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Abstract

For a given graph G, we consider a B-decomposition of G, i.e., a decomposition of G into complete
bipartite subgraphs G, . .., G,, such that any edge of G is in exactly one of the Gis. Let o{G; B) denote the

minimum value of } | V(G))| over all B-decompositions of G. Let «(n; B) denote the maximum value of o(G; B)

over all graphs on n vertices.
A B-covering of G is a collection of complete bipartite subgraphs G}, G5, . . ., G,, such that any edge of
G is in at least one of the G;. Let f(G; B) denote the minimum value of  |V(G))| over all B-coverings of G and

let f(n; B) denote the maximum vaiue of §(G; B) over all graphs on n vertices.
In this paper, we show that for any positive ¢, we have

n? n?

<Pp(n;B)Loqn; B)<(1+¢)

1-—¢
( )2e|ogn 2logn

where e=2.718. .. is the base of natural logarithms, provided n is sufficiently large.

Introduction

For afinite graph G, a decomposition P of G is a family of subgraphs G, G,, . . ., G,,
such that any edge in G is an edge of exactly one of the G; s. If all G} s belong to a
specified class of graphs H, such a decomposition will be called an H-decomposition of
G (see [2]).

Let f denote a cost function for graphs which assigns certain non-negative real
values to all graphs. Sometimes it is desirable to decompose a given graph into
subgraphs in H such that the total “cost” (the sum of the cost function values of all
subgraphs) is minimized. In other words, for a given graph G, we consider the
following:

* Work done while a consultant at Bell Laboratories.
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%/(G; W)=min ¥, f(G)

where P={G,, G,, ..., G,} ranges over all H-decompositions of G.
Also of interest to us will be the quantity

as(n; Hy=max o (G; H)
G

where G ranges over all graphs on n vertices.

If we take f, to be the counting function, which assigns value 1 to any graph, and P is
the family of all planar graphs, then a,(G; P) is simply the thickness of G. If F denotes
the family of forests, then a,(G; F) is called the arboricity of G (see [6]). Many results
along these lines are available. The reader is referred to [2] for a brief survey.

In this paper, we will deal almost exclusively with the case in which H is B, the family
of complete bipartite graphs. By a theorem in [5], the value of a, (n; B) is given by:

a(n;B)=n—1.

We consider the cost function f; where the value f,(G)is just the number of vertices
in G. In the remaining part of the paper, we abbreviate a(n)=o,(n; B) and o(G)=
=a,(G; B). In particular, we show for any given ¢ and sufficiently large n,

2 2

<a(n)<(1+e)

n n
2elogn 2logn

Y (I—¢)

where e satisfies In e=1.

An H-covering of G is a collection of subgraphs of G, say G, . .., G}, such that any
edge of G is in at least one of the G}, and all G; are in H. For a given cost function f, we
can define

B;(G;H)=min Y f(G)
P i

where P={GY, ..., G,} ranges over all H-coverings of G.
It is easily seen that
BAG;H) <0, (G; H)
and
Brn;H)sa,(n;H).

We will show that the asymptotic growth of f,(n; B) is quite similar to a,(n;B).
In fact, we will obtain the same upper and lower bounds for B,(n; B) as those for
o (n; B) in (1).
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A lower bound

We derive these bounds mainly by probabilistic methods, which have been
extensively described in the book by two of the authors [4].

n2

Theorem 1. a(n) =(1 —¢)
2elogn’

for any given positive ¢ and sufficiently large n.

Proof. Let us consider a random graph G with n vertices and Ln?/2e] edges. The
probability of G containing a complete bipartite subgraph K, , is bounded above by

A" o ob < pla+brlogn—ab
a/\b

(where Lx] and [ x] denote the greatest integer less than x and the least integer greater
than x, respectively.)
Let S denote the set of all unordered pairs {a, b} satisfying

a+b 1-¢
1Za,bsn,— < .
ab logn
The probability of G containing one of the complete bipartite subgraphs K, , with
a+b l1—c¢
e is bounded above by

ab logn

) <n><:>€_“b< Y etabc Y grellogn) <pZemelorn’ <

{apies \4 fableS {ableS

for large n.

Therefore, there exists a graph G with n vertices and Ln?/2e] edges such that G does
not contain any K, , as a subgraph. Let P={G,,G,, ..., G,jdenotea B-decomposition
of G such that «(G) is the sum of the sizes of vertex set V(G) of G;, i.e,

oG)= Y IV(G).
i=1

For any edge (4, v) in G, we define

VG

T T

where {u, v} is in E(G)), the edge set of G;.
It is easily seen that

AG)= > f(u,v).

{u.v}
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Since G does not contain K, , as a subgraph, any G;=K_ 4, 1 <i<t, satisfies that

c+d 11—
—_—2 —8. Thus we have

cd ~logn
1—¢ -
fu,v)2 Eg; for any {u, v} in E(G).
and
1— 2
o(n) > a(G) > (=e)n
2elogn

for sufficiently large n. This proves the theorem.

An upper bound

First, we shall prove a preliminary result.
n
Lemma. For any £>0 any graph on n vertices and p (2> edges contains a complete

bipartite graph K, as a subgraph where t=1(1 —¢)np*] and s<epn for n sufficiently
large.

Proof. Suppose G has n vertices and p <;> edges and G does not contain K, as a
subgraph. From the proof in [3], the following holds:

2 npn—sy<(t—1)-n°.
However, on the other hand, we have

(t—Dr<tn*<(1 —e)n' **p* <n(pn—s)*
since s<epn.
This contradicts (2). Thus G must contain Kj,.

Theorem 2 For any given &, we have

n2

G) a(n) <(1+¢) Jlogn

if n is large enough.
Proof. From Lemma 1, one can easily verify that a graph G on p (;) edges and n
vertices contains a subgraph H isomorphic to K, ,, where s=[(1 —¢,) log nlog (1/p)J

1 2
and t=Ls%log(1/p)] and ¢, > (log n)

. We will decompose G into complete bipartite

subgraphs by a “greedy algorithm”. Given G we find a subgraph H isomorphic to K,
and let G, to be the subgraph of G containing all edges of G except those in H. Now, we
find a subgraph H isomorphicto K , and let G, to be a subgraph of G, containing all
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2

edges of G, except those in H, and continue in this fashion until only ¢, 0 edges are
ogn
2
left. Thus G isdecomposed into H, H, . . ., together with ¢, l ! edges and we have the
ogn

following recursive relation
4) UG Es+t+a(G,).

We will prove by induction that for a give e <¢, <¢g,, £; >0 and sufficiently large n
the following holds,

n2 . n2
(5) UG =(1+¢,) Jlog(l/x) dx+2¢, .
2logn logn
(4]

Suppose (5) holds for any graph H with |E(H)| < p (;) From (4), we have

Py
2

J- fog (1/x)dx + 26, —
logn

0

n2

2logn

AG)< (1 —¢&,)(log n)*/ (log (1/p)* +(1 +¢,)

where p' =(|E(G)| — st) / (;) for n sufficiently large. It suffices to show that
i »
jlog(l/x)dxg

0

n2

2logn

(1—¢,) (logn)*/log(1/p))* +(1+e,)

o
J log (1/x)dx

0

2

=(l+e,) 2logn

This can be verified by straightforward calculation. Thus (5) is proved and we have
1

2 2

log (1/x)dx + 26, —— <(1 +¢)
logn 2logn

n2

2logn

an)=(1+¢,)

0

for given £>0. Theorem 2 is proved.
By slightly modifying the proofs of Theorem 1, we can easily prove the following.

Theorem 3.
2

Br(n; B)2(1—-¢) 2elogn

Jor any positive ¢ and sufficiently large n.

‘7‘
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Therefore we have

2 2

n
(1-¢ <ﬂf,(n;B)§af,(n;B)<(l+8)2logn

2elogn

for any given positive ¢ and sufficiently large n, which summarizes the main results of
the paper.

Some related question

As we noted earlier, the lower bound is obtained by a probabilistic method which
is nonconstructive. It would be of great interest to find an explicit construction of a
graph G on n vertices, c¢;n?/log n edges (or c,n* edges) which does not contain an
K. 1ognc,l0gn @5 a subgraph for some constants c;, ¢, and c;.

Another interesting problem which has long been conjectured [4] concerns the
Turan number T(K, ,; n), the maximum number of edges a graph on n vertices can have
which does not contain K,, as a subgraph. Is it true that

T(K,;; n)=0(n>"1")?

For the case t =3, the above equality has been verified in [1].
In this paper, we have shown that as(n; B)=O(n*/log n). However, we do not know
the existence of

i a(n; B) . By(n;B)
m —5—— or lim-—3——,
now N/logn ao oo N-flOgn
obviously.
Let G, be the set of all the 22) labelled graphs on n vertices. It would be of interest

to evaluate Z a;(G; B). It is not unreasonable to conjecture that
GegG,

2 %(G;B)
lim %% _.

n~w o(3) n?/logn

exists and ¢ is probably equal to lim OZ‘(”’ B)
n-soo N /]Og n
tion for f,(G;B).

Let G, ,, be the set of all graphs on n vertices and m edges. We can define a (n, m; H)
to be the maximum value of « AG; H) where G ranges over all graphs in G, .. In this
paper we investigate a,(n, m; B) where m is about n?/2e. One could also investigate
oar(n, m; B) or By(n, m; B). In particular, we can ask the problem of determining m
so that a(n, m; B) is maximized or to find the range for m for which we have

a(n, m; B)=o(n?).

. We can also ask the analogous ques-
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