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For a finite graph G = (V, E), the point covering number a,(G) and the line
covering number «,(G) are defined as follows (e.g., [3]):

o{G) = min{

a;{G) = min{

X|: X = V and every e € E contains some x € X},
Y|: Y < E and every ve Vis contained in some ye Y}.

We shall assume G has no isolated points so that these quantities are well defined.

During his talk at this meeting, F. Harary mentioned the following two conjectures
of J. Kabell and himself [1]:

(i) mGin oo(Gay(G)=n — 1,

(i) max ao(G)ay(G) = (n — 1) l" ; 1]
G
where G ranges over all graphs with n points. He further noted that equality holds in
(i) for the star K, ,_, and in (ii) for the complete graph K,,.
In this note we settle these conjectures. In particular, we show that (i) is true, and
(i1), while not completely true, is nearly true. The smallest counterexample to (i) is
the graph 2K; consisting of two disjoint triangles. Note that

%o(2K )0, (2K3) = 16, ao(Ke)oy (K) = 15.

However, (ii) is valid if » is odd or if G is required to be connected. We also consider
the corresponding questions for hypergraphs.

THEOREM 1. For any graph G with n > 3:
(i') 2o(G)y(G) = n — 1, with equality only for G = K, ,_;;

2 —
" 1 for n odd,
(ii') ao(G)y(G) <
n’—4 for n even
2 .
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Equality in (ii’) holds only for K, when n is odd or n = 4 and only for K, + K,,
with a, b odd and a + b = n, when n is even and at least 6.

Proof: First note that
n
«1(G) = 3 @)

since each edge of G covers just two points of G. Now, assume ao(G)oy(G) <n— LIf
%o(G) = 2, then, by (1), 2o(G)a;(G) > n, which contradicts the hypothesis. Hence, we
must have ao(G) = 1, i.e., all edges of G contain a common point. This is exactly the
definition of K ,_,; since

%Ky, no1) 0 (Ky pq)=n—1

then (i') is proved.
To prove (ii’), assume that G satisfies

3 n odd,
w(Cul@)=§ @
5 meven.
Let E' = {e,, e,, ..., e,} denote a maximum set of disjoint edges of G. Thus, by a
theorem of Gallai [2],
o(G)=n—x @3)

Also, 04(G) < 2x, since the 2x endpoints of the ¢; € E' form a covering of all the edges
of G (by the maximality of E’). Thus

ao(G)ay (G) < 2x(n — x). )

Note also that 2x < n must always hold.

First, suppose n is odd. The right-hand side of (4) is maximized only by choosing
x=(n—1)/2 or x=(n+ 1)/2 and the larger value is forbidden by the previous
remark. For x = (n — 1)/2, (4) implies

%0(G)ay(G) < (n — 1)(n;r 1)

By (3), ¢;(G)=n—x=(n+1)2 and 50 ao(G)=n— 1. However, this implies
G =K, . Since

n+1 n?—1
%o(Kn)ay (K,) = (n — 1) =75
2 2
then (ii’) is proved for n odd.
Now, suppose n > 6 is even. If we try to use the value x = n/2, then because

ao(G) < n — 1, we have

n*—4

%(G)as (G) < (n — 1)(n — x) = (n — 1)% <



Chung et al.: Point and Line Covering Numbers 599

since n > 6. Thus, the maximum possible value of the right-hand side of (4) occurs for
the (unique) value x = (n/2) — 1 and yields

@@ £2{3 -1)(; +1) =75

and so, 0o(G)ay(G) = n22— 4 (5)

Therefore,

al(G)=n—x=;+1,

(6)
oo(G)=n-2
Write ¢; = {a;, b}, 1 <i<(n/2)— 1 and let the remaining two points of G be
denoted by x; and x,.

(a) {x1, x5} is not an edge of G by the maximality assumption on E'.

(b) Every a; and every b; is connected to at least one of the x.’s. For if a,, say, is
not connected to x; or x, then V — {ay, x,, x,} covers all edges of G and has only
n — 3 points, which contradicts (6).

(c) {ai, x,} is an edge of G if and only if {b;, x,} is an edge of G. For suppose not,
.8, {a1, X1} € E, {by, x,} ¢ E. By (b), {b;, x2} € E; thus,

E' —{a;, by} U {ay, x1} v {by, x2}

is a set of n/2 disjoint edges of G, which contradicts the maximality of E'.

(d) x, is connected to {a;, b;} if and only if x, is not connected to {a;, b;}. For
suppose x; and x, are both connected to {a;, b;}. Then just as in (c), we can replace
{a:, b;} by two disjoint edges, forming n/2 disjoint edges in G.

For i = 1, 2, let C; denote the set of points v such that {x;, v} is an edge of G.

(¢) v, € Cy,v; € C, then {vy, v,} is not an edge of G. Suppose not, i.e., suppose
{v1, v3} is an edge of G. Let wy, w; be the vertices adjacent to vy, v, in E'. If the edges
of E’ containing v, and v, are removed from E’ and the edges {x1, wi}, {x2, ws} and
{v1, vy} are added, then we have a set of n/2 disjoint edges in G, which is impossible.

Thus, G consists of two connected components C, U {x,;} and C, U {x3)}.

(f) If x; is connected to {a;, b;} and {a,, b} then both points in {a;, b;} are
connected to both points in {a,, b,}. For suppose (without loss of generality) that
{a;, a;} is not an edge of G. Then

%(C; v {x}) < |G| — 1

where |C;| denotes the number of points in C;. But this implies

2
%(G)= Y #o(C; U {x})<n-3
i=1
which contradicts (6).

Therefore, we conclude that G is made up of two components which are (disjoint)
complete graphs, each of odd order. It is easily checked that in this case

n? —4

%(Ghi(6) = ™

and (ii’) holds for even n > 6.



600 Annals New York Academy of Sciences

For the final case n=4, the bound in (4) (choosing x =2) implies
ao(G)x1(G) < 8. It is easily seen that this implies ao(G)ay(G) < 6, which can only
occur when a(G) = 3, a,(G) = 2, i.e., G must be K,. This completes the proof of the
theorem. [

We note here that if we require that G be connected, then it can be shown, using
similar arguments, that the original conjecture (ii) is valid with K, always being the
unique graph achieving max oy(G)e,(G).

AN EXTENSION TO HYPERGRAPHS

We now consider an r-uniform hypergraph H = (V, E), where, as usual, E con-
sists of certain r-element subsets of ¥ for some fixed r > 2. We define oo(H) and «,(H)
in the obvious way, i.., %o(H) denotes the minimum number of points of H hitting all
edges of H and «;(H) denotes the minimum number of edges of H hitting all points of
H. Also, we assume H has no isolated points.

THEOREM 2. For any r-uniform hypergraph H on n points,

n S ao(Hp(H) < ar - 1)

Proof: Observe that «;(H) > n/r. Hence, if ag(H) > 2 then

n—1

n
ao(H)al(H)Zz ; >r—1

On the other hand, if xo(H) = 1 then all edges e € E contain a common point, and so

n—1
al(H)Zr__l

n—1
r—1

ie., ao(H)a(H) =

which is the left-hand side of (7).
To prove the right-hand side of (7), let E' = {e,, ..., e,} denote a maximum set of
disjoint edges of E. Then
aH)<x+n—rx=n—-(r—)x (8)

since the n — rx points not in E’ can be covered by at most n — rx additional edges;
also,

ao(H) < rx 9)
since by the maximality of E', the rx points of E’ hit every edge of E; therefore,
to(H)ety(H) < rx{n — (r — 1)x) (10)

The right-hand side of (10) is maximized by taking

n

=3 1)
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which yields

I 2
aar—n"

This completes the proof of (7) and the theorem is proved. []

ao(H)oy(H) <

The lower bound in THEOREM 2 can be achieved whenever n = 1(mod r — 1) by
taking Vtobe {0, 1,2,...,n— 1} and E = {e, ey, ..., €w—1y¢-1)) given by

a={0 O {r—1i-D)+L{r—1)i-1)+2 ... (- 1)
for 1<i<" ™1

We have not analyzed the fine structure of the exact upper bound for oo(H oy (H).
The bound of THEOREM 2 is asymptotically best possible. This can be seen by con-
sidering the hypergraph H, formed as shown in the figure. The top part of H,

r_. oints
X 2r-2 ne
imz ® . [ ]
%o
\-—'V_—“

r-2 ints

Zr-g ° 0 poin

consists of a complete r-uniform hypergraph on r/(2r — 2) - n points (ie., all r-
element subsets are edges). In addition, there are n(r — 2)/(2r — 2) additional edges,
each formed by adjoining a new point x; to a fixed (r — 1)-clement subset X above.
Thus,

,
ao(Ho) ~ 5 _a"

n
(Xl(Ho) ~ 5

r
ar—1n"
It would be interesting to characterize those hypergraphs H which achieve the maxi-
mum and minimum values of oo (H o, (H).

The authors wish to thank S. B. Maurer for the careful reading he gave to an
carlier version of this note.

and so, ao{Ho)oy (Ho) ~ :
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