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ABSTRACT

Let r(k) denote the least integer n such that for any graph G on n
vertices either G or its complement G contains a complete graph K, on
k vertices. In this paper, we prove the following lower bound for the
Ramsey number r(k) by explicit construction: r(k)=exp (cllog k}*3/

l{log log k)*"3] for some constant ¢>0.

For an integer k, the Ramsey number r(k) is defined to be the least
integer n such that for any graph G on n vertices, either G or its
complement G contains a complete graph K on k vertices. The theory of
Ramsey numbers has been extensively studied in the past. However,
relatively few results for r(k) have yet been found. With respect to exact
values, we only know r(3) = 6 and r(4) = 18 (see [1, 8]). A lower bound 42
for r(5) was proved (but unpublished) by S. Lin and, independently, by J.
P. Burling. An upper bound 55 for r(5) was given in [11]. Thus we have

42 <r(5)=<55.
For general k, the following upper bound for r(k) is still the best known
so far.* _—
0 =c( k-1 )

for a suitable constant c.
P. Erdos [3] has proved the following lower bound by probabilistic

log log k (2k -2

* The widely quoted upper bound ¢ log K k=1

) by J. Yackel [12]) seems
now in question [13].
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arguments:
r(k) = k2~ (—1—+o(1)>.
ev2

J. Spencer [10] improved the above bound by a factor of 2 also by
nonconstructive methods. Erdos [4] has asked whether one can find an
explicit construction for a graph G on 2?2 vertices such that neither G
nor its complement G contains K,. This problem, however, falls into an
interesting category of problems which have the property that for any
large n the existence of a “good configuration” is assured by probabilistic
methods, (in fact most of the configurations are good), but we cannot
explicitly find even one “good configuration.”

H. L. Abbott [1] gives a recursive construction which shows that
r(k)=ck®, where ¢’ =log 41/log 4=2.679 .. .. Nagy [9] gives a construc-
tion which shows that r(k) = ck?. P. Frankl [7] shows constructively that

r(ky=ck™

for any m and some constant c.
In this note, we will give the constructive lower bound:

r(k)=exp [c(log k)**/log log k)], for some constant c.

In other words, we present an explicit construction of a graph G on n
vertices such that neither G nor its complement G contains a complete
graph on exp [c(log n)**(log log n)"*] vertices.

The basic ideas of this lower bound are due to P. Frankl [7]. We will
tighten up some loose ends in [7] and give a self-contained proof of the
following theorem on intersecting families (except for the use of a result
of P. Erdos and R. Rado).

Theorem 1. For integers x, y, z, w, p, u, with x =2z >0, p=xy+tz+w,
p=xu+w we define

L(x,y, z,w)={xy'+2' +w:0<y' <y, 0=<z'<z}.

Let F be a family of distinct p-subsets of X = {1, ..., n} such that for any
two sets F;, F,eF we have |F)NF,|e€ L(x, y, z, w). Then we have

< puty+z 2puty)
‘Fl\n p .

The proof of Theorem 1 is based on a recursive argument using
A-systems. First we need some definitions.
A family of sets, S;,...,S,, is said to be a A-system if §;NS; =S, NS;
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forany i#j, i'# . In this case, D =S, NS, i# j, is called the kernel of this
A-system.

Theorem (Erdos and Rado [6]). For any ¢ sets, Sy, ..., S, with |S|<s
for 1=i=t{, there exists a A-system consisting of r+1 S,’s provided
s 2 _S_‘L>
st (1 207 312 strt)

Let F be a family of distinct p-subsets of X such that for any F,, F,eF
we have |F,NF,|€ L(x,y, z, w). If [F|=p?", then F contains a A-system
with p+1 subsets. Let D, be a subset of X with maximal cardinality such
that D, is the kernel of a A-system consisting of p+ 1 sets in F. We define
F,={FeF: D,c F}. If [F—F,|=p?, then in a similar manner we consider
D, which is the kernel of maximal cardinality of a A-system consisting of
p+1 sets in F—F, and we define F,={FeF—F,: D, F}. After a finite
number of steps, we have found D,,..., D, F,,... F, and F— | J,,F, =
F,., contains fewer than p* sets.

We note that F;, i=1,...,t, contains no more than np®~ ! sets
(otherwise there are at least p?>®~'PP sets in F, all of which contain a
common element in X — D;; this would contradict the maximality of D).
We also note that for a A-system F,, ..., F,,, with kernel D,, we know
that F,—D,, i'=1, ..., p+1, are pairwise disjoint. Thus, for any p'-subset
X'eX p'<sp we have X'ND,=X'NF, for some i'. Thus D,ND, =
F.NF; and |D, ND;|€ L(x, y, z, w).

We will prove Theorem 1 by induction on p. It is easy to see that
Theorem 1 holds for p=0. For p>0, we let E,={F: FcF;, and
|D;|=p—i} for 0<i<p. Let E, =E have the property that |E, | =|E,| for
any i. Therefore we have

1

p |[E[=[F|-p*.

Suppose i, <z. We define X, ={D,: D,|JA€E and D,NA = ¢} for
AcX and |A|=i, It is easy to see that for D, D;eX, we have
|D; "Dy e L(x, y, z— iy, w). Therefore by the induction assumptions, we
have

‘XA‘ = nu+y+27i“(p _ i())2(p*i&(u+y)

and

h i _
‘F‘ < p2p + p Z IxAls p2p + ( )n“+y+z7'0p(2p 1)(u+y)$ nu+y+zp2p(u+y)'
A (¢]

So, we may assume i, =z. We consider D={D;: |D,|=p—i,, 1<i<t}.
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We have
El< ) [Fl<np>'|D|.

IDj|=p—io
It suffices to show that
for any D, D,eD we have |D,ND,|eL(x, 59, z, w),
pP=p—ig=xy+z+w, p<sxi+w and a+y=sut+y—-1, (1)
since by the induction assumptions we have
D] < v+ (p — )PP iy —D
and

IFI < p2p + np2pnu+y+z—1(p _ z)2(p—z)(u+y—l) < nu+y+zp2p(u+y)‘
It is straightforward to verify (1) by considering the following two cases.
g y Y g

Case 1. x(y—1D+2z+w<p=xy+z+w, we can choose &, y satisfying
n=sy=suy-1, y=<y.

Case 2. p=x(y—1)+2z+w. We can choose i, y satisfying a<u, y <
y—1.

This completes the proof of Theorem 1.

Now, for any integer k, we construct a graph G such that the vertex set

V(G) consists of all p-subsets of X ={1, ..., n} and for v,, v,€ V(G), v,
is adjacent to v, iff |v, Nv,le{2xx'+x": 0=<x', x" < x} where we choose
n = [exp [(log k)**(log log k)'"*/3'7]],
_[ (3 log k)'”? 'l
4(loglog k)1
p=2x> 2
with [y] denoting the least integer greater than or equal to y. It follows
Theorem 1 that neither G nor its complement G contains any complete

graph on k vertices and G has at least exp[(log k)*?/8(loglog k)'/?]
vertices. Therefore, we have the following result.

Theorem 2. The graph G constructed as above has at least
exp [c(log k)*?/(log log k)'”?] vertices, for some constant ¢, and has the
property that neither G nor its complement G contains K,. Therefore we
have the constructive lower bound:

r(k)=exp [c(og k)*?/(log log k)**].

REMARK 1. We note that the graph G we constructed by (2) contains a
complete subgraph on exp [c'(log k)*?/(log log k)"?] vertices for large k.
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Therefore by using the above construction, the bound in Theorem 2 can
not be improved asymptotically. Some new ideas will be needed in order
to give a constructive lower bound of (1+ &) for Ramsey number r(k) for
a fixed € >0.

REMARK 2. Let r (k) denote the least integer n such that if every edge of
K, is colored by one of ¢ colors, then there exists a monochromatic K,. It
has been shown in [2] that r,(3)=c(3+8) where §=0.103... is the
positive root of x’+6x’+9x—1=0 and c¢=5082 By a recursive
construction used in [4], it can be shown that r(k)=
exp [¢'t(log k)*?/(log log k)'”*] for sufficiently large k and some positive
constant c¢’.
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