ON THE RAMSEY NUMBERS N(3, 3, ..., 3; 2)

Fan Rong K. CHUNG

Department of Mathematics, University of Pennsylvania, Philadelphia, Pa. 19104, USA

Received 5 July 1972*

Abstract. The main results of this paper are N(3,3,3,3;2) > 50 and $f(k+1) \ge 3f(k) + f(k-2)$, where f(k) = N(3,3,...,3;2) - 1 for $k \ge 3$.

1. Introduction

The theorem of Ramsey says: Given integers $S_1, S_2, S_3, ..., S_k$, where $S_1, S_2, ..., S_k \ge 2$, there exists a minimum integer $N(S_1, S_2, ..., S_k; 2)$ such that the following property is valid for all $n \ge N(S_1, S_2, ..., S_k; 2)$. Let the edges of a complete graph of n vertices be colored in k colors, then there exists a subset of S_i vertices with all its interconnecting segments of the ith color for some $i \le k$.

Now, consider the case of $S_1 = S_2 = ... = S_k = 3$. Let

$$f(k) = N(\underbrace{3, 3, ..., 3; 2}_{k \text{ times}}) - 1$$
.

The problem reduces to the following: If the edges of K_n are colored in k colors and if n > f(k), then there exists some triangle with all its sides in the same color. Find f(k).

It is known [1] that $2^k \le f(k) \le [k!e]$. Particularly, f(1) = 2, f(2) = 5, f(3) = 16. Whitehead [3,4] has proved $f(4) \ge 49$. It will be shown here that $f(k+1) \ge 3f(k) + f(k-2)$ for $k \ge 3$ and, in particular, $f(4) \ge 50$, thus N(3,3,3,3;2) > 50.

^{*} Original version received 18 April 1972.

2. $N(3, 3, 3, 3; 2) > 50^{-1}$

Consider the symmetric 16×16 matrix:

$$T_{3}(x_{0},x_{1},x_{2},x_{3}) = \begin{cases} x_{0} \\ x_{1}x_{2}x_{0} \\ x_{1}x_{2}x_{3}x_{0} \\ x_{1}x_{3}x_{2}x_{3}x_{2}x_{0} \\ x_{2}x_{3}x_{2}x_{2}x_{1}x_{1}x_{0} \\ x_{2}x_{2}x_{3}x_{1}x_{1}x_{2}x_{3}x_{0} \\ x_{2}x_{2}x_{1}x_{3}x_{2}x_{1}x_{3}x_{1}x_{0} \\ x_{2}x_{1}x_{1}x_{2}x_{3}x_{2}x_{1}x_{1}x_{3}x_{0} \\ x_{2}x_{1}x_{1}x_{2}x_{3}x_{2}x_{1}x_{1}x_{3}x_{0} \\ x_{2}x_{1}x_{2}x_{1}x_{2}x_{3}x_{1}x_{3}x_{1}x_{3}x_{0} \\ x_{3}x_{2}x_{1}x_{1}x_{3}x_{3}x_{2}x_{3}x_{3}x_{2}x_{2}x_{0} \\ x_{3}x_{1}x_{2}x_{3}x_{3}x_{1}x_{3}x_{1}x_{3}x_{2}x_{2}x_{3}x_{1}x_{0} \\ x_{3}x_{1}x_{3}x_{2}x_{1}x_{3}x_{3}x_{2}x_{1}x_{3}x_{2}x_{1}x_{2}x_{0} \\ x_{3}x_{3}x_{3}x_{1}x_{2}x_{1}x_{2}x_{2}x_{3}x_{1}x_{3}x_{2}x_{1}x_{2}x_{1}x_{0} \\ x_{3}x_{3}x_{1}x_{3}x_{1}x_{2}x_{2}x_{2}x_{3}x_{1}x_{3}x_{2}x_{1}x_{2}x_{1}x_{0} \\ x_{3}x_{3}x_{1}x_{3}x_{1}x_{2}x_{2}x_{2}x_{3}x_{1}x_{2}x_{1}x_{2}x_{1}x_{0} \\ x_{3}x_{3}x_{1}x_{3}x_{1}x_{2}x_{2}x_{2}x_{3}x_{1}x_{2}x_{1}x_{2}x_{1}x_{0} \\ x_{3}x_{3}x_{1}x_{3}x_{1}x_{2}x_{2}x_{2}x_{3}x_{2}x_{3}x_{1}x_{2}x_{1}x_{2}x_{1}x_{0} \\ x_{3}x_{3}x_{1}x_{3}x_{1}x_{2}x_{2}x_{2}x_{3}x_{2}x_{3}x_{1}x_{2}x_{1}x_{2}x_{1}x_{0} \\ x_{3}x_{3}x_{1}x_{3}x_{1}x_{2}x_{2}x_{2}x_{3}x_{1}x_{2}x_{1}x_{2}x_{1}x_{0} \\ x_{3}x_{3}x_{1}x_{3}x_{1}x_{2}x_{2}x_{3}x_{2}x_{3}x_{1}x_{2}x_{1}x_{2}x_{1}x_{0} \\ x_{3}x_{3}x_{1}x_{3}x_{1}x_{2}x_{2}x_{3}x_{2}x_{3}x_{1}x_{2}x_{1}x_{2}x_{1}x_{0} \\ x_{3}x_{3}x_{1}x_{3}x_{1}x_{2}x_{2}x_{3}x_{3}x_{2}x_{3}x_{1}x_{2}x_{1}x_{2}x_{1}x_{0} \\ x_{3}x_{3}x_{1}x_{3}x_{1}x_{2}x_{2}x_{3}x_{3}x_{2}x_{3}x_{1}x_{2}x_{1}x_{2}x_{1}x_{0} \\ x_{3}x_{3}x_{1}x_{3}x_{1}x_{2}x_{2}x_{3}x_{3}x_{2}x_{3}x_{1}x_{2}x_{1}x_{2}x_{1}x_{0} \\ x_{3}x_{3}x_{1}x_{3}x_{1}x_{2}x_{2}x_{3}x_{2}x_{3}x_{1}x_{2}x_{1}x_{2}x_{1}x_{0} \\ x_{3}x_{3}x_{1}x_{2}x_{2}x_{3}x_{2}x_{3}x_{2}x_{3}x_{1}x_{2}x_{1}x_{2}x_{1}x_{0} \\ x_{3}x_{3}x_{1}x_{2}x_{2}x_{3}x_{2}x_{3}x_{2}x_{3}x_{2}x_{1}x_{1}x_{2}x_{1}x_{0} \\ x_{3}x_{3}x_{1}x_{2}x_{1}x_{2}x_{2}x_{3}x_{2}x_{3}x_{1}x_{2}x_{1}x_{2}x_{1}x_{1}x_{2}x_{1}x_{2}x_{1}x_{2}x_{1}x_{1}x_{2}x_{1}x_{2}x_{1}x_{1}x_{2}x_{1}x_{2}x_{1}x_{1}x_{2}$$

It is known [2] that $T_3(0,1,2,3)$ is the incidence matrix of one of the two non-isomorphic edge-coloring schemes of K_{16} without any one-color triangles.

Now construct the 50 × 50 incidence matrix in the following way:

$T_4(0,1,2,3,4) =$	A				
	D	В			
	E	F	С		
	11 1	22 2	33 3	0	
	111	222	333	4	0

¹ Dr. G.J. Porter proved 2 independently in Univ. of Pennsylvania.

2. N(3,3,3,3;2) > 50

where
$$A = T_3(0, 2, 3, 4)$$
,
 $B = T_3(0, 3, 1, 4)$,
 $C = T_3(0, 1, 2, 4)$,
 $D = T_3(3, 2, 1, 4)$,
 $E = T_3(2, 1, 3, 4)$,
 $F = T_3(1, 3, 2, 4)$.

If there are some one-color triangles with vertices i, j, k, then $t_{i,j} = t_{k,j} = t_{k,i}$. We may assume k > i > j without loss of generality. Case 1: $t_{i,j} = t_{k,i} = t_{k,i} = 4$.

We notice that $t_{m,n} = t_{m',n'} = 4$ if $m \equiv m' \pmod{16}$, $n \equiv n' \pmod{16}$ for $m, m', n, n' \leq 48$. Hence we may pick i', j', k' such that $i \equiv i', j \equiv j', k \equiv k' \pmod{16}$ and $i', j', k' \leq 16$; then $t_{i',j'} = t_{k',j'} = t_{k',i'} = 4$. This contradicts the fact that T_3 is the incidence matrix of a coloring without a one-color triangle. In case of k = 50, i = 49, we know that $t_{50,49} = 4$ and that $t_{6,49}$, $t_{6,50}$ do not have value 4 for any $j \neq 49$, 50.

Case 2:
$$t_{i,j} = t_{k,j} = t_{k,i} = 2$$
.

- (1) $16 \ge j \ge 1$, $16 \ge i \ge 1$, $t_{i,j}$ is in part A.
 - (a) If $t_{k,j}$ is in part A, then $t_{k,i}$ is in part A. This contradicts the structure of T_3 .
 - (b) If $t_{k,j}$ is in part D, then $t_{k,i}$ is in part D. We know that $t_{i+16,j} = t_{i,j} = 2$. Then $t_{i+16,j} = t_{k,i} = t_{k,i} = 2$. Impossible.
 - (c) If $t_{k,j}$ is in part E, then $t_{k,i}$ is in part E. But there is only one entry with value 2 in each row of E. Contradiction.
- (2) $16 \ge j \ge 1$, $32 \ge i \ge 17$, $t_{i,j}$ is in part D.
 - (a) If $t_{k,j}$ is in part D, then $t_{k,i}$ is in part B. But there is no entry with value 2 in B. This is impossible.
 - (b) If $t_{k,j}$ is in part E, then $t_{k,i}$ is in part F. It is known that only the entries on the diagonal are of value 2 in E. Hence k=32+j. We have $t_{i,j}=t_{32+j,j}=t_{32+j,j}=2$. But $t_{32+j,i}=3$ if $t_{i,j}=2$. Contradiction.
- (3) $16 \ge j \ge 1$, $50 \ge i \ge 33$, $t_{i,j}$ is in part E. There is only one entry with value 2 in part E. This is impossible.
- (4) $32 \ge j \ge 17$, $32 \ge i \ge 17$, $t_{i,j}$ is in part B. This is impossible because there is no entry with value 2 in B.
- (5) $32 \ge j \ge 17$, $48 \ge i \ge 33$, $t_{i,j}$ is in part F.
 - (a) $t_{k,j}$ is in part F and $t_{k,i}$ is in part C and $t_{k,i} = t_{k,i-16} = 2$. Then $t_{i,j}, t_{k,j}, t_{k,i-16}$ are all in F and all with value 2. This contradicts the structure of T_3 .

(b) k = 49 or 50. In this case, $t_{k,i} = 3 \neq t_{i,i}$.

(6)
$$i = 49, 32 \ge j \ge 17, k = 50$$
. Then $t_{50,49} = 4 \ne 2$. Impossible.

(7)
$$48 \ge j \ge 33$$
, $48 \ge i \ge 33$, $t_{i,j}$ is in part *C*. $t_{k,j}$, $t_{k,i}$ is in part *C*. This contradicts the structure of T_3 .

Case 3: $t_{i,j} = t_{k,j} = t_{k,i} = 1$. This is impossible. The proof is similar to case 2.

Case 4: $t_{i,j} = t_{k,j} = t_{k,i} = 3$. Similarly impossible.

Hence we prove that $T_4(0,1,2,3,4)$ is the incidence matrix of the coloring of K_{50} without a one-color triangle.

Thus, $f(4) \ge 50$, i.e., N(3,3,3,3;2) > 50.

3.
$$f(k+1) \ge 3f(k) + f(k-2)$$

The result in Section 2 can be generalized to any $k \ge 4$.

Let $T_k(x_0, x_1, ..., x_k)$ be the incidence matrix of the coloring of the complete graph of n_k vertices without a one-color triangle in k colors.

Similarly, we construct $T_{k+1}(0,1,2,...,k+1)$ as shown in Diagram 1.

Diagram 1.

$$\begin{array}{ll} A = T_k(0,2,3,4,5,...,k+1), & B = T_k(0,3,1,4,5,...,k+1), \\ C = T_k(0,1,2,4,5,...,k+1), & D = T_k(3,2,1,4,5,...,k+1), \\ E = T_k(2,1,3,4,5,...,k+1), & F = T_k(1,3,2,4,5,...,k+1), \\ G = T_{k-2}(0,4,5,...,k+1). & \end{array}$$

The proof that such a coloring has no one-color triangle is quite similar to the proof in Section 2. Hence we have $f(k+1) \ge 3f(k) + f(k-2)$.

Acknowledgment

The author wishes to thank professor Herbert S. Wilf for his guidance and encouragement.

References

- R.E. Greenwood and A.M. Gleason, Combinatorial relations and chromatic graphs, Canad. J. Math. 7 (1955) 9-20.
- [2] J.G. Kalbfleisch and R.G. Stanton, On the maximal triangle-free edge-chromatic graphs in three colors, J. Combin. Theory 5 (1968) 1-7.
- [3] E.G. Whitehead, Jr., Dissertation, Univ. of Southern California, Calif. (1971).
- [4] E.G. Whitehead, Jr., Algebraic structure of chromatic graphs associated with the Ramsey number N(3,3,3;2) Discrete Math. 1 (1971) 113.