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ABSTRACT

We begin with a three-stage linear graph in which the first
stage has a single node u and the third stage a single node v.
The second stage has k independent nodes, each of which is con-
nected by one link to u and to v. In general, we can form a
(2n+1)-stage linear graph recursively by letting each node in
the second stage of a three-stage linear graph be replaced by a
copy of a (2n-1)-stage linear graph.

A link can either be in the busy state or the idle state.
We assume that the states of each link are mutually independent
and that any link between stage i and stage 1 +1 has the prob-
ability T, of being idle. The nodes u and v are said to be

conmectable 1if there exists at least one path from u to v with
no busy link. Let P(u,v) denote the probability of such a path
existing. Further, let N(2n+l,k) denote the set of (2n+l)-stage
linear graphs whose center stages have k nodes.

In this paper, we determine the size of N(2n+l,k). We also
give the linear graph in N(2n+1,k) which has the largest P(u,v)
and the one which has the smallest. We then show how our re-
sults apply to a recent problem in connecting networks.

1. INTRODUCTION

We begin by forming a three-stage linear graph defined as
follows: the first stage has a single node u and the third
stage a single node v. The second stage has k nodes, each of
which is connected by exactly one link to u and by one link to
v.
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Fig. 1

A link can be either in the busy state or in the 7idle
state. We assume that the probability of any link incident to
u being idle is Il and the probability of any link incident to
v being idle is 12. Furthermore, the states of all links are
assumed to be mutually independent. The nodes u and v are said
to be connectable if there exists at least one path from u to v
with both of its links idle. Let P(u,v) denote the probability
that u and v are connectable. Then clearly

P(u,v) = 1 - (1—1112)k.

The three-stage linear graph becomes a five-stage linear
graph if each node in the second stage is itself a copy of a
three-stage linear graph (Figure 2).

In general, we can form a (2n+l)-stage linear graph by
letting each node in the second stage of a three-stage linear
graph be a copy of a fixed (2n-1)-stage linear graph. In the
general case for each i = 1, 2, ..., n we let Ii be the prob-

ability that a link between stage i and i+1 is idle. Again
all links are assumed to be independent.



OPTIMAL CONNECTING NETWORKS 187

Let N(2n+l,k) denote the set of (2n+l)-stage linear graphs
which have k nodes in the (n+1)St, i.e., the center stage. 1In
a (2n+l)-stage linear graph, let ki be the number of links from

. .th . . st
each node in the i stage to nodes in the (i+l) stage. No-
tice that the number of nodes in the (i+1)St stage is equal to

the number of links from the ith stage (i=1,...,n). Thus, by
i th
induction there are 1 k. links between the i stage and the

j=1
(i+l)St stage, i = 1, ..., n. In particular, the number of
n
nodes in the center stage is I ki = k. Let P(kl,...,kn;n,k)
i=l

denote P(u,v) for such a (2n+l)-stage linear graph.

In this paper we determine the size of N(2n+l,k). We also
give the linear graph in N(2n+l1,k) which has the largest P(u,v)
and the one which has the smallest. We then show how our re-
sults apply to a recent problem in connecting networks.
2. THE SIZE OF N(2n+l,k)

h o.
Suppose k = 1 pil where the Py are distinct primes and
i=1

the ui are positive integers. Let f(2n+l,k) denote the size

of N(2n+1,k).

Lemma 2.1: f(2n+1,p%) = (n+§—1) for n > 1.

Proof: f(2n+1,pa) is the number of partitions of a identical
objects into n ordered compartments. It is well known [2] that

this number is (n+g—l).

Note that f(2n+1,pa) is independent of p.
Lemma 2.2: If p and q are relatively prime, then

f(on+l,pq) = f(2n+1,p)f(2n+l,q).
(i.e., f 18 multiplicative).
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Proof: Lemma 2.2 is trivially true for n=1 since £(3,k) =1
for all k. For n > 2, we prove Lemma 2.2 by induction.

Let D(m) denote the set of divisors of m, including 1 and
m. Every deD(pg) can be uniquely written as the product 4 _d
where dp e D(p) and dqe;D(q). Thus, P a

Z f(2n-1 yPg/d)
deD (pqg)

f (2n+1,pq)

:E: f(2n-1,p/4d )f(2n-1,q/dq) by induction
deD (pq) P

Z Z f(2n~1,p/4d )J£(2n-1,q9/4 )
dpeD(p) dqu (q) P 4

]

f(2n+1,p) £ (2n+1,q).

oz

p; -

=S

h .
Theorem 2.3: f(2nt1,k) = T (""*1) whore & =
=1 % i=1

Proof: This follows immediately from Lemmas 2.1 and 2.2.
3. THE BEST LINEAR GRAPH AND THE WORST LINEAR GRAPH

In this section we give the linear graph in N(2n+1,k)
which has the largest P(u,v) and the one which has the smallest.
We first need some lemmas.

kl/dz
Lemma 3.1: P(kl’ .. .,kn;n,k) =1-11-P(d ’k2" . "kn;n’kdl/kl)]

if dl divides kZ'

Proof: Obvious from the independence assumption.
Lemma 3., 2: P(kl,...,kn;n,k) iP(l,k1k2,k3,...,kn;n,k).
Proof: P(kl,...,kn;n,k)

k
1 - [l—P(l,kz,...,kn;n,k/kl)] 1 by Lemma 3.1

1l

k
1
1 - [l-IlIZnP(kz,...,kn,n—l,k/kl)]

kl—l

i
IllznP(kZ,...,kn,n-l,k/kl) igo[l-IlIznP(kz,...,kn,n—l,k/kl)] )
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Also, P(l,klkz,k ,---,kn;n,k)

3

IlIznP(klkz,k3,...,kn;n—l,k)

k
1
IlIzn{l - [l—P(kz,...,kn,n~1,k/kl)] } by Lemma 3.1
k-1 .
I,I, Pk, ...k in-1,k/k,) iZO[1—p(k2,...,kn;n—l,k/kl)] .

But

i i
[1-I IZnP(k2""'kn'n_l'k/kl] Z_[l—P(k2,...,kn,n—l,k/kl)]

1
for every i. Lemma 3.2 is proved.
Theorem 3.3: P(k,1,...,1;n,k) _>_P(k1,...,kn;n,k)

> P(1,...,1,ksn,k).
Proof: Proof is by induction on n. For n = 1, N(3,k) = 1 by
Theorem 2.3, hence Theorem 3.3 is trivially true. We proceed

to prove the theorem for general n.

P(kl,...,kn;n,k)

k
=1 - [1-P(1,k2,...,kn;n,k)] 1 by Lemma 3.1
k1
=1 - [l—IlIznP(kz,...,kn;n—l,k/kl)]
k1
<1- [l—IlI2nP(k/kl,l,...,l;n-l,k/kl)] by induction
k1
=1 ~- [1—P(l,k/k1,l,...,1;n,k/kl)]
kl
<1- [l—P(k/kl,l,...,l;n,k/kl)] by Lemma 3.2

= P(k,1,...,1;n,k). by Lemma 3.1
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P(kl,...,kn;n,k)
3_P(l,klkz,k3,...,kn;n,k) by Lemma 3.2
= IlIZHP(klkz,k3,...,kn;n—l,k)

3_IlIZnP(l,klk2k3,k4,...,kn;n-l,k) by Lemma 3.2

LI )

>I.I IT

172n 2 2n-1 P(1,k;2,k)

In-21n+3
=P(1l,...,1,k;n,k).

Hence the best linear graph is the one which has all the
branching in the first and last stages, and the worst linear
graph is the one which has all the branching in the inner-most
stages (see Figure 5, (a) is the best and (b) is the worst) .

4. AN APPLICATION

Our problem was motivated by a study of blocking probabil-
ities in symmetric multistage commecting networks. A symmetric
multistage connecting network can be described by the following:

(i) It has (2n+l) ordered stages. The network is symmetric
. .th
with respect to the center stage. The i stage, hence

h
the (2n+2—i)t stage, has r, copies of a switch vy

i=1, ..., n+l.
(ii) Each vy has X, input links connecting to X, copies of
vi—l and yi output links connecting to Yi copies of vi+1'
Vv, are called input switches and their input links are
connected to the input terminals of the network. Simi-
larly Vo 3T called output switches and their output

links are connected to the output terminals of the net-
work.

The network is to provide simultaneous connections for
pairs of input terminals and output terminals, or equivalently,
for pairs of input switches and output switches. In some cases,
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input switches and output switches can be partitioned into
groups such that most of the connection attempts and paths are
between switches of the same group.

Thus it would be desirable to design the linking in such
a way that any intra-group pair of switches has Xl paths (treat-

ing a switch as a node in a graph) for connection, but any
inter-group pair has only A2 < Al paths. For example, let Vv be

a five-stage connecting network where each stage has 6 2 x2
switches. The 6 input (output) switches are divided into 3
groups each of which contains 2 switches. There are several
ways to link up the switches such that each pair of intra-group
switches has 4 paths (the maximum possible) while each inter-
group has only 2 paths (see Figure 3 for two such examples).

{(a) (b)
Fig. 3

Define a linear graph between an input switch u and an
output switch v as the union of the set of paths between u and
v. Note that for either network in Figure 3, the linear graph
for each intra-group (inter-group) pair is isomorphic. Hence,
we can talk about the intra-group (inter-group) linear graphs
for the two networks. Furthermore, the intra-group linear
graphs for the two networks are the same (see Figure 4).

Fig. 4

Hence, as far as blocking probabilities are concerned, the two
networks can be compared by their respective inter-group linear
graphs which are shown in Figure 5.
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(a) {b)
Fig. 5

By Theorem 3.3, the linear graph in Figure 5(a), which is de-
rived from the network in Figure 3(a), is better. Note that
the two networks in Figure 3 have the same numbers of cross-
points and links.

For a general construction of multistage connecting net-
works, each of which has isomorphic intra-group and inter-group
linear graphs respectively, see [1,3].

The type of linear graph we have studied in the paper is
the series-parallel type as defined in [4].

For networks with more complex linear graphs, e.g., those
sometimes referred to as "meshed" or "spiderweb" graphs, simi-
lar analyses may prove much more difficult because of the way
in which blocking probability formulas must be constructed.
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