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1. INTRODUCTION. The following puzzle has attracted some attention recently.
We first learned of it through Martin Gardner [6]. A version of it appeared in
Omni magazine in 1993 [11]. However, it was proposed over 10 years ago by
Kontsevich [9], and a partial analysis of it was published shortly thereafter by
Khodulev [8]. We begin with an infinite “chessboard” B covering the first quad-
rant. The cells of the board are labelled by integer coordinates (i, j) with i,j > 0.
Initially, a single “pebble” is located in cell (0, 0) (the lower left corner; see Figure
1). The first step or “move” consists of replacing this pebble by two pebbles,
located at cells (1,0) and (0, 1), respectively. In general, a move will consist of
removing some pebble, say in cell (i, j), and placing two pebbles on the board, in
positions (i + 1, ) and (i, j + 1), provided each of these positions is not already
occupied.

0 1 2 3

Figure 1. The starting configuration on the board B.

After k steps the board will have k + 1 pebbles on it. We call such configura-
tions of pebbles reachable configurations. We will denote by R(k) the set of
reachable configurations with k pebbles, and we set R := U ;. ,R(k). In Figure 2,
we show the eight possible reachable configurations with at most four pebbles.

A little experimentation convinces one that in any reachable configuration,
some pebble must occupy a cell having coordinates (i, j) with i + j < 3. This fact
first seems to have been noted by M. Kontsevich [9]. We give the “book” proof of
this in the next section. If L(k) denotes the set (or “level”) {(i, j): i +j = k} then
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Figure 2. Reachable configurations with at most four pebbles.

we can express the above assertion by saying that L(1) U L(2) U L(3) is unavoid-
able, i.e., any reachable configuration must always have some pebble in a cell in
L(1) U L(2) U L(3). In general, an unavoidable set is one which intersects every
reachable configuration. Of course if S is unavoidable and T2 S then T is
unavoidable. Let us call S a minimal unavoidable set if S is unavoidable but no
proper subset of S is, and let M(k) denote the family of minimal unavoidable sets
with k cells.

In this note we will characterize the elements of M(k) and give a polynomial
time algorithm for recognizing such elements. Many of these results were first
proved by Khodulev [8], and we present them here for completeness, since the
paper [8] is not widely available and contains only sketches of proofs. We will also
determine the asymptotic growth rates of r(k) :== |R(k)| and m(k) = [M(k)|, the
sizes of R(k) and M(k), respectively, as k — «. (These results are all new.) It
turns out that the analysis of r(k) and m(k) leads to some interesting problems in
asymptotic enumeration.

Further results on this problem, including generalizations to arbitrary partially
ordered sets, have recently been obtained by Eriksson [4].

2. PROPERTIES OF UNAVOIDABLE SETS
Lemma 1. [9] The set L(1) U L(2) U L(3) of all (i, j) with i + j < 3 is unavoidable.

Proof: To each cell (i, j) assign the weight 27¢*), Observe that:

(i) The total weight covered by pebbles in any reachable configuration is 1.
This is so since the starting cell (0, 0) has weight 1, and a move does not
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change the weight of cells covered, i.c.,
2=+ = P=W+D+) 4 p=G+(+1).

(i) The total weight of all cells in the board is T, ;, (274" = 4.

(iii) The total weight of L(1) U L(2) U L(3) is 13 /4. Thus, the weight of the
complement of L(3) is only 3/4, and since that is less than 1, cannot
contain all the pebbles of a reachable configuration. Thus, L{1) U L(2) U
L(3) is unavoidable. [ |

However, L(1) U L(2) U L(3) is not a minimal unavoidable set. The following
result was proved by Khodulev [8]. It was independently conjectured by Martin
Gardner [6]. The proof given here is due to Harold Reiter [14].

Lemma 2. L(1) U L(2) is unavoidable.

Proof: As before, assign the weight 27¢*9 to the cell (i, j). Observe now that any
reachable configuration C has exactly one pebble on each of the boundaries
{(i,0): i = 0} and {(0, j): j = 0}. Thus, the total weight which C can cover outside
of L(1) ULQ)is

2-2734 Y 27—,

ijz1
i¥j=3

This implies that if C is to avoid L(1) U L(2), it must cover all these cells, which is

impossible since C is finite. n

However, L(1) U L(2) is not minimal either, as we will see later.

We should observe that for any reachable configuration C, the set of moves
needed for reaching C is unique. Only the order in which these moves are
executed can vary in the different ways of reaching C.

Suppose now that we relax the rules for moves by allowing the replacement of a
pebble at (i, j) by pebbles at (i + 1, ) and (i, j + 1) even when these positions
might already be occupied by pebbles. In other words, we allow the accumulation
of multiple pebbles in cells during the process of reaching C. It might be helpful
for this model to imagine that the pebbles first move onto the vertices of an
infinite binary tree rooted at (0,0). Then the 2% vertices in the kth level of the
tree are identified in the obvious way with the k + 1 cells in the kth level L(k) :=
{(i, )): i +j = k} of the board B.

An easy induction argument now establishes the following resuit.

Lemma 3. If a configuration of pebbles (with at most one pebble per cell) can be
reached by moves which allow accumulations of pebbles in cells, then in fact it can
also be reached by the “standard” moves, i.e., those which do not allow accumu-
lation.

Given a set X C B, we define the set M(X) of moves recursively as follows.
Starting at level 0 and proceeding one level at a time by increasing levels, perform
the moves required either to remove all pebbles from a cell in X, or to remove all
but at most one of the pebbles from a cell not in X. Continue through the last
level L(h(X)) containing a cell of X.

Theorem 1. X C B is unavoidable if and only if after executing the moves in M(X),
some cell contains at least 3 pebbles.
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Proof: Let m(i, j) denote the number of pebbles in cell (i, ;) after executing
M(X).

(i) Suppose that X is avoidable and m(i, j) > 3 for some (i, j). Thus, either
miE—1,j+1D=20orm(i+ 1,7 —1) > 2. Assume m(i — 1,j + 1) > 2 (the other
case is similar). Hence, to reach any C € R, we must move at least two pebbles off
of (i, j), and at least one off of (i — 1,j + 1). But this will force (i, j + 1) to have
at least 3 pebbles, and will force (i + 1, j) to have at least two. Thus, by induction,
we can never reach an allowable configuration of pebbles (i.e., one in which no cell
has more than one pebble), which is a contradiction.

(ii) Suppose m(i, j) < 2 for all (i, j) € B. By the definition of M(X),

<1 if(i,J) haslevel < h(X)
m(i,jyis{ <2 if (i,j) haslevel A(X) + 1
=0 if(i,j) haslevel > A(X) + 1.

A simple induction argument now shows that the excess pebbles can all be
(eventually) moved to achieve a reachable configuration in R. Hence X is
avoidable.

This completes the proof of Theorem 1. .

Note that this result furnishes a polynomial-time algorithm for determining if X
is a minimal unavoidable set.

3. RECURRENCES FOR MINIMAL UNAVOIDABLE SETS. Let f(k) denote the
number of minimal unaveidable sets consisting of k cells. For j > 0, define
B(j) = U, ;L(i), the set of cells in levels exceeding j. Finally, for ¢ > 0, define
f,(k) to be the number of minimal unavoidable sets with k cells (i.e., oft size k) in

B(t) where we start with the (multiple) pebble distribution of 1, 2,2,...,2,1 in
L(t + 1), and 0 in all L(s), s > ¢t + 1. As a convention, we take f,(k) = 0 for all
k < 0. Thus, f(k) = fo(k — 1) (since (0, 0) must be unoccupied), and f(k) = 0 for
k < 4. We list a set of recurrences which suffice to determine all values of f,(k):

@ folk) = 2fo(k — D) + fi(k — 2);
(WD) F(k) = Folk) + 3fk = D) + Fo(k — 2) + 48(k, 2) where
1 ifi=j,

5(i, ) = { :
(i) For ¢ = 2, £,k) = f,_ (k) + 2.k — 1) + f,, (k — 2) + 280k, D5(t, 2).

To see why these are valid, consider (i). In Figure 3(a) we have the starting
configuration for f,(k). We consider the various possibilities as to whether or not
various cells in L(1) are in a hypothetical minimal unavoidable set X of size k. If
(1,0) € X but (0,1) & X then Figure 3(b) applies and X will consist of (1,0)
together with a minimal unavoidable set of size k — 1 arising from the two pebbles
at (2,0) and (1, 1). By definition, there are f,(k — 1) of these. The same argument
applies if (1,0) & X, (0,1) € X (Figure 3(c)). On the other hand, if (0,1) € X and
(1,0) € X then Figure 3(d) applies, and f,(k — 2) counts the number of ways of
completing X. Thus, we have (i).

The other recurrences (ii) and (iii) are explained in similar ways. In Table 1, we
list some of the small values of f,(k).

otherwise;
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Figure 3.
TaBLE 1. Values of f(k).
1010 [2[40 464
9 (0]2(36(382
8 |0[2]}32|308 2322
7 1012282421670 | 10114
6 102124184 ) 1154 ] 6466
t 5 ]0]2|20)134| 758 3916
4 10|2]16] 92| 466 | 2216 | 10162
31012112 58] 262 1150 | 4972 | 21296
2 1012| 8} 32| 130 534 | 2206 | 9136 | 37872
1 (0|0 47 14 54 216 876 | 3574 | 14628 | 59994
ololoj o] o 4 22 98| 412 1700} 6974 | 28576
01 2 3 4 5 6 7 8 9 10

4. ASYMPTOTICS OF NUMBER OF MINIMAL UNAVOIDABLE SETS. The
recurrences of the last section are sufficient to determine values of f(k) for small
k. For large values of k, we can obtain asymptotics of f(k) in a simple form:
f(k) ~cy* ! ask - o,

where y = 4.147899 ... and ¢ = 0.01676... . More precise estimates (including
definitions of y and ¢) are stated at the end of this section. Since y and ¢ are
algebraic numbers of degree 3, this estimate also shows that there is no simple
expression for f(k).

The derivation of the asymptotic expansion of f(k) starts with the recurrences
of Section 3, and proceeds through two steps. The first step is to derive an explicit
expression for the generating function of f(k), and the second is to obtain the
asymptotics of the coefficients of that function. The second step is routine, and is
sketched only briefly. The first step is the interesting one, since it involves
complicated-looking functional relations that yield a surprising answer.

In order to analyze the asymptotic behavior of f(k), it is convenient to
introduce several auxiliary functions. The definitions are not obvious, and came
from experimenting with the recurrences to find out which functions give the best
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results. First, define the function s(:, - ) by

s(i+Jj,7) = f;(i), i,j=0. (1)
Next, define the generating function
S(y) = X s(i,j)y'. (2
j=0

Thus, for example, S,(y) = 4y + 2y2 For i > 3, recurrence (iii) of Section 3 is
easily seen to be equivalent to the relation

1 2 1
Sivi(y) = (—+—y)5,-(Y) - ;S(i,O) + ys(i,1). (3)
Finally, set
S(x,y) = _235i(y)x’l (4)

Note that we are only interested in

0

Y FR) T = X folk - Dxkt = ¥ s(i,0)x'
k=5 k=5

i=4
i S:(0)x" = S(x,0).
i—d

The additional variable y is brought in only in order to exploit the structure of
recurrences for the f,(k). From (3) and (1), (iD), (iii) we obtain

S(x,y) = X S(y)x'

i=3
x(1 + y)* )
=x3(4y + 2y*) + _(_y_y)_ Y Si(y)x
i=3
x 6S(x,y)
——8(x,0) + xy——— 5
. (x,0) +xy 5 boo (5)
Hence
aS(x,
(y —x(1 +)")S(x,y) = x3(4y* + 2y%) — xS(x,0) +xy2—%yi) . (6)
y=0

This is a complicated partial differential equation that at first sight might seem
intractable. However, it can be solved explicitly. Differentiating (6) with respect to
y and then setting y = 0, we have

aS(x,y)
(1 -2x)8(x,0) —x—— =0. (7)
3y oo
. 98(x,) :
Therefore, we can eliminate Ty— . to obtain
y—

(y —x(1 +)))S(x,¥) = (¥2(1 = 2x) —x)S(x,0) + x>(4y% + 2y%). (8)
On the curve

y =x(1+y)?% (9
the coefficient of S(x, y) in (8) vanishes and we have
S(x,0) = x*(4y* + 2y%)/(x — y*(1 — 2x)). (10)
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Eq. (9) implies that
y=(1-2x—(1-4x)"%)/(2x)

for |x| < 1/4, and substituting this into (10) gives an explicit representation of
S(x,0) as an algebraic function of x for |x| < 1/4,
,(1—4x)%(1 = 3x +x?) — 1+ 5x —x* — 6x° .

1—7x + 14x% — 9x3 ' (an
(Through (8) this also gives an explicit representation of S(x,y) for (x,y) in a
neighborhood of (0,0), but we do not need this, since S(x,0) is all that is needed
to derive the asymptotics of f(k).)

The final part of our analysis is now straightforward. The explicit form of
S(x, 0) shows that S(x,0) is analytic in |x| < 1/4 except at zeros of the denomina-
tor, i.e. at x = 1/vy, where y = 4.14789903 ... satisfies

3= Ty?+14y — 9 =0. (12)
Direct substitution into the formula for S(x,0) then shows that S(x,0) actually
does have a simple pole at x = 1/, but (in view of the preceding discussion) no
other singularities in [x| < 1/4. By the standard methods [2, 3, 7, 12], we can
therefore write
f(k) =fo(k — 1) =s(k — 1,0) = [x*71]18(x,0) = cy*~! + 0O(4.01%),
where

S(x,0) =x

c = Iilln S(x,O)(l — yx) = 0.016762198 .. .. (13)
x=1/y

and satisfies (after some messy but routine computation best done with a symbolic
algebra system)

7533¢3 + 10726¢2 + 5068¢ — 88 = 0. (14)

5. THE NUMBER OF PEBBLE CONFIGURATIONS. In this section we will treat
the problem of enumerating the number of distinct reachable configurations with
k pebbles. We denote this number by g(k). As was true for the asymptotics of
f(k), it is the derivation of an explicit generating function for the g(k) that
presents the main challenge here.

As before, let us define g,(k) to be the number of k-pebble reachabtle configu-

rations where we start with the initial pebble distribution of 1, 2,2,...,2,1 in
L,.,, and 0 in all L, s>t + 1 (and we restrict ourselves to cells just in
B(t) = U,,,+1L,). Thus, g(k) = go(k) for k > 2. Arguing along the same lines
as before, it is not hard to derive the following recurrences for the g(k):
() go(k) =2g,k — 1) + g(k) + 8(k,2);
(i) g,(k) = golk — 3) + 2g,(k — 2) + g,(k — 1) + g,(k — 4%
(iii’) For ¢t = 2,

g(k)y=g,_(k—t-2)+2g(k—t—1)+g,.(k—1).

Now set
h(k) =gk +i),
Hi(x) = Y h(k)x¥, (15)
k=0
H(x,y) = ¥ H(x)y"
i=0
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TaBLE 2. Values of k,(k).

t 2 0 0 0 0 0 0 0 1 2
1 0 0 0 0 1 2 6 13 33
0 0 0 1 2 4 9 20 46 105
0 1 2 3 4 5 6 7 8
k

Some values of k,(k) are shown in Table 2. Straightforward computation using
(15) and ("), (ii"), (iii’) shows

L 1 1
H(x,y) =x*+ (; + 2x +x%y |H(x,xy) — —H(x,0) + x*yH,(x). (16)
y

) dH(x,y)
Since H(x) = ————| , we have
ay y=0
dH(x,y
yH(x,y) =x%y + (1 +xy)’H(x, xy) — H(x,0) +x4y2—% . (17)
y=0
Differentiating (17) with respect to y, and setting y = 0 implies
dH(x,y)
H(x,0) =x*+x———| + 2xH(x,0). (18)
ay y=0
Substituting
oH(x,y
x—(—)— = (1 - 2x)H(x,0) — x*
ay =0

into (17) gives
YH(x,y) = (1 +xy)’H(x, xy) + (x3y? = 2x*y? — 1)H(x,0) +x%y — x°y?
(19)

which is the basic relation for H(x, y) we will use. This is more difficult to analyze
than the corresponding functional equation (8) for S(x, y) but we still can obtain
significant information about its asymptotic behavior.

To begin, from (15) and (19) we have

(1 —2x)Hy(x) = xH,(x) + x?
Hy(x) =x2(H2(x) + 2H,(x) + Hy(x)) +x*H\(x) (20)
and for n > 2,
H(x) =x""1(Hy (x) + 2H,(x) + H,_(x)).

Therefore,
1-2x
H() = [ ) -
1 —x*
Hy(x) = ( ¥2 )Hl(x) — 2H(x) — Hy(x)

1
(1= 227 = x)(1 = 2x) = x*)Ho(x) - x2(1 - 252 = x%)),
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and for n > 3,

1
Hn(x) = F((l - 2xn)I{n—l(x) - x" n—Z(x))‘

It then follows by induction that

Hy(x) =2 ("3 )(@u(x) Ho(x) — x7p,(x)) (21)
where

gx)y=1-2x, pi(x)=1,
g(x) = (1-2x>—x*)(1-2x) —x%  py(x)=1-2x>—x*
and for n > 3,
a,(x) = (1 = 2x")q,_+(x) —x*"7'q, (%),
P.(x) = (1 = 2x")p,_y(x) —x*""'p,_(x)

(where we can consider (21) as a formal power series identity). From (22) we see
that

(22)

q(x) = lim g,(x),
p(x) = ,}ijrgopn(X)

exist as formal power series and that

[x¥la(x) = [x*]a.(x), [x*]p(x) = [x*]p.(x)
for n > k + 1. Note that by (21), increasing powers of x divide g,(x)Hy(x) —
x%p,(x) as n — . Thus, we have

x*p(x)

a(x)

Hy(x) = (23)

as a formal power series.
From (22) and (23) it now follows (cf. [S]) that H,(x) can be written as the
continued fraction

Hy(x) =

(24)
1-2x-

1-2x—-x%-

1-2x%~

1—2x%-

xll

1-2x5 - —————
SR P

Although this continued fraction is similar to some studied by Ramanujan (see [1],
[15]), it does not seem to have appeared in the literature before.

The recurrences (22) imply that p(x) and ¢(x) are analytic in the disc {x:
Ix] < 1}, and so Hy(x) is meromorphic for |x| < 1. To determine the asymptotic
behavior of Hy(x), we need to look at the zeros of g(x). It turns out that in the
disc {x: [x] <1/2}, g(x) has only a simple zero at B, = 1/a where a =
2.321642199494 . .. . This implies ,

ho(k) = [x*]Hy(x) = c;a* + O(2) (25)
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where

¢ = —B1p(B1) .

a'(B)

In fact, q(x) has zeros of multiplicity one at
B, = 0.430729593...
B, = 0.685754744 . ..

By = —0.704352541...

B, = 0.782572917...

and no other zeros in {x: |x] < 0.8}. A more careful analysis shows that (25) can be
improved to

-p(B;)
a'(8;)
and even better approximatlons can be obtained with more effort.

The basic technique for proving (25) is given, for example, in [13]. We give a
brief sketch here. To begin, computation shows that g(x) starts as follows:

ho(k) = Z — BT+ 0((5/9)"), (26)

a(x) =1-2x-2x2+x3+x*+ 7x°
+2x5 + 5x7 — 4x8 — Tx® — 9x10 — 14x" —
Let
O(x)=1-2x—=2x>+x3+x*+ 7x>+ -+ +46x¥ (27)

consist of the first 20 terms of g(x). It is not hard to verify that {Q(x)| > 1/20 for
Ix| = 1/2. We want to show that Q,(x) = g(x) — Q(x) is small on |x| > 1/2. For
lx| = 3/4, computation shows that |gs(x)| < 10, Ig,(x)| < 10. By (22),

a1 = (1423 Jla ol + (3} ol

Therefore,
lg(x)| <30 for lx| = 3/4, (28)
which implies for |y| = 1/2,

0= T el Iy

m=20

2120
< 30 Z (2/3)" < 90( ) .
m=20
Thus, |Q (¥} < |Q(y)| for |yl =1/2, so by Rouché’s theorem, Q(y) and q(y)
have the same number of zeros in {y: [y| < 1/2}. However, direct computation
shows that Q(y) has exactly one zero in this region, and therefore, so does g(y).
Consequently, 8, = 0.430729593... is the only zero of g(y) in {y: |yl < 1/2}.
The recurrence (22) also gives an effective method for computing the other
zeros B;, as well as the values of p(B,), ¢'(B;) and ¢, = 0.12268707. .. .
It seems unlikely that there is as simple an expression for g(k) as the one we
have for f(k). Poles of continued fractions such as that of (24) can seldom be
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expressed in closed form, and are expected to be usually transcendental. There are
few rigorous results or methods. On the other hand, accurate numerical approxi-
mations are almost always easy to obtain.

6. SOME HISTORY AND ACKNOWLEDGMENTS. It seems [10] that the original
problem of showing that U ¢_,L(i) is unavoidable appeared as Question 5 in the
Spring 1981 Senior Paper of the Tournament of the Towns (in the former Soviet
Union) where it is attributed to M. Kontsevich. The solution was presented at the
first World Federation of National Mathematics Competitions Conference held at
the Univ. of Waterloo in 1990. (We are indebted to Andy Liu for this bit of
scholarship.)

We would particularly like to thank Martin Gardner for once again bringing to
our attention a beautiful problem which looks 'deceptively simple and yet offers
interesting challenges. We thank M. Kontsevich for informing us of the references
[9, 8]. We are also grateful to H. Eriksson and D. E. Knuth for their comments and
corrections to an earlier draft.
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