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ABSTRACT

In a tournament every pair of distinct vertices is joined by exactly one
directed edge. By a directed tree we mean a tree with its edges given some
prescribed orientations (not just an arborescence). In this note we prove that
every tournament on n vertices contains all directed trees on k vertices as
subgraphs if n = ck!TV/(98K)"™ for any positive ¢ and some constant ¢
depending on e.
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1. Introduction

A tournament T, consists of n vertices such that every pair of distinct
vertices is joined by exactly one directed edge. By a directed tree we mean a
tree with its edges given some prescribed orientations, not just an arborescence

[2]. In this paper we will prove

Theorem: Every tournament on n vertices contains all directed trees on k
. . i V.
vertices as subgraphs if n = g1+1/(oz k)’ for any positive ¢ and some

constant ¢ depending on e.

This problem can be viewed as a generalized version of the following
problem [8]. Does the tournament T, contain all n-paths of all possible

orientations?

Griinbaum [6], Rosenfeld [7] and Alspach [1] proved that certain special
paths are contained in 7},. Forcade [5] proved that if n is a power of 2 then 7,
contains all paths of all possible orientations. For general n, it is still not

proved.

Burr [3] considers a variation of this problem by showing that any directed
graph with its chromatic number no less than (k—1)? contains all directed trees

on k vertices. The following problems {3] still remain unsettled:

Does every graph of chromatic number k or more contain all & paths of all



possible orientations?

Does every graph of chromatic number 2k or more contain all directed trees

with n vertices?
{I. Preliminaries;

Let f(k) denote the smallest integer m such that any tournament T
contains all directed trees on k vertices. It is proved in [3] that 2k < f(k).
Before we establish the upper bound of f (k) =< k!*VUog k)™ e first require

the following useful facts:

Lemma 1 [4]: Suppose 1 is a tree with more than k vertices. Then for some
vertex v of ¢, there is a set S of subtrees which are connected components in

¢t — {v} (the forest obtained by removing v and the edges incident to v from 1)

50 that

k<3 lvenl = 2.
t'cs

where |V (¢*)| denotes the number of vertices in the subtree 17,

Lemma 2: Suppose T, is an arbitrary tournament. There are at most 2m

vertices in T, with indegree less than m.

Proof: Suppose there are 2m + 1 vertices in T, with indegree less than m.

Consider the subtournament on these 2m + 1 vertices. At least one vertex has
indegree greater than or equal to the average indegree m of this

subtournament. This is impossible. Lemma 2 is proved.



Symmetrically, we have the following:

Lemma 3: Suppose T, is an arbitrary tournament. There are at most 2m

vertices in T, with outdegree less than m.

Lemma 4: For 1 = m << k, we have

S k) =4k +4f 2m) + f (k—m—1) .
Proof: Let T denote an arbitrary tournament on 4k + Af (Zm) + fk—m~1)
vertices. Let ¢ denote an arbitrary tree on k vertices. It suffices to prove that
T contains . From Lemma 1, we can find v in ¢ such that there is a set § of

subtrees which are connected components in ¢ — {v} and

m< > venl =m.
r'es

Let ¢ denote the tree which is formed by removing all " in S from ¢. Then we
know that [V()| =k —m — 1. From Lemma 2 and 3, we know that there at
most 4k + 4f (2m) vertices in T with indegree or outdegree less than
k +f(2m). Now consider the subtournament 7’ of T on vertices with
indegree and outdegree no less than f(2m) + k. Since T’ contains at least
S (k—m—1) vertices, T’ contains ¢ and v is embedded into a vertex with
indegree and out degree no less than k + f(2m). Let F, denote the forest
,consisting of those trees in S joinced to v by an edge from v and let F, denote
the forest consisting of those trees in .5 joined to v by an edge to v. Now we
know that there are at least f (2m) vertices in T — ¢ joined by an edge from v.

(T—t denote the subtournament of T which does notl contain any vertex in 7).



Thus the subtournament 7—¢ must contain F 1. Similarly there are at least
S (2m) vertices in T —t — F| joined by an edge to v and the subtournament

on these f (2m) vertices must contain F,. Therefore T contains 7 and Lemma

4 is proved.
III. On the upper bound

We are now ready to prove the main theorem.

Theorem 1. f (k) < ck'*V/UoeK)"™™ for any positive ¢ and some constant ¢

Proof: Let m denote k!"V/VI8% and o (x) denote x!*H/(log x)¥> We want to

show that f (k) =< cg(k). We will first prove the following.
Claim 1. 4k = g(2m) for sufficiently large k.

Proof:
g2m) = g(im) = exp[[]og k — Viog k][H—l/(IOg k — m)h’z—e]]
> exp [1og k+0.5(log k)“2+=]

Z 4k for k sufficiently large .

Claim 2. 4k + 4g(2m) + g(k—m) =< g(k) for sufficiently large k.

Proof: Since 4k =< g(2m) for large &, it is then enough to show that



56(2mj) + g(k—m) =< g(k)

In the following sequence of inequalities, each one is implied by the

following one (always for sufficiently large x):

141/ [log x+ log [1 —x=logx ]]”2_'
5 1+1/(log xyVre [x_xl—llviogx ]

1/2—
- 5 [h]“l/m]l+1/[[l—l/\/1ogx log 2x] '

exp[(log x)””‘] — [l—x“”"i"“ }exp[

1/2+¢
log x+ log [l*x‘l"“i"“ ]] ]

= 11 exp[— Vieg x + [[I-I/VEg—x]log 2x]1/2+€] .

cxp[- Viog x + (log x)l/”‘] = 11 exp [— Viog x + (log x)!/2+e [I—O.S/Viog x]] .
—Vlog x = — Viog x — 0.5(log x)¢ + 20

which clearly holds for large x.

For a suitable fixed N (chosen large enough so that the preceding
approximations are valid), we have f (k) = ck!T/(08 K} for all k satisfying

2 = k = N (by an appropriate choice of ¢). Thus, by using Lemma 4 we have

k) < 8k +4f 2m) + f (k—m—1) < 4k + 4g(2m) + g (k—m—1)

<k 11+1/(log k)i )

This completes the proof of the main theorem.
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