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We study the blocking probabilities of multistage switching networks
through their linear graphs using Lee’s model. We give results which
allow us to compare the blocking probabilities of various classes of linear
graphs. In particular, we derive techniques for deciding when the
blocking probability of one linear graph does not exceed the blocking
probability of another linear graph under all possible traffic loads. This
allows us to compare the blocking performances of corresponding
switching networks containing these linear graphs. Our results apply
not only to series-parallel linear graphs, but also to the more general
“spider-web” linear graphs, which have recently attracted substantial
interest in the theory of switching networks.

I. INTRODUCTION

A network N consists of a set of switches, a set of links, and two sets
of terminals denoted by I and ©, and called, respectively, the set of input
terminals and output terminals. The union of all paths that can be used
to connect one call between an input terminal u and an output terminal
v is called the linear graph determined by u and v, and is denoted by
G (u,v). (A linear graph is also called a channel graph.10) Let P* be the
union of all paths connecting input terminals to output terminals. A state
of N is asubset S of P* such that no two paths in S have a common link.
For a given state S, a link is busy if it is on a path in S. Otherwise it is
idle.

Many existing switching networks consist of several stages. We say
that N is an n-stage network if the set of switches of N can be partitioned
into n sets, called stages, and links exist only between a switch in stage
i and a switch in stage i + 1, for 1 <i < n — 1. All input terminals are
connected to switches in the first stage and all output terminals are
connected to switches in the last stage.
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(a) (b)

Fig. 1—(a) Series combination. (b) Parallel combination.

In order to simplify the analysis of the switching networks under
consideration we will employ Lee’s model in Ref. 8. We will also use Lee’s
independence assumption, namely, that the probabilities of being busy
for links in successive stages are independent. Thus, we will assume all
links between stage i and stage { + 1 have some probability p; of being
busy and some probability ¢; = 1 — p; of being idle, foranyi,1 <i <k
— 1. Let P(u,v),u € I, v € Q, denote the probability that there does not
exist a path connecting u and v which consists of idle links. P(u,v) is
called the blocking probability for u and v. Note that because of the in-
dependence assumption, P(u,v) actually only depends on the linear
graph G (u,v) between u and v. Furthermore, we will assume all switches
in the same stage are of the same size (i.e., for any switch in stage ¢, there
are r; inlet lines and r; outlet lines).

A network is said to be balanced if all the linear graphs G (u,v), u € I,
v € (, are isomorphic.4 It is said to be partially balanced if there are
only relatively few nonisomorphic linear graphs. We can then compare
the blocking probabilities of two partially balanced switching networks
by comparing the blocking probabilities of the corresponding linear
graphs.

A linear graph is said to be a series-parallel linear graph if it is either
a series combination or a parallel combination of two series-parallel linear
graphs of smaller sizes (see Fig. 1a,b). A linear graph is said to be a spi-
der-web linear graph if it is not series-parallel. In Fig. 2 we give examples
of a series-parallel linear graph (Fig. 2a) and a spider-web linear graph
(Fig. 2b). A linear graph G (u,v) is said to be a multilink linear graph if
there exist two switches in G (u,v) which are connected by more than one
link. Any linear graph which is not a multilink graph is said to be a
simple-link linear graph.

In this paper, we present several general methods for comparing
blocking probabilities of various classes of switching networks. These
methods generalize and improve previous results in this area.” These
results can be applied not only to series-parallel linear graphs but also
to more general spider-web linear graphs. We also consider the general
case in which two switches can be connected by more than one link.
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(a) (b)
Fig. 2—(a) A series-parallel linear graph. (b) A spider-web linear graph.

ll. LINEAR GRAPHS IN THREE-STAGE NETWORKS
We denote an n-stage network by the following:

(i) The switch set
n
U ls@y):1sj <t}
i=1

where the stage i consists of ¢; switches which are labeled by s(i,j), j =
1,2,...,¢;
(ii) The link set

OALGik): 1< <t 1Sk <ty
i=1
where L (i,j,k) denotes the set of links connecting s(i,j) and s(; + 1,k);

(ii7) I and ©, the input and output terminals, respectively. We note
that for fixed ; we have

ti— ti—
S ei-Lkj)=5S ¢i-1,kj") =r
k=1 k=1

tit1 . ti+1 L. ,

2 LU R)= 2 G R)=r;

k=1 k=1

for any j,j’, 1 < j, j* < t;, where ¢(i,j,k) denotes the cardinality of
L(i,j,k).

An n-stage linear graph G (u,0) can then be characterized by the
following:

(i) The switch set is

$;

iCs

14

where s; is a subset of the switch set in stage i and s} = {u}, s, = fv}. (We
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Fig. 3—Three-stage linear graphs.

relabel switches if necessary so that s; = {s(i,j): 1 < j < m;} for some m;
=< ti’ mi=m,= 1);

(if) The link setis {L(i,7,k): s(i,j) and s(i + 1,k) are in the switch set
of G(u,v)l.

Let G’(u’,v’) be an n-stage linear graph with the set of switches
n
U is’@j):1<j<m}
i=1

and the set of links {L’(i,j,k)}. We say G (u,v) and G’(u’,v’) are isomorphic
if the following conditions are satisfied.

@) mi=m;for1<i=<n;
(iz) The set of switches in each stage can be properly relabeled such
that the following holds:

£(i,),k) = £7(i,) k).

Now, we consider a three-stage linear graph as shown in Fig. 3 (where
switches in middle stages are labeled s(2,1), ..., s(2,mJ)).

Theorem 1: Let G (u,v) be the linear graph with the set of switches

3
U ts@j):1=<j<m
i=1

and the set of links {L(z,j,k)}.
Let G’(u’,v”) be the linear graph with the set of switches

3 ’
U I <) < mi)

and the set of links {L’(i,j,k)}. Moreover, suppose G(u,v) and G’ (u’,v")
satisfy the following conditions (see Fig. 4a,b):
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s(2,1) s (2,1)

5(2,2) $(2,2)
(a) (b)
Fig. 4—Graphs for Theorem 1.

(l) mo = m'2 =2

@) ¢(1,11) = £(1,1,2) = £/(1,1,1) = £/(1,1,2)
() €(2,1,1) + £(2,2,1) = £/(2,1,1) + £(2,2,1)
() [£2,1,1) - £2,21) | < |£/(2,1,1) — £(2,2,1)]

where £(i,j,k), ¢'(i,],k) denote the cardinalities of L(i,j,k), L’ (i,],k), re-
spectively. Then we have P(u,v) < P(u’,v’).

Proof: Let p; denote the probability of a link being busy between stage
iandstage: + 1,7 = 1,2. Let

a=¢(111) =¢(1,1,2) = £/(1,1,1) = ¢’(1,1,2)
and
c=4£(2,1,1) +2(2,2,1) = 2/(2,1,1) + £/(2,2,1).
We may assume without loss of generality that
b=1+¢(21,1) <¢(2,2,1),
b'=1¢(2,1,1) £ ¢'(2,2,1).

It is easy to verify that b’ < b < ¢/2. Define the function f(x) as fol-
lows:

f)=[1-0-pH A -pd][1-(1-pH A -ps)

We note that P(u,v) = f(b) and P(u’,v") = f(b’). Furthermore, f attains
its minimum at x = ¢/2 and f is a convex function. Thus we have

f(b) < f(b')

and
P(u,v) < P(u'v).

We note that the number of paths connecting u and v in G (u,v) is ac,

which is also equal to the number of paths connecting u’ and v’ in
G (u'v’).
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Fig. 5—Graphs for Theorem 2.

The following theorem can be viewed as a special case of Theorem 1.
Because it is very useful in comparing linear graphs, we will state it
here.

Theorem 2: Let G (u,v) be the linear graph with the set of switches

3
U s 1< < my

i=1

and the set of links {L(i,7,k)}, and let G’(u’,v’) be the linear graph with
the set of switches

3
U ls’Gr):1 =] <m}
i=1

and the set of links {L’(i,j k)}.
Suppose G (u,v) and G’ (u’,v’) satisfy the following conditions (see Fig.
5a,b):

(i) mg = 2’ m:‘l = 1,
() £(1,1,1) = €(1,1,2) = ¢'(1,1,1),
(tid) £(2,1,1) + 2(2,2,1) = ¢/(2,1,1).

where £(i,j,k), ¢’(i,j,k) denote the cardinalities of L(i,j,k), L’(i,j,k),
respectively.
Then we have

P(u,v) < P(uw',v’)
Theorem 2 can be proved by taking b’ = 0 in Theorem 1.

In the following corollary, we give a short proof for the main theorem
in Ref. 4, which asserts that a multilink linear graph can always be re-
placed by a simple-link linear graph having smaller blocking probability
whereas the total numbers of paths in the two linear graphs are the
same.
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s(2,1)

s {2,mn)
(a) (b)
Fig. 6—(a) A single-link linear graph. (b) A multilink linear graph.

Corollary: Let G’(u,v) be a three-stage linear graph with the set of
switches fu,v} U {s(2,i):i=1,..., mn}and £(1,1,0) = £(2,i,1) = 1 for 1
< i = m (see Fig. 6a). Let G(u’,v’) be a three-stage linear graph with the
set of switches {u,v,5(2,1)} and satisfying £(1,1,1) = m, £(2,1,1) = n, (see
Fig. 6b). Then we have

P(u,v) < P(u'v’).

Proof: We let G” (u”,v”) have the set of switches {w”,p”} ufs”(2,i) 1<
! < m} and satisfying £7(1,1,i) = 1for1 <i <m, £”(2,i,1) =n for1 <
i = m (see Fig. 7).
By using Theorem 2 (repeatedly), we have
Pw”,v”) < P(u'v’).
Similarly, we have
P(u,v) < P(u”,v”).

s {2,1)

s (2, m)

Fig. 7—An intermediate linear graph.
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(b)

Fig. 8—Parallel combinations for n-stage linear graphs.

Thus, we have
P(u,v) < P(u',v")

and the corollary is proved.

Ill. LINEAR GRAPHS IN MULTISTAGE NETWORKS

In Section II, we presented several methods to compare blocking
probabilities of small linear graphs. In fact, large linear graphs can be
compared in very much the same way. The following two theorems show
how to extend these methods to multistage linear graphs with a com-
paratively large set of switches.

Theorem 3: Let G1(u1,v1), Ga(ua,v2), Gs(ues,v3) be three n-stage linear
graphs. We suppose the blocking probability P(uq,01) is smaller than
or equal to the blocking probability P(us,vs). Let G (u,v) be an n-stage
linear graph obtained by a parallel combination of Gy(uq,v;) and
G3(us,s) (see Fig. 8a). Let G’ (u’,v’) be an n-stage linear graph obtained
by a parallel combination of Go(us,v9) and Gs(us,vs) (see Fig. 8b). Then
we have

P(u,v) < P(u',v).

Similarly, if G (ux,Ux) is a (2n — 1)-stage linear graph obtained by a
series combination of G1(u1,v1) and Ga(us,vs) and G’ (L y,v%) isa (2n —
1)-stage linear graph obtained by a series combination of Go(ug,v2) and
G3(us,vs3), then we have

P(us,0x) < P(Uy,Uy).
Proof: 1t is easy to see that
P(u,v) = P(u1,01)P(us,v3)
P(ux,vx) =1—[1 = P(uv1)] [1 = P(us,vs)],
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and
P(u’,v’) = P(ug,v2)P(u3,v3)
P(uy,vy) = 1= [1 = P(ug,v2)] [1 — P(us,vs)].
Thus we have
Pu,0) S P ,v), PUs,Ux) < P(Uuy,ly).

The following theorem is a generalized version of Theorem 2. Theorem
1 and Corollary 1 can be generalized similarly but will not be stated
here.

Theorem 4: Let G(u,v) be an n-stage linear graph with the set of
switches

O ls@: 1< <my

and the set of links {L(i,j,k)}. Let G’(u’,0") be an n-stage linear graph
with the set of switches

oS

U{S(l]) 1<j<m}

and the set of links {L’(i,7,k)}.
Suppose G (u,v) and G’ (u’,v’) satisfy the following conditions.

(i) m; =m;foranyi # w, 1 <i < n (for a fixed w).

(i) There exist kj,ks,ks such that the linear graph G(u,v) —
{s(w,k1),5(w,k9)} is isomorphic to the linear graph G’(u’,v’) — {s’
(W,k3)}-

(t12) s(w,ky), s(w,ky) and s’ (w,k4) are connected to other switches so
that the following conditions hold:

Cw—Ljk) = 2w —1jke) =" (w—1jks) for1<j<my
Z(w,kl,k) + f(w,kg,k) = f/(w,kz,k) forl <k < my+1-

where ¢(i,j,k), ¢'(i,j,k) denote the cardinalities of L(i,j,k), L’(i,j k), re-
spectively.

Then we have
P(u,v) < P(u’,v).

We note that (iii) could be replaced by (iii’) because of symmetry:

(lll/) e(w ;.]; ) + e(w xj)kZ) = Z’(w - 11j1k3) forl S] = my,—1,
C(w,k,R) = L(w,ke,k) = €' (w,ks,k) for 1 <k < mypq.
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(a)

(b)

<X_>

G3

D i

(c)

Fig. 9—Examples of linear graphs and corresponding balanced switching networks.

Proof: We may assume n = 4 because of Theorem 2. Thus, we may as-
sume without loss of generality that w > n — 1. Therefore m; = m; for
i  w, and in particular, m,_; =m,_; Let A beasubsetof{j:1 <j <
my—1). Let G4(u,v4) be an (n — 1)-stage linear graph which can be
viewed as the union of all paths in G which connect u and a switch s(n
— 1,j), where j € A and all switches in A have been identified. (It can
be viewed that all switches in A are condensed into one switch.) In other
words, G(u,v4) has the set of switches {vg =s4 (n — 1L,1)} U {sa(i,j): i =
n — 1 and s(i,j) is on a path which passes through a switch s(n — 1)
where j € A}. G4 has the set of links {L 4 (i,j,k)} where

laln—2j1)= ¥ £(n—2,jk)
ke A
and £4(i,j,k) = £(i,j,k) fori # n — 2. Let G4(u’,v4) be the linear graph

similarly obtained from G’ by identifying all switches in A. By the in-
duction assumption, we have

P(u,pa) < P(u/,v}).
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(d)

(e)

o

G

()
Fig. 9 (continued)

Moreover, P(u,v) can be written as follows:
P(u,p) =3 pl2l (1 = pp_p)m-1=141P(u,v,4)
A

where A ranges over all subsets of {j: 1 <j < m,_,}.
Since P(u’,0”) has the similar expression

P’y = § piAL (1 = ppop)me-1=141 P(u/v)),

then we have
P(u,v) < P(u’,v’)

In Ref. 2, the present authors consider a special class of linear graphs
G (w,v) with m,,—; = m;, n odd and m; dividing m;, fori =1,2, ..., [n/2].
It can be easily seen that the linear graphs in the class can be compared
by using Theorem 4.

In Fig. 9a to f, we give several examples of linear graphs together with
their corresponding balanced switching networks.
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a O
5(2,2) 5(3,2)

Fig. 10-—A four-stage linear graph.

Let Pg, denote the blocking probability for the balanced network N;
with linear graph G;. It is easy to verify that P, < Pg, by taking w =
3,k =1, ks = 3,k3 = 2. Similarly, it is easy to see that

Pg, = Pg, =< Pg, < Pg, = Pg,,
and
Pg,<Pg, < Pg,.

We note that the numbers of crosspoints in N;, i = 1,..., 6, are the
same. Thus we know that the switching network N is “better” than the
switching network Ny and so forth.

IV. SERIES-PARALLEL LINEAR GRAPHS

In this section, we consider series-parallel linear graphs. Series-parallel
linear graphs are sometimes preferred to spider-web linear graphs® be-
cause of the conditions for implementation and control. The following
two theorems treat the blocking probabilities of series-parallel linear
graphs.

Theorem 5: We consider the following four-stage linear graph G, , (see
Fig. 10).

(L) my =mg= 2

() £(1,1,1) = £(1,1,2), £(2,1,2) = £(2,2,1) = 0, £(3,1,1) = £(3,2,1),

@) €(2,1,1) = x,£(2,2,2) = y.

If there are integers a and b withx + y =a + b,x <a < b <y, then
we have

Pg,, =< Pny

The proof of Theorem 5 is quite similar to the proof of Theorem 1—by
setting f(x) = [1 = (1 = p1) (1= p3) (1 = pa)] [1- (1 = p1) (1 - p§™) (1
~ p3)]—and is omitted.

Remark: The above theorem can be extended to multistage linear graphs
by replacing each link by a linear graph under the condition that all links
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(a) (b)
ié; (c) %5
(d) (e)

Fig. 11—Examples.

between stage i and stage i + 1 are replaced by copies of a linear graph
or by linear graphs with the same blocking probabilities.

In Fig. 11, some examples are illustrated. The linear graph in Fig. 11b
has a smaller blocking probability than the linear graph in Fig. 11a by
Theorems 3 and 5. The linear graph in Fig. 11¢ has a smaller blocking
probability than the linear graph in Fig. 11b by Theorems 3 and 4.

Theorem 6: We consider the following linear graph G.,., (see Fig.
12):

(l) m;=m; = 2.

(11} u and s(i,1) are connected by a linear graph N. u and s(i,2) are
connected by a linear graph Ns. N; and N have the same number of
stages and Py, = Py,

(itt) v and s(j,1) are connected by a linear graph Ns. v and s(j,2) are
connected by a linear graph N4. N3 and N4 have the same number of
stages and Py, = Py,.

(iv) There exist (j — i + 1)-stage linear graphs G1,G 5 such that s(i,1)
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Fig. 12—Linear graph for Theorem 6.

and s(j,1) are connected by x copies of G; and y copies of Gy and s(i,2)
and s(j,2) are connected by z copies of G, and w copies of G .

Suppose x +y =2+ w = c and x + z = d for some constants ¢ and d.
We alsosupposex’ +y' =z'+w’ =c¢,x’+2’=d wherex’ <x <z <z,
Then we have

PGy = PGy
Proof: Let a = (1 — Py,) (1 - Py).
Define the following function f(x):
f(x) = [1 = a(l = Pg PEH] [1 — a1 = PE* PG40,
It is easy to see that Pg, ,, = f(x), Pg,.pw = f(x’). Now,

d
ﬁ (x) = a(1 = a) (log Pg, = log Pg;) (P§, P&," — P&* PG;*)

= a(l — &) (log Pg, ~ log Pg,) P%, P& (1 — PE™ P%E9.

If Pg, = Pg,, we have f(x) = f(x). If Pg, # Pg,, f(x) attains its minimum
at x = d/2. Since f(x) is convex, then

flx) 2 f(x’)forx’ <x <

N |

Thus we have

Pnyzw < PGx’y'z’w"

Theorem 5 and Theorem 6 essentially say that the more regular (i.e.,
evenly distributed) the linear graph, the better it is. Of course, all these
results are based on the Lee model and the related independence as-
sumption. In some existing networks, irregular linear graphs might
sometimes be desirable because of the preference schemes in rout-
ing.1
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(a) (b)
Fig. 13—Linear graphs for Theorem 7.

In Fig. 11, the linear graph in 11d has a smaller blocking probability
than the linear graph in 11¢ by Theorem 6. By Theorem 5, the linear
graph in 11e has the smallest blocking probability. We note that 11e is
the most regular linear graph in Fig. 11.

Theorems 5 and 6 can be generalized to a class of spider-web linear
graphs. We will state the generalized version of Theorem 5.

Theorem 7: Let Gop, and G, be two n-stage linear graphs satisfying the
following properties (see Fig. 13).

(i) There exists k, 2 < k < n — 2, such that G, — {s(k,1),s(k,2),s (k
+ 1,1)s(k + 2,2)} is isomorphic to Exy —{s'(k,1),s'(k,2),s"(k+ 1,1),s'(k
+ 2,2)}, where {s(1,/)}, {s’(i,j)} are the sets of switches of Eab,ﬁxy, re-
spectively.

(@) ek—1L,1)=¢k—1,5,2) =¢'(k— 1,i,1) = ¢’(k — 1,i,2) for 1
Si<mp_j,and Ok +1,15) = €k + 1,2)) = £/(k+ 1,1,j) = £’ (k + 1,2,))
for1 < j < mp4q, where £(i,j,k) and £'(i,j k) are the cardinalities of links
of Gop, Exy, respectively.

(i)
f(k,l,j)= {a lf] =1.
0 otherwise
0(k,2,)) = [b =2
0 otherwise
Similarly,
CkL)) = lx ifj = 1'
0 otherwise
. y ifj=2
o' (k,2,)) = {
(k.2.) 0 otherwise
(iv)

xty=a+bx=<asb=<y.
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Then we have
Pg

a

» < Pg

xy*

Proof: The proof is by induction on the number of stages. Suppose n =
4. Following the notation in Theorem 5, we note that G,y is the parallel
combination of G, and G. Thus by Theorem 5, we have

Pg,. = Pg,, Pg < Pny P; = Pﬁxy.

For n > 4, we apply the same reduction scheme which is used in the
proof of Theorem 4. The theorem is then proved by mathematical in-
duction.

V. CONCLUDING REMARKS

Lee8 first proposed the concept of a linear graph in connection with
his study of the blocking probabilities of switching networks. Since then
his model has been widely used. However, a systematic study of linear
graphs is still far from complete. There are some results in extending
Lee’s method®? or for studying the blocking probabilities for certain
classes of series-parallel linear graphs?. Takagil®1! has defined a class
of spider-web linear graphs and finds the optimal one in that class. Some
of his results have been obtained earlier by Le Gall3. Van Bosse!213 ex-
tends results in Refs. 3, 10, and 11 in the sense that the occupancy dis-
tribution for links can be arbitrary. In this paper, several new methods
for analyzing blocking probabilities of certain classes of switching net-
works are presented. We hope it will lead to more research in this di-
rection.
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