(v,Q3) = ;. Lemma 13 is proved.

Lemma 14. 35, f(Q3) =1 3,(%) (1 — 3p, + 3p2) + 3,(¢") where Q5 ranges
over all 3-subcubes of O, and there are p,($") blue pairs in M(v) for all v

inQ,.

Proof. f(Q3) is equal to the sum of degree-three nodes and ; times
that total number of admissible nodes. Therefore Lemma 14 follows from
Lemma 7.

Lemma 15. 3,,g(Q;) =13, d, ("),

Proof. For each v, 2, ,8(u, v, Q) is exactly the sum of 3 times the num-
ber of blue triangles in M(v) and }; times the number of triangles with
exactly two blue pairs in M(v). Let D, denote the number of blue pairs con-
taining ¥ in M(v). We have

du -3 uau
S gwn09) =t 3 ( )z%du(" )
ueMw) \ 2 2

u, Q3

Combining Lemmas 13-15 we have

(6] 3B s 2.
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We note that
31} 3 UEU av 7
<3>(1 ~ 3p, + 3p2) + d,,<p2 > > (3)(1 — 3p, + 6p2) — p,d2/6

SERIOR

since the function 1 — 3y + 6x* has the minimum value 5/8 at y = 1/4.
Also, 2p,(5") = x2(3)2" 2. Using the Cauchy—Schwarz inequality, we have

R\ s o onf @1 i (- an I L P
- x(z) ) Qe

Therefore, « satisfies
1 5
—za’+—=(1-a)+ .
;= S0 o))

This completes the proof of Theorem 1.

Added Remark. Recently, A.E. Brouwer, I.J. Dejter, and Carsten
Thomassen [4] proved Theorem 3 independently.
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