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We consider the minimum number 7(G) of subsets into which the edge set E(G) of a graph
G can be partitioned so that each subset forms a tree. It is shown that for any connected G with
n vertices, we always have 7(G) = [3n].

1. Introduction

We consider finite undirected graphs' without loops or multiple edges. Let G
be a graph with vertex set V(G) and edge set E(G). G is said to be a forest if G
contains no cycles. A connected forest is called a tree. The arboricity y(G) of G is
defined to be the minimum number of subsets into which E(G) can be partitioned
so that the graph formed by each of the subsets is a forest. Similarly, the
vertex-arboricity y'(G) of G is defined to be the minimum number of subsets into
which V(G) can be partitioned so that the graph induced by each of the subsets is
a forest.

In [4], Nash-Williams gives the following expression for y(G) (assuming
|E(G)|=1):

(G)=max [l |EGH) 1

V(H)|-1 M

where H ranges over all nontrivial induced subgraphs of G (and, as usual, | X]
denotes the cardinality of the set X and [x] denotes the least integer greater than
or equal to x).

On the other hand, Chartrand and Kronk [2] give the following upper bound on
Y (G):

Y(G)s1+ [% max 6(H)J, 2)

where, as before, H ranges over all induced subgraphs of G, 8(H) denotes the
maximum degree of any vertex of H and x| denotes the greatest integer less
than or equal to x.

In this paper, we consider the minimum number 7(G) of subsets into which the
edge set E(G) of G can be partitioned so that each subset forms a tree. This

! We follow the terminology of Behzad and Chartrand [1].
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problem was suggested by M. Foregger and T. Foregger who showed that for a
connected graph G, the minimum number 7'(G) of subsets into which V( G) can
be partitioned so that each subset induces a tree satisfies (see [3))

"(G)=< V(). ©)

We will show that 7(G) satisfies the same inequality, i.e., for a connected graph
G,

T(G)<[z|V(G)|]. “)
It is easy to see that
(G)=y(G) ®)
and for the complete graph K,, on n vertices
7(K,) = v(K,) = [3n], (6)

which shows that equality in (3) and (4) can be achieved.

2. Preliminaries

In this section, we assume G is connected. A free partition of a graph G is a set
I ={Ty, Ty, ..., T,} of trees with the following properties:

(i) Each T, is a (not necessarily induced) subgraph of G;
(i) For i#j, T; and T; are edge disjoint, i.e., E(T,)NE(T)=§.
(iii) G is the union of the T, 1<i<r. ie., V(G)=U; V(T), E(G)={J,E(T).
We write G=2_, T; and we say G is partitioned by I ={T,, ..., T,}. Thus
7(G) is just the minimum number of trees any tree partition of G can have.
First, let us prove the following auxiliary result.

Lemma 2.1. Let G be a connected graph and suppose |V(G)|>2. Then there exist
two vertices x, y of G such that the following holds:

(a) The graph G—{x,y} with vertex set V(G)—{x}—{y} and edge set
{e€ E(G):x e and y€ e} is connected.
(b) Either x is adjacent to y or there is a vertex z which is adjacent to both x and

y.

Proof. Since G is connected, there exists a spanning tree T of G. For any two
vertices v;, v, of G, there is a unique path P(v,, v,) in T joining v, and v,. Let
d(v,, v,) denote the length of P(vy, v,), i.e., the number of edges in P(v,, v,). Let
v* be a fixed vertex of G.

Let x be a vertex with d(v*, x) = d(v*, v) for any vertex v of G. Now, x is of
degree 1 in T since otherwise there is a vertex v’ adjacent in T to x which is not
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in P(v*, x) and therefore d(v', v*)> d(v*, x), which is impossible. Let v, denote
the unique vertex adjacent to x in T. There are several cases to be considered:

Case 1. v, is of degree 1in T. Then T consists of two vertices and |V(G)|=2,
which contradicts our assumption that |V(G)|> 2.

Case 2. v, is of degree 2 in T. It is easy to see that T—{x, v,} is still a tree.
Thus, G —{x, v,} is connected since it has a spanning tree, and x is adjacent to vy,
so that (a) and (b) are satisfied in this case.

Case 3. v, is of degree greater than 2 in T. Let y be a vertex adjacent to v, in
T which is not in P(v*, x). Thus, y must be of degree 1 in T since d(v*, y)=
d(v*, x). It is clear that T—{x, y} is a tree. Therefore G —{x, y} is connected and
v; is a vertex adjacent to both x and y.

Combining the preceding cases, the lemma is proved.

3. The main theorem

Instead of just showing 7(G)=<[}|V(G)|] for G connected, we will prove the
following stronger theorem.

Theorem 3.1. Let G be a connected graph and let n denote |V(G)|. Then there is a
tree partition I ={T, ..., T2} of G and a function A: V(G)—{1,2, ..., [3n]}
such that:

@) AMv)=i implies ve V(T);
(i) For any k, 1<sk=<[3n], {v: A(v)=k}|=2.

In other words, for the tree partition J, we can assign vertices to trees such that
each tree has at most two vertices assigned to it and contained in it.

Proof. First, let us verify Theorem 3.1 for n =1 and 2, since we will prove the
theorem by induction. When n=1 or 2, {3n] =1 and G is itself a tree T;. Define
A(v)=1 for all ve V(G). Then A satisfies (i) and (ii) and the theorem holds in this
case.

Suppose the thoerem holds for all connected graphs G with |V(G)|<n. It
suffices to show that the theorem holds for any connected graph G with |V(G)|=
n+2.

By the lemma we can choose x, ye V(G) such that G—{x, y} is connected
where either x is adjacent to y or there is a z € V(G) which is adjacent to both x
and y. We consider the corresponding two cases.

Case 1. x is adjacent to y and the graph G'= G —{x, y} is connected. By the
induction assumption, there is a tree partition ' ={T;, T;, ..., Tiyz} of G' and
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Fig. 1.

there is a function \': V(G)—{1,2,..., [3n]}, such that A'(v)=i implies ve
V(T), and for any k,1<ks=< [3n],[{v:\'(v)=k}|=<2.
Let Z be a subset of V(G’) (see Fig. 1) defined by

Z={ve V(G):v is adjacent to both x and y in G}.

Now we choose a tree partition J as follows.

(a) If i is not A'(v) for any vertex v in Z, we let T,= T

(b) If there is exactly one vertex h in Z with A'(h)=i, we choose T; to have
vertex set V(T;)= V(T))U{x, y} and edge set E(T,)= E(T)U{(h, x), (h, y)}. T, is
connected and |E(T;)|= |E(T})|+2=|V(T)|+1=|V(T;)|-1. Thus, T, is a tree.

(c) If there are two vertices h, k in Z with A'(h)= A'(k) =i, we choose T to
have vertex set V(T;)= V(T}) U{x, y} and edge set E(T;)= E(T)U{(h, x), (k, y)}.
We note as before that T; is a tree since |E(T;)|=|V(T;)|— 1 and T, is connected.

From (a), (b) and (c), we have now defined T, for 1<i< [3n]. Let T*= Tio241
be the graph formed by the edges E(T*)= E(G)— {J[¥?! E(T,). Since (x, y) is in
E(T*) and any vertex in T* is adjacent to exactly one of x and y, T* is connected
and in fact is a tree. Moreover, all T, 1<i=< [3n]+1, are mutually edge disjoint.
Thus we have constructed a tree-partition of G consisting of [3n]+1=[%|V(G)|]
trees. Define A: V(G)—{1,2,..., [3n]+1} by
[3n]+1 ifv=xorv=y,

/\(v)={

A'(v) otherwise.
It is easy to see that (i) and (ii) are satisfied by this definition of A.

Case 2. x is not adjacent to y but there exists z such that z is adjacent to both
x and y and G’'= G —{x, y} is connected. In this case, the construction of a tree
partition of G is slightly different from that of Case 1. Let J'=
{T{, T3, ..., Tiyz} be a tree partition of G’ guaranteed by the induction
hypothesis and let A’ be the corresponding function on V(G').
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Fig. 2.

We define Z to be the subset of V(G) consisting of all vertices of G which are
adjacent to both x and y (see Fig. 2). Note that Z is non-empty since z e Z.
Denote A'(z) by i*. We define T, 1<i<[3n], i#i*, exactly as in Case 1. T is
defined as follows:

(a') If there exists a vertex v in Z with A’'(v)=i* and v# z, we choose T+ to
have vertex set V(T.)=V(TH)U{x,y} and edge set E(T.)=E(T.)U
{(v, x), (v, y)}.

(b) Otherwise we choose T;«= Tix.

Let T*=Tp,n. be the graph formed by the edges E(T* =
E(G)- U™ E(T). Since (x,z) and (z,y) are in E(T*) and any vertex in
V(T*)—{x, y, z} is adjacent to exactly one of x and y, T* is a tree. Thus
T={T1, ..., Tryz1} is a tree partition of G. Define A:V(G)—
{1,2,...,[3n] +1} by

1 + 1 = =
() = {[zn] 1 fv=xorov=y,
A(v) otherwise.

Again, it is easily checked that (i) and (ii) are satisfied by the definition of A.
Thus, in each case, it is possible to choose the appropriate tree partition and A
for G. This completes the induction step and the theorem is proved.

Theorem 3.2. For a connected graph G, with n vertices, n>1, and e edges, we
have

[Z—f—llsf(c)s [3n].

Proof. By Theorem 3.1, we have 7(G)<[3n]. Let §={T,,..., T,} be a tree
partition of G where r = 7(G). Since every tree has at most n— 1 edges, we have

e= ¥ |B(T)|< (- 1)r(G).
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Therefore,

5=,

and Theorem 3.2 is proved.

The same methods can be used to establish the following generalization of
Theorem 3.1 (cf. [3]).

Theorem 3.3. Let G be a graph having n vertices, e edges, and k connected
components, k <n. Then

k—1+[n—f7(-]$T(G)$[%(n+k—l)]. (7
Proof. Let G be a graph having components with n,, n,,..., n, vertices and
ey, €, . . ., € edges, respectively. The minimum number of trees which cover G is

bounded above by
H(G)<[am]+ ] +- - -+ [3ky] <3 n+k)
Since 7(G) is an integer, we have 7(G)< [L(n+k — .

On the other hand, by assuming n,>1for 1<i<h and n,=1for h<is< k, we
have

T(G)?[ 4 ]+[L]+- S . -
n—1 n,—1 n,—1

Without loss of generality, we may assume n,<n,<---<n. We note that
n,<n—k+1. It is easy to verify that

[ e ]+[ e, ]>1+[e1+e2—n1+1
n—1 n,—1 n,—1 )

Thus, we have

1-(G)>k—1+[e_(nl+' . -+nh*1)+h—1]

nh_l
>k+|7m’
nh_l

e—n+h]
=k+[— L
[ n—k

e
n—k

=k-1+

and Theorem 3.3 is proved.
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4. Conclusions

It would be desirable to have an exact formula for 7(G), in the spirit of (1). The
relation between 7(G) and +'(G) is not completely understood. Let G, be the
graph shown in Fig. 3(a). We have

(G)=3>17(G,)=2.

On the other hand, for the graph G, shown in Fig. 3(b) (provided by R.L.
Graham), we have

T(Gp) =4>1(G,)=2.,

1 2
(a) (b)

Fig. 3

It would be interesting to know how large and how small the ratio 7(G)/7'(G)
can be for a connected graph G (e.g., in terms of |V(G)|). Obvious generalizations
of the graphs in Fig. 3 show that there are arbitrarily large graphs G and G’
having n vertices and satisfying

7(G)
7(G)

>3(n+4),

and

7(G)_,
7(G) >in.

There are many possible variations of this problem. For example, we might ask,
for a given graph G, what is the minimum number of subsets into which E(G) can
be partitioned so that each subset forms a graph with certain specified properties,
e.g., each graph is bipartite, has at most one cycle, has only odd cycles, has
chromatic number <k, etc.

Of course, we could also consider the corresponding problem of determining
the minimum number of subsets into which the vertex set can be partitioned so
that each subset induces a graph with the desired properties.
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