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INTRODUCTION

Many questions in extremal graph theory* take the following form: How many
edges can a graph G(n) with n vertices have and still contain as subgraphs all
the graphs H belonging to a given class #? Indeed, the most well-known theorem of
this type is the theorem of Turan [20, 21] which asserts that if # is the class con-
sisting of the single graph K,,, the complete graph on m vertices, then this maximum
number of edges is given by,

s =7+ ()

where r is the unique integer satisfying r = nmodn—1)and l <r<m-— 1.

In general, let t(#; n) denote this maximum number of edges when the forbidden
class is . In addition to Turan’s theorem which deals with t({K,n}; n), numerous
other results of this type are available, although usually only estimates as opposed
to exact values for 1(; n) are available. For example:

(i) If C,,, denotes the cycle of length 2m, then it has been shown by Erdés [9],
and Bondy and Simonovits [3] that,

cnlogn
<t C ; 1+1/m
og log n < [(Cankin) < com
for suitable positive constants c,, ¢,. In particular, it is known that
H{C4}; n) ~ §n*2 [10, 14].
(ii) If K3 5 denotes the complete bipartite graph on two vertex sets of size 3, then
Brown [4] and Kovari et al. [14] have proved that

en®? < t({K; 3} n) < (2130573 + 3n)2.

(iii) An attractive (and apparently difficult) conjecture of Erdés and Sés [9]
asserts that for # = 7, the class of all trees with m edges,

Relatively little is currently known about this conjecture.

Recently a number of results have become available which deal the complementary
extremal problem. That is, for a given class #, what is the least number s(#; n)
of edges a graph G(n) on n vertices can have so that all H € # occur as subgraphs
of G(n). It will also be of interest to consider the quantity s(#’) defined to be
min{s(#’; n): n=1, 2, ...). Such graphs containing all H € # as subgraphs are

HT s n) = [

* For undefined graph theory terminology, see [1] or [12].
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sometimes said to be universal for the class #. Since we are concerned with
universal graphs with a minimum number of edges, this explains the title of this note.

We shall survey the results known (to usj concerning s(#'; n) and s(s#) for
various classes . In particular we describe a striking improvement recently found
by us for s(.7,,). We also mention numerous related open problems.

BOUNDS FOR VARIOUS s(#; n)

Perhaps the first investigation of universal graphs was due to Rado and de
Bruijn [ 18], who restricted their attention to infinite graphs. The first paper dealing
with finite universal graphs was by Moon [15], who actually considered a somewhat
different problem. Moon defined A(n) as the least integer N such that there is a
graph with N vertices and having every graph on n vertices as an induced subgraph.
He showed

2" Y2 for noodd

2002 < Jn)<{ 3n _
( -2~ W2 for pn even

22

As Moon points out in [16], the same bound also applies to the minimum number
of vertices in a tournament (directed complete graph) containing all tournaments
on n vertices as subgraphs.

One of the strongest results for an s(#'; n) is due to Bondy [2]. It deals with the
class %, of all cycles of length < n. Bondy has shown that

n+logy(n — 1) — 1 < s(%,; n) < n+ logy(n — 1) + H(n) + 0(1)
k

———
where H(n) denotes min{k: log log --- log n < 2}. It would be interesting to know
which of the two bounds (if either!) is the “truth.”

The most intensively studied class .#—from the point of view of s(#)—is the
class 7, of all trees having n edges. The best estimate of s(.#') from below comes
from the following simple observation. If T € 7, is a subgraph of a graph G then
the degree sequence (d,, d,, ..., dy) of G must dominate the degree sequence
(d(,dy, ..., dys ) of T e, dy > dy, | <k <n+ 1. Since for each k there is easily
seen to be a tree T(k)e 7, with degree sequence (d(k), dy(k), ..., dnii(k))

satisfying d (k) > z then the number of edges of G is at least,

1 1
E(dl+d2+"'+dN)Z§(d1'+“'+d;.+1)
>1 S n>1 1
= ~>_nlo
23 2k 51 logn
That is, s(F,)>dnlogn. (1)

The first upper bound for s(7,) was given by Nebesky [17]. He proves various
elementary facts about graphs G containing all T € 7, as spanning subtrees and
gives a construction for-such G (which however has more than cn? edges for a fixed
¢ > 0.) Nebesky’s results were based, in part, on earlier related work of Sedlacek [19].
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The first subquadratic upper bound for s(7,), which was presented by Chung

and Graham [5], was
s(yn) < nl + 1/log logn

for n sufficiently large. This was subsequently strengthened by Chung et al. [6] to
s(.7,) = Ofn log n(log log n)?]

Very recently, we have finally succeeded in removing the (log log n)? term by proving
that

S(Za) S s(Tpm+ 1) < nlog n + O(n)

S
log 4
for n sufficiently large [7].

The proofs of all three results are rather different, the last one being, by far, the
most complicated.

Almost nothing is known for the case # = %,, the class of all graphs with n
edges. The best bounds on s(%,) currently available are essentially trivial:

cynlog n < s(%,) < cyn?

for suitable constants ¢, and ¢, [7]. It seems quite reasonable that we should have
5(%,) = o(n' **) for any ¢ > 0, but unfortunately we cannot even prove s(%,) = o(n?).

A natural generalization of these questions occurs by restricting the class of
containing graphs. For example, let us denote by s,(7,) the minimum number of
edges in any tree T € 7 (the class of all trees) which contains all trees T, € 7, with n
edges as subgraphs. Of course, we would expect s-(7,) to be much larger than s(7 o)
In fact, since 7, contains exponentially many trees and each subtree of a tree is an
induced subgraph, it might be expected that s, (7,) > c" for some ¢ > 1. Surprisingly,
however, this is not the case. It has been shown by Chung er al. [6] that,

log® n
P 2 log 2

2/2
sf(7)<iex
n

)

In the other direction the only available bound is an annoyingly weak result [6],
s5(T ) > en?

for a suitable ¢ > 0. We certainly suspect that s,-(.7,) should grow annoyingly faster
than any polynomial in n.

The inequality (2) is proved by means of considering the corresponding question
for rooted trees. More precisely, let s;-(7,) denote the minimum number of edges a
rooted tree T' can have so that every rooted tree T, with n edges can be embedded in
T’ with the root of T,' mapping onto the root of T'. Chung et al. [6] have shown
that,

s7(T0) < 55(73) < 55(T,)(s57(7,) + 1)

Thus if s;'(,) grows faster than a polynomial, then so does s, (7). De Millo et al.
[8] have recently considered the related case in which both the containing tree T
and the contained subtrees T, all have degrees bounded by a given constant d.

CONCLUDING REMARKS

Almost all the work in this topic remains to be done. We mention a few of the
problems now. To begin with, is it true that s(7,) = s(7,; n+ 1)? All values
of s(7,) which are known are in fact achieved by graphs with n + 1 vertices. We
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n=25
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n=4 N n=7 ——o
FIGURE 1

show graphs which achieve small values of s(7,) and s;(7,) in FIGURES 1 and 2,
respectively. R. Read (unpublished) has suggested that the name panderdron be
applied to such graphs (containing all small trees); Schuster has suggested the term
panarboreal [22]. Is it possible that s(7,) ~ 4n log n?

As we have mentioned earlier, it would be highly desirable to show that for %,
the class of all graphs with n edges, s(%,) = o(n?). Of course with this case (as well
as most of the others) we could require that the subgraphs be induced. With the
exception of Moon’s results [15], almost nothing is known here.

i

FIGURE 2



140 Annals New York Academy of Sciences

In the same spirit we might look at these questions for bipartite graphs,

directed graphs, chromatic graphs and even hypergraphs. We suspect that for hyper-
graphs results might be substantially more difficult to obtain since, for example,
even the analog of Turan’s theorem for 3-uniform hypergraphs is not currently known
[20, 21].

Finally we mention an interesting direction which has been taken by Howorka

[13]. He defines j(n) to be the minimum number of vertices a graph G can have so that
every connected graph on at most n vertices can be embedded isometrically in G
and asks for bounds on j(n). Of course, similar questions can be asked when the
graphs under consideration are measured by the number of edges instead of the
number of vertices.

R —
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