On the decomposition of graphs into complete bipartite subgraphs

by

F. R. K. CHUNG (Murray Hill), P. ERDŐS (Budapest) and J. SPENCER* (Stony Brook)

Abstract

For a given graph G, we consider a **B**-decomposition of G, i.e., a decomposition of G into complete bipartite subgraphs G_1, \ldots, G_t , such that any edge of G is in exactly one of the G_i 's. Let $\alpha(G; \mathbf{B})$ denote the minimum value of $\sum_i |V(G_i)|$ over all **B**-decompositions of G. Let $\alpha(n; \mathbf{B})$ denote the maximum value of $\alpha(G; \mathbf{B})$ over all graphs on n vertices.

A **B**-covering of G is a collection of complete bipartite subgraphs G'_1, G'_2, \ldots, G'_n , such that any edge of G is in at least one of the G'_i . Let $\beta(G; \mathbf{B})$ denote the minimum value of $\sum_{i} |V(G'_i)|$ over all **B**-coverings of G and

let $\beta(n; \mathbf{B})$ denote the maximum value of $\beta(G; \mathbf{B})$ over all graphs on n vertices.

In this paper, we show that for any positive ε , we have

$$(1-\varepsilon)\frac{n^2}{2e\log n} < \beta(n; \mathbf{B}) \le \alpha(n; \mathbf{B}) < (1+\varepsilon)\frac{n^2}{2\log n}$$

where e = 2.718... is the base of natural logarithms, provided n is sufficiently large.

Introduction

For a finite graph G, a decomposition P of G is a family of subgraphs G_1, G_2, \ldots, G_t , such that any edge in G is an edge of exactly one of the G_i' s. If all G_i' s belong to a specified class of graphs H, such a decomposition will be called an H-decomposition of G (see [2]).

Let f denote a cost function for graphs which assigns certain non-negative real values to all graphs. Sometimes it is desirable to decompose a given graph into subgraphs in H such that the total "cost" (the sum of the cost function values of all subgraphs) is minimized. In other words, for a given graph G, we consider the following:

^{*} Work done while a consultant at Bell Laboratories.

$$\alpha_f(G; \mathbf{H}) = \min_{P} \sum_i f(G_i)$$

where $P = \{G_1, G_2, \ldots, G_t\}$ ranges over all **H**-decompositions of G. Also of interest to us will be the quantity

$$\alpha_f(n; \mathbf{H}) = \max_G \alpha_f(G; \mathbf{H})$$

where G ranges over all graphs on n vertices.

If we take f_0 to be the counting function, which assigns value 1 to any graph, and **P** is the family of all planar graphs, then $\alpha_{f_0}(G; \mathbf{P})$ is simply the thickness of G. If **F** denotes the family of forests, then $\alpha_{f_0}(G; \mathbf{F})$ is called the arboricity of G (see [6]). Many results along these lines are available. The reader is referred to [2] for a brief survey.

In this paper, we will deal almost exclusively with the case in which **H** is **B**, the family of complete bipartite graphs. By a theorem in [5], the value of $\alpha_{f_0}(n; \mathbf{B})$ is given by:

$$\alpha_{f_0}(n; \mathbf{B}) = n-1$$
.

We consider the cost function f_1 where the value $f_1(G)$ is just the number of vertices in G. In the remaining part of the paper, we abbreviate $\alpha(n) = \alpha_{f_1}(n; \mathbf{B})$ and $\alpha(G) = \alpha_{f_2}(G; \mathbf{B})$. In particular, we show for any given ε and sufficiently large n,

(1)
$$(1-\varepsilon)\frac{n^2}{2e\log n} < \alpha(n) < (1+\varepsilon)\frac{n^2}{2\log n}$$

where e satisfies $\ln e = 1$.

An H-covering of G is a collection of subgraphs of G, say $G'_1, \ldots, G'_{i'}$, such that any edge of G is in at least one of the G'_i , and all G'_i are in H. For a given cost function f, we can define

$$\beta_f(G; \mathbf{H}) = \min_{P} \sum_i f(G_i')$$

where $P = \{G'_1, \ldots, G'_t\}$ ranges over all **H**-coverings of G. It is easily seen that

$$\beta_f(G; \mathbf{H}) \leq \alpha_f(G; \mathbf{H})$$

and

$$\beta_f(n; \mathbf{H}) \leq \alpha_f(n; \mathbf{H})$$
.

We will show that the asymptotic growth of $\beta_{f_i}(n; \mathbf{B})$ is quite similar to $\alpha_{f_i}(n; \mathbf{B})$. In fact, we will obtain the same upper and lower bounds for $\beta_{f_i}(n; \mathbf{B})$ as those for $\alpha_{f_i}(n; \mathbf{B})$ in (1).

A lower bound

We derive these bounds mainly by probabilistic methods, which have been extensively described in the book by two of the authors [4].

Theorem 1. $\alpha(n) \ge (1-\varepsilon) \frac{n^2}{2e \log n}$ for any given positive ε and sufficiently large n.

Proof. Let us consider a random graph G with n vertices and $\lfloor n^2/2e \rfloor$ edges. The probability of G containing a complete bipartite subgraph $K_{a,b}$ is bounded above by

$$\binom{n}{a} \binom{n}{b} e^{-ab} < e^{(a+b)\log n - ab}$$

(where $\lfloor x \rfloor$ and $\lceil x \rceil$ denote the greatest integer less than x and the least integer greater than x, respectively.)

Let S denote the set of all unordered pairs $\{a, b\}$ satisfying

$$1 \le a, b \le n, \frac{a+b}{ab} < \frac{1-\varepsilon}{\log n}.$$

The probability of G containing one of the complete bipartite subgraphs $K_{a,b}$ with $\frac{a+b}{ab} < \frac{1-\varepsilon}{\log n}$ is bounded above by

$$\sum_{\{a,b\} \in S} {n \choose a} {n \choose b} e^{-ab} < \sum_{\{a,b\} \in S} e^{-\varepsilon ab} < \sum_{\{a,b\} \in S} e^{-\varepsilon (\log n)^2} < n^2 e^{-\varepsilon (\log n)^2} < 1$$

for large n.

Therefore, there exists a graph G with n vertices and $\lfloor n^2/2e \rfloor$ edges such that G does not contain any $K_{a,b}$ as a subgraph. Let $P = \{G_1, G_2, \ldots, G_i\}$ denote a **B**-decomposition of G such that $\alpha(G)$ is the sum of the sizes of vertex set $V(G_i)$ of G_i , i.e.,

$$\alpha(G) = \sum_{i=1}^{t} |V(G_i)|.$$

For any edge (u, v) in G, we define

$$f(u,v) = \frac{|VG_i|}{|E(G_i)|}$$

where $\{u, v\}$ is in $E(G_i)$, the edge set of G_i .

It is easily seen that

$$\alpha(G) = \sum_{\{u,v\}} f(u,v).$$

Since G does not contain $K_{a,b}$ as a subgraph, any $G_i = K_{c,d}$, $1 \le i \le t$, satisfies that $\frac{c+d}{cd} \ge \frac{1-\varepsilon}{\log n}$. Thus we have

$$f(u,v) \ge \frac{1-\varepsilon}{\log n}$$
 for any $\{u,v\}$ in $E(G)$.

and

$$\alpha(n) > \alpha(G) > \frac{(1-\varepsilon)n^2}{2e \log n}$$

for sufficiently large n. This proves the theorem.

An upper bound

First, we shall prove a preliminary result.

Lemma. For any $\varepsilon > 0$ any graph on n vertices and $\rho \binom{n}{2}$ edges contains a complete bipartite graph $K_{s,t}$ as a subgraph where $t = \lfloor 1(1-\varepsilon)n\rho^s \rfloor$ and $s < \varepsilon \rho n$ for n sufficiently large.

Proof. Suppose G has n vertices and $\rho \binom{n}{2}$ edges and G does not contain $K_{s,t}$ as a subgraph. From the proof in [3], the following holds:

$$(2) n(\rho n - s)^s \leq (t - 1) \cdot n^s.$$

However, on the other hand, we have

$$(t-1)n^{s} < tn^{s} \le (1-\varepsilon)n^{1+s}\rho^{s} < n(\rho n - s)^{s}$$

since $s < \varepsilon \rho n$.

This contradicts (2). Thus G must contain $K_{s,t}$.

Theorem 2. For any given ε , we have

(3)
$$\alpha(n) < (1+\varepsilon) \frac{n^2}{2 \log n}$$

if n is large enough.

Proof. From Lemma 1, one can easily verify that a graph G on $\rho \binom{n}{2}$ edges and n vertices contains a subgraph H isomorphic to $K_{s,t}$, where $s = \lfloor (1 - \varepsilon_1) \log n \log (1/\rho) \rfloor$ and $t = \lfloor s^2 \log (1/\rho) \rfloor$ and $\varepsilon_1 > \frac{(\log n)^2}{\rho n}$. We will decompose G into complete bipartite subgraphs by a "greedy algorithm". Given G we find a subgraph H isomorphic to $K_{s,t}$ and let G_1 to be the subgraph of G containing all edges of G except those in G. Now, we find a subgraph G isomorphic to G and let G to be a subgraph of G containing all

edges of G_1 except those in H_1 and continue in this fashion until only $\varepsilon_2 \frac{n^2}{\log n}$ edges are left. Thus G is decomposed into H, H_1, \ldots , together with $\varepsilon_2 \frac{n^2}{\log n}$ edges and we have the following recursive relation

$$\alpha(G) \leq s + t + \alpha(G_1).$$

We will prove by induction that for a give $\varepsilon < \varepsilon_2 < \varepsilon_1$, $\varepsilon_3 > 0$ and sufficiently large n the following holds,

(5)
$$\alpha(G) \leq (1+\varepsilon_2) \frac{n^2}{2\log n} \int_{0}^{\rho} \log(1/x) dx + 2\varepsilon_2 \frac{n^2}{\log n}.$$

Suppose (5) holds for any graph H with $|E(H)| < \rho \binom{n}{2}$. From (4), we have

$$\alpha(G) \leq (1 - \varepsilon_2) (\log n)^2 / (\log (1/\rho))^3 + (1 + \varepsilon_2) \frac{n^2}{2 \log n} \int_{0}^{\rho'} \log (1/x) dx + 2\varepsilon_2 \frac{n^2}{\log n}$$

where $\rho' = (|E(G)| - st) / {n \choose 2}$ for *n* sufficiently large. It suffices to show that

$$(1 - \varepsilon_2) (\log n)^2 / \log (1/\rho))^3 + (1 + \varepsilon_2) \frac{n^2}{2 \log n} \int_0^{\rho'} \log (1/x) dx \le$$

$$\leq (1 + \varepsilon_2) \frac{n^2}{2 \log n} \int_0^{\rho'} \log (1/x) dx$$

This can be verified by straightforward calculation. Thus (5) is proved and we have

$$\alpha(n) \leq (1+\varepsilon_2) \frac{n^2}{2\log n} \int_{0}^{1} \log(1/x) dx + 2\varepsilon_2 \frac{n^2}{\log n} \leq (1+\varepsilon) \frac{n^2}{2\log n}$$

for given $\varepsilon > 0$. Theorem 2 is proved.

By slightly modifying the proofs of Theorem 1, we can easily prove the following.

Theorem 3.

$$\beta_{f_1}(n; \mathbf{B}) \ge (1 - \varepsilon) \frac{n^2}{2e \log n}$$

for any positive ε and sufficiently large n.

Therefore we have

$$(1-\varepsilon)\frac{n^2}{2e\log n} < \beta_{f_1}(n; \mathbf{B}) \le \alpha_{f_1}(n; \mathbf{B}) < (1+\varepsilon)\frac{n^2}{2\log n}$$

for any given positive ε and sufficiently large n, which summarizes the main results of the paper.

Some related question

As we noted earlier, the lower bound is obtained by a probabilistic method which is nonconstructive. It would be of great interest to find an explicit construction of a graph G on n vertices, $c_1n^2/\log n$ edges (or c_2n^2 edges) which does not contain an $K_{c_3\log n,c_3\log n}$ as a subgraph for some constants c_1 , c_2 and c_3 .

Another interesting problem which has long been conjectured [4] concerns the Turán number $T(K_{t,t}; n)$, the maximum number of edges a graph on n vertices can have which does not contain $K_{t,t}$ as a subgraph. Is it true that

$$T(K_{t,t};n) = O(n^{2-1/t})$$
?

For the case t=3, the above equality has been verified in [1].

In this paper, we have shown that $\alpha_{f_1}(n; \mathbf{B}) = O(n^2/\log n)$. However, we do not know the existence of

$$\lim_{n\to\infty} \frac{\alpha_{f_i}(n; \mathbf{B})}{n^2/\log n} \quad \text{or} \quad \lim_{n\to\infty} \frac{\beta_{f_i}(n; \mathbf{B})}{n^2/\log n},$$

obviously.

Let G_n be the set of all the $2^{\binom{n}{2}}$ labelled graphs on n vertices. It would be of interest to evaluate $\sum_{G \in G_n} \alpha_{f_i}(G; \mathbf{B})$. It is not unreasonable to conjecture that

$$\lim_{n\to\infty} \frac{\sum\limits_{G\in\mathbf{G}_n} \alpha_{f_1}(G;\mathbf{B})}{2^{\binom{n}{2}} n^2/\log n} = c$$

exists and c is probably equal to $\lim_{n\to\infty} \frac{\alpha_{f_i}(n;\mathbf{B})}{n^2/\log n}$. We can also ask the analogous question for $\beta_{f_i}(G;\mathbf{B})$.

Let $G_{n,m}$ be the set of all graphs on n vertices and m edges. We can define $\alpha_f(n, m; \mathbf{H})$ to be the maximum value of $\alpha_f(G; \mathbf{H})$ where G ranges over all graphs in $G_{n,m}$. In this paper we investigate $\alpha_{f_i}(n, m; \mathbf{B})$ where m is about $n^2/2e$. One could also investigate $\alpha_{f_i}(n, m; \mathbf{B})$ or $\beta_{f_i}(n, m; \mathbf{B})$. In particular, we can ask the problem of determining m so that $\alpha(n, m; \mathbf{B})$ is maximized or to find the range for m for which we have $\alpha(n, m; \mathbf{B}) = o(n^2)$.

References

- [1] W. G. Brown, On Graph That do not Contain a Thomson Graph, Canad. Math. Bull. 9 (1966), 281-285.
- [2] F. R. K. CHUNG, On the Decomposition of Graphs, SIAM J. on Algebraic and Discrete Methods, 2 (1981), 1-12.
- [3] F. R. K. Chung and R. L. Graham, On Multicolor Ramsey Numbers for Complete Bipartite Graphs, J. C. T. 18, (1975), 164-169.
- [4] P. Erdős and J. Spencer, Probabilistic Methods in Combinatorics, Academic Press, New York, 1974.
- [5] R. L. Graham and H. O. Pollak, On the Addressing Problem for Loop Switching, Bell Sys. Tech. Jour., 50 (1971), 2495–2519.
- [6] F. HARARY, Graph Theory, Addison-Wesley, New York, 1969.

BELL LABORATORIES MURRAY HILL, NJ 07974 U.S.A.

MATHEMATICAL INSTITUTE OF THE HUNGARIAN ACADEMY OF SCIENCES H 1053 BUDAPEST REÁLTANODA U. 13–15 HUNGARY

SUNY STONY BROOK STONY BROOK, NY U.S.A.