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ABSTRACT
clustering that must occur in any bounded infinite sequence of real
numbers is studied. We determine the extreme value for this
measure and exhibit sequences that achieve this value.

A fundamental problem in the study of the distribution of se-
quences is to obtain precise estimates for the extent that any
sequence must deviate from some appropriately defined stan-
dard of regularity. Among the many results available in this topic
(see ref. 1), those of Roth (2) and Schmidt (3) are particularly
noteworthy.

In this announcement, we consider the following question:

How much “clustering” must occur in an arbitrary real sequence-

% = (xg,%y,...) with x; € [0,1], in which the clustering of # is
measured by

X,

C() = inf lim inf n 2,1, — %,)-

n  mo®

The rationale behind this natural definition of irregularity
[suggested by a question of D. J. Newman (see ref. 4)]is clear.
If £ were somehow perfectly spread out, one might hope that
[¥pen — %m| = 1/n for all m and n (and indeed, there are % for
which this happens for all m and infinitely many n). A related
but less sensitive measure was previously investigated by de
Bruijn and Erdos in ref. 5. They showed that, for any sequence
% in [0,1],

C(@® =liminf min nlx, — x| < 1/log 4,

n—oe  O=i<j=n

and further, that the constant 1/log 4 is best possible. Observe
that for all %, C(z) = C(%).
Our first result furnishes a precise bound for C(%).
THEOREM 1. For any sequence % in [0,1],

-1
1+, F;kl) =a

k=1

Cix = ( 0.39441967 .. ., [1]
in which F, denotes the nth Fibonacci number, defined by F,
=0,F,=1LandF, ,,=F,  +F,n=0.

The bound 1 is best possible, as shown by the next result.
For each integer n = 0, let ¢(n) denote the unique sequence

(&1(n), €4(n),. ..) = (&1, 6,,...) satisfying:
® n= z &Fo;
=1

(i) Foralli, g=0,1,0r2;

A natural measure of the amount of unavoidable.

4001

(i) If & = & = 2, i <j, then for some k with
i< k <j, & = 0.
Define the sequence &* = (x¥, 2%, ...) by
¥ =q 2 g(nF3".
=1
Note that x* € [0,1] and that #* is nowhere dense.
THEOREM 2.

C&" =«
In fact,

= (3]

infinfnfx% . —x
n m

Theorems 1 and 2 are intimately tied to the following extremal
result on the set S,, of permutations on {1,2, ...,m}. Define

» = min max

7ES, 1

U

3 Jaligsy) — wli) ™
k

in which I ranges over all increasing subsequences {i; < i, <
<y c{L,2,...,m}
THEOREM 3.

t
o
1+ Fao if Foug =m < Fay,
k=1
m t

-1, -l
I+ 2 Fao + Fais if Foerg =m < Fpg.
k=1

Permutations for which-equality in 3 holds can be generated
by the ordering of the first m terms of £*. These are the same
permutations formed by the well-known sequence {k7}, k =
0,1,2,..., in which 7= (1 + V/5)/2 and {x} denotes the fractional
part of x.

The proofs of the preceding results are somewhat delicate and
rather lengthy and will be given elsewhere.
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