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CODING STRINGS BY PAiRS OF STRINGS*

F. R. K. CHUNG*, R. E. TARJANtf, W. J. PAULT aAnND R. REISCHUKS$

Abstract. Let X, Y= {0, |}*. We say Y codes X if every xe X can be obtained by applying a short
program to some y € Y. We are interested in sets Y that code X robustly in the sense that even if we delete
an arbitrary subset Y'< Y of size k, say, the remaining set of strings Y\ Y" still codes X, In general, this
can be achieved only by making in some sense more than k copies of each x€ X and distributing these
copies on different strings ¥. Thus if the strings in X and Y have the same length, then # Y= (k+ 1% X,

- If we allow coding of X by Y in a way that every x € X is obtained from strings x, z€ Y by application
of a short program, then we can do better.

Let Y ={h, ¢ x|5 = X} where  denotes bitwise sum mod 2. Then # Y =2**, Yet ¥ codes X robustly
for k=2*"*""—1. This paper explores the limitations of coding schemes of this nature.

1. Robust coding of strings by strings. For strings x, y € {0, 1}*, we denote by
K(x|y) the Kolmogorov complexity of x given y [P], [ZL] We say y codes x if
K(x{y)=O(log|x|). We deliberately leave the implicit constant in the O-notation
undefined. Let X, Y = {0, 1}*. We say Y 1-codes X if for all xe X there is ye Y such
that y codes x. We say Y codes X k-robustly if for all Y'c Y with % Y’ =k the set of
strings Y\ Y’ still 1-codes X, '

Assume that the strings x € X are of the same length and sufficiently irregular,
that the strings in Y are longer than the strings in X by a factor a, and that there are
B times more strings in Y than in X. Then one would intuitively expect every ye Y
to code at most a strings x € X, and most strings x € X are coded by at most a8 strings
y€ Y. This is more or less confirmed by Lemma 1.

LEMMA 1. Let p»alognp. Let X ={x,- -, x,}<{0,1}, Y={y,, -, ysu}c
{0,1}*" and K(x, - -+ x,)Z np (i.e. x, - - - x, is a random string). Then

(a) Each of ye Y codes at most a strings x € X.

(b) Each of at least n/2 strings x € X is coded by at most 2a8 strings y€ Y.

Proof. Let {i,,---,i}c{l, -, n} Then .

(1) sp—O(slogn)=K(x, - - - x;) because x, - - * x,, is random [P, fact 5].

Suppose ye Y codes x;, - -+, x;. Then

(2) K(x; * -+ %)=L (K(x|y)+ O(log K(x,|y))+ K(y)= O(s log p)+ ap.

For s=a+1, (1) and (2) imply (a+1)p— O(a log n) =< ap+ O(a log p). Hence
P~ O(a log np)=0. This proves (a).

Suppose (b) is false. Then

afnz=} #{x|y;codesx} -  by(a)
i
=2 #{yjy codes x;}

>(n/2)20f = affn by assumption. N

Clearly, it makes sense to say that, for every x € X, certain strings ye Y carry
specific information about x—namely those strings y that code x. By Lemma 1, if the
strings in X are messy, then every string y carries specific information about a small
number of strings in X, Moreover, if one deletes from 'Y all strings carrying specific
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information about a particular string x € X, then the resulting set of strings does not
I-code {x} any more. Thus we have:

CoroLLARY L. If under the hypotheses of Lemma 1, Y 1-codes X k-robustly, then
2aB > k.

2. Simple coding of strings by pairs of strings. For y, z¢ {0, 1}, let y®z {0, 1}*
be the string whose ith bit is the mod 2 sum of the ith bits of y and z for 1 =i=p.
For | =i=p, let ¢ € {0, 1} be the string which has 1 in the ith position and 0’s in all
other positions. Let E, ={e,, - -, ¢,}. Let 0 {0, 1} be the string consisting of p 0’s.

Let X, Y {0, 1}. We say Y simply 2-codes X if for all x € X there are two strings
¥, z€ Y such that x=z@y. We say Y simply 2-codes X Kk-robustly if for all Y'< Y
with # Y'= k the set of strings Y\ Y’ simply 2-codes X.

Example 1. X =E,, Y={y,, -, ¥pn}, with y,=¢ for iZp and Y,,,=0.

Intuition suggests that in this example for i =p, the string y; carries specific
information about ¢; and about no other strings in X,

Example 2. X=E,, Y={yy, ", Ypaa}, With y,=(B;.;x; for i=p and y,,, =

Fox,

’ lIs there still a reasonable way to attribute to every string y € Y specific information
about a small number of strings x € X ? Motivated by this question, we consider for
arbitrary X, Y < {0, 1}” the following edge-labelled graph G(X, Y}=(V,E,L): V=Y
is the vertex set. For all y, z€ Y, there is an edge {y, z} € E iff y® z=x for some x€ X,
L: E - X is a mapping that labels every edge e ={y, z} with L{e)=y Pz For X, Y, as
in Examples | and 2, we get the graph of Fig. 1.

N

Yp+1

Y1

Fi1G. 1

Transform the edge labelling L: E - X into a node labelling by the following rule:

{*}) For every edge e ={y, z}, put label L{¢) on node y or on node z
There are many ways to do this, and in general, nodes may get more than one label.
Thus the resulting node labelling is a mapping from Y to the power set of X. We will
use the letter L both for edge and node labellings.

1f an edge labelling L has been transformed by Rule (*) into a node labelling L',
then for every x e X, the set of strings Y’ ={y|xe L(y)} has the property of a set of
strings each of which carries specific information about x: Y\ Y’ does not simply
2-code {x}. In analogy with the case of l-coding, we want each y€ Y to carry specific
information about only a small number of strings x € X. Thus we are interested in
node labellings L that minimize

max # L(y).

yeY
For edge-labelled graphs, G=(V, E, L), let
{(G) =min max # L'(v),
L

veV
where the minimum is taken over all node labellings L’ that can be obtained from L
by Rule (*). For the graph G of Fig. 1, we have (G} =1, which is obtained by the
node labelling L'{y;) ={x;} for i=p and L'(y,+,) = .
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3. Transformation of labellings for simple 2-coding. We define the labelled p-
dimensional cube C, = G(E,, {0, 1}*).If Y < {0, 1}*, then G(E,, Y) is a subgraph of C,.

Any node labelling of C, has to distribute p2?~"' occurrences of labels among 2°
nodes. As for every node v in C,, different edges incident with v have different labels,
we find I(C,) = p/2. This shows that the function /() is unbounded. As pointed out
in the abstract, coding X ={x,,-- -, x,} by Y={P, ,x|I<{1,---,n}} works for
arbitrary X < {0, 1}”. Thus in the case of simple 2-coding, Lemma 1 and Corollary 1
do not hold, and one has better robust coding schemes than in the case of 1-coding.
However, we have

LEMMA 2. For all p and m, if y<{0, 1}* and #y = m, then HG(E, Y))=logm.

Proof. The proof is by induction on p. For p =1, this is easily verified. Suppose
the lemma holds for p. Let Y<{0,1}"*". For i=0,1, let Y;={ye Y|y, 1 =i} and
m;=#Y,. Then I{(G(E,.;, Y;))=logm, fori=0, 1 by the induction hypothesis. Assume
my=m,. For any edge {y, z} with ye Y, z€ Y}, put the edge label e, of edge {y, z}
on y. This gives

I(G(Epﬂ; y))=max {1+ i G(Ep-i-la Yo)), ’(G(Ep-Hs Y
émax{lﬂog?,log m} 0

CoroLLaRry 2. Let Y {0, 1), # Y =m. For at least P/2 strings e,c E,, there is a
set Y;< Y such that #Y,=(2mlog m)/p and Y\ 'Y, does not simply 2-code {e;}.

Proof. Assume the corollary is false. Let L be the node labelling of G(E,, Y)
constructed in the proof of Lemma 2. Then

mlogmz Zy #L(y)=z #{yle.e L{y)}

>(p/2)(2mlog m)/p. a]

CoroLLARY 3. Let Y<{0,1}, $Y=m, and let Y simply 2-code E, k-robustly.
Then (2mlogm)/p> k.

4. General 2-coding and the associated graphs. Let x, 3, z€{0, 1}*. We say y and
z 2-code x if K(x|yz) = O(log|x|). Let X, Y < {0, 1}*. We say Y 2-codes X if for all
x € X, there are y, ze Y such that y and z 2-code x. We say Y 2-codes X k-robustly if
for all Y'= Y with # Y’ =k, the set of strings Y\ Y’ 2-codes X,

With X, Y < {0, 1}*, we associate again an edge-labelled graph G(X, Y)=
(Y, E, L): for each y, ze Y there is an edge {y, z}c Eiff y and z 2-code some xe€ X,
For each edge e={y, z} € E, we set L{e)={xe Xly and z 2-code x}. Thus L is now a
mapping from E into the power set of X, For E'c E, tet

L(EY= U L(e).
eeE’

The following lemma exhibits a graph theoretic property of the graphs G(x, y)
and their subgraphs,

LemMMma 3. Let X ={x,, --,x,}c{0,1}, Y={Y,, ', Yo}<{0, 1} and
G(X,Y)=(Y,E L). Let K(x;,* "+, x,}= np. Then

a
1-O(log (p#Y))/p’

Proof. Let d =+ L(E) and let L(E)={x;, "+, x;,}. Then
(3) dp—-0O(dlog n)=K(x, - x,).

#L(EY=#%#Y-
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The string x; - - - x;, can be specified in the following way:

+ The binary representations of n and b.

» For each je{1, -, d} the binary representation of two indices k and 1 such

that K(x,-i|yky,) = Of(log p} and a program that produces x; from y.y:.
¢ The bits of ¥« * * ¥,
Thus
(4) K(x;,---x,)=0(dlog bn)+ O(d log p)+ abnp.
(3) and (4} imply the lemma. 0O

Two cases are particularly simple:

(i} O(log bnp)/p<c <1 for some fixed ¢. Then ¥ L(E)= O(%Y).

(ii) a=1land #Y/(1-O(logp% Y}/ p)<#Y+1 Then #L(E)=+Y.

We now give an example of an edge-labelled graph G such that $ L(E)= Y
holds for alt subgraphs (Y, E, L} of G, yet G# G(X, Y) for any X, Y, to which case
(iiy applies (if p is large enough).

Let G, be a single edge with label x,. For iz 1, let G|, G be two copies of G,
Connect every vertex of G} with every vertex of G} with an edge labelled x;,,. Call
the resulting graph G,,,. By induction on i, one easily verifies that # L(E)s= %V -1
for any subgraph (V, E, L) of G,

Suppose Gy is a subgraph of G(X, Y). Consider any node y in Gy Then K(x|y)>
2p/3— O(log p) for some i€ {5, - -, 8}. Otherwise one gets the contradiction

8
4p—Ollogp)= K (xs++~ x) = T (K(xly)+Ollog p))+ K(y)
é%’ﬁ- O(log p).

Consider in Gy the subgraph drawn in Fig. 2. For all je{l, - -, 5}, we have
K(zlyx)= K(yxz;) - K(yx;) + O(log p)
= K(yz) + K(xlyz) — K(yx,) + O(log p)
= K(y)+ K(z]y) - K{(y) - K(x|y)+ O(log p)
ép—%’-e+ Oflog p). [ZL}
This gives the contradiction

4p—O(logp)= K(x, " x4)

5 4
=K(yx)+ ¥ K(zlyx)+ L K(xzz)+ O(log p)
j=1 j=1

5
= (2+‘§)p+ O(log p).

X X
3 4
z, zg
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5. Transforming edge labellings into node labellings. For sets V,Vilet VRV'=
v, v'Hoe V,v'e V'L

THEOREM 1. Let G=(V, E, L) be an edge-labelled graph, let + V= n and Jor all
VeV, let #L((V'@ V)N EY=+ V'. Then (G) = a/n where a = 2/6.

Proof. The proof is by induction on n. The theorem is true for n= a. Let n> a.
Find a node 1€ V such that +L{{{u}® V)N E)=='a\/n (if no such node exists, the
nodes of G can be trivially labelled in the desired way). Let E, be a smallest set of
edges adjacent to u such that # L(E,) = avn. By hypothesis we have avn — | = #E =
aJ/n. Let V, be the set of end points of edges in E, other than wu.

Let V.= W\(V,U{u}). Let E;=(V,® V,)NE and E,=(u® Vo}N E (see Fig. 3).
Ignoring labels on edges in E, and E,, we can label the nodes in V) with

av#V,éa\/a\/zé avn—-2

labels per node. By hypothesis, every edge in E has at most 2 labels. Thus putting
labels on edges in E; on the endpoint of these edges in V| gives at most 2 extra labels
per node in V|,

Ignoring labels on edges in E, and E;, we can label the nodes of V; with

“*/#_Vzéamﬂga(ﬁ_“‘f/fl)

a’ —
=q n——2—+1§aJn—11

labels per node. Putting labels on edges in E; to the endpoints of these edges in V,
gives at most 2 extra labels per node in V,.

Now for every label x on an edge e in V,® V, that has already been put by the
above operations on the endpoint of e in V,, delete label x from edge e. We continue
to use the letter L for the modified edge labelling.

The theorem follows if we establish

LEMMA 4. For evey node we V,, we have

#L((w® V)N E)=9.

Proof. Assume the lemma is false for node w. Let Vi V) be a smallest set of
nodes such that # L({(w® V;)"N E)= 10 (Fig. 4). We make three observations:
(i) #v,=9.
(i) Let V,= V; and ze V,\'V,. Then
L{{z, ul\L({ Va® u}) # &,
L{z, wI\L{V.®wWh =D
by the minimality of V; and V;.
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Fi1G. 4

(iii) Let V,c V;, # V,=2. Then #L(u® V,)=3 and # L{w® V,)=3. By (ii} we
have

(5) L{{w, z})= L({w, u}@ V,) for at most 3 nodes ze V;\ V,. Similarly

(6) L{{u, z})= L({w, u}® V,) for at most 3 nodes ze V,\ V,.
By (i) there is z € V3\ V, such that (5) and (6) both do not hold for =z

But L{{u, z}) N L({w, z}) =, because labels from this intersection have already
been deleted from the edge {w, z}. Thus

£ L{({z1U V) ®{u, wh = $ L(V,&{u, w}}+2.

Starting with V,={J and carrying out this construction 3 times gives a set of 3
nodes z,, z,, z; such that

6=#L({z,, 25, z;} D{u, w}=5. i}

CoroLLARY 4. Let X ={x, - -, x)<{0, 1}, Y={y, -, vmt<{0, 1}, le
K(x, - x,)znp, let (1-O(logp#Y)/py=1+1/+Y, and suppose Y 2-codes X k-
robustly. Then 4,/6% Y > k.

THEOREM 2. Let G=(V, E, L) be an edge-labelled graph, %V =n > 1, and for all
VeV, let # LLV@V)INE)=c# V. Then I(G)=4 cn'~° where £ <1/(12¢).

Proof. By hypothesis, every edge has at most 2¢ labels. We show I(G)=2n'° if
every edge has at most 1 label.

For every node ve V and any edge label I that occurs on at least n°+ 1 of the
edges adjacent to v, put label I on v and delete it from the edges adjacent to v. By
this at most n'~" labels are put on every node.

Next, for each ve V, partition the edges adjacent to v into T7=n° classes
E! -+, ET such that in every class E’, every label occurs on at most one edge of E}.
Partition F into classes E*, |=i=j=n®, by {u, v} E* if [u, vle E,N E’. For all i,
j,let G¥ =(V, E™, L") where L* is L restricted to E*. Then in G* for every node
v, all edges adjacent to v have different labels. We will show I[{G*/)=n'"?",

For every vertex v that is adjacent to at most n' > edges, put all labels occurring
on these edges on v. Delete v and its adjacent edges from G*'. Continue this process
as long as possible. If finally all of G*/ is deleted, we are done. Otherwise we are left
with an edge-labelled graph G'=(V’, E’, L') with at most n nodes. Every node v has
at least n' > neighbors and the edges joining v with its neighbors have all different
labels. We will derive a contradiction from this.

We consider the adjacency matrix A’ of G’ and use the following fact {H].

For natural numbers m, n, j, k, let z(m, n, j, k) be the smallest number z’ such
that every m Xn matrix with z’ ones contains a j X k minor g that consists of ones



CODING STRINGS BY PAIRS OF STRINGS 451

only. Then z(m, n, j, k)= 1+km+(j—1)""*m'~"*n. In particular,
z(n, n,9¢°, 2¢) = 14+ 2cn+(9¢%)V 221/ Q0 . p2-6¢

if 6e < 1/(2c) and n is large enough.

Let u’ be a 9¢*x(2¢) minor of A’ that consists only of ones. Every one in yu'
corresponds to an edge ec E*/. Replace each one in p' by the label L () of the
corresponding edge. Call the resultmg matrix u. Every label occurs in each row and
column of w at most once. We make the following observation.

If R is a set of at most 2¢ rows of y, then at most 4¢* different labels occur in R.
Each label occurs in at most 2¢ more rows of u. Thus there is a row r of R consisting
only of labels that are not yet in R. Starting with R =an arbitrary row of M and
repeatmg this process 2¢ times gives a (2¢+1) X(2c) minor M" of u that contains
4c®+2c different labels. The rows and columns of p’ correspond to a set V' of 4¢+1
vertices of u. Thus

20Qc+1}=#L(V'®VINE) = c(4c+1). 0

CoroLLARY 5. Let X ={x;, -, %}<{0, 1}, Y={Y, -+, Y.} <{0, 1}* and
p »log bnp. Suppose K (x, - - - x,}) Z pnand Y 2-codes X k-robustly. Then 16a(bn)' ~* >k
Jor e <1/(24a} and n large enough.

6. A lower bound. We want to establish lower bounds for /{G) where G satisfies
the property in Theorem 2,

THEOREM 3. Forc =2, there exists G=(V, E, L), # V = n, having an edge labelling
satisfying

#L(V'RVINE)=c# V' forallV'cV
and

1 1
) zc¢'n® h <——
(GYzc'n® wherea 3 13

Proof. Let 8=(3—1/(4c=2)—a)/2. Leta=%1—1/(4c-2)—=8=(c—1)/(2c—1)~8
and let G =(V, E} be a random graph with n nodes and n'** edges, where all such
graphs are equally likely. We first show that with high probability,

(%) #(VRVINE=c#V' forall Ve V with # V'=n"

The probability that for any set V' of cardinality j = n®, (*+) does not hold, is at

ONO-)(©

- n

¢
(3 <z—$>"( 3 (o)
(

W n

J

L
g S

A

A

e)J(eJ) (2 1n—l+a)
J

l /e —]+d+l/f.‘)f._‘j

A
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For 2c+2=j=log n, we estimate

W}é(logzn- n—l/2—l,’(4c—2}—6+1/0)cj§(n—1/2—l,v‘6+1,"2)2.6=n—2-

For log n <j=n®, we have
‘AG_é(cznﬂ{l—l/c)—l+a+IIC)cj

= (Czn(a(Zc—l)-c+1)/C)cj

— (Cznfﬁ(ZCfi)/‘C)cj = (nfc:i)logn = n*Z‘

Hence the probability that (**) does not hold is at most

ne

Y W=nn?=nl.
J=Z2c+2

Next we make use of the fact that with probability 1 —o(n™'), the degree of every
node in G is bounded by 3n® [ER]. Therefore there exists a graph &G with n nodes,
n'"* edges, such that the degree of every node in G is bounded by 3n® and (*#) holds
for G.

Let L be any edge labelling of G, which labels every edge with exactly 1 label
fe{l,---,n"}. Let V'c V. Then #L({(V'@V)INE)=min{»”, #((VRV)INE}=
c¥ V.

Suppose we choose L randomly in such a way that edges are labelled indepen-
dently, and such that for each edge, each iabel is equally likely. Let v be any node of
G, let d be the degree of v and let / be any label. Then the probability that j or more

edges adjacent to v have label [ is at most
1 J I
(Y- o
n 7

()G =(5) G =C59)

if j=log n. Therefore the probability that log n or more edges adjacent to the same
node as G have the same label is at most n- n%- O(n™>} = C(n™"). Hence there is a
labelling L such that for every ! and V label, [ occurs on at most log n edges adjacent
to node V. No matter how we transform L into a node labelling L', we have Y, # L'(v) =
n'**/log n. This proves the theorem. 0O

7. Simple 2-coding revisited. If Y is a subset of {0, 1}” of size m, then G(E,, Y)
may have up to m log m labels. This means the number of pairs in Y that code some
e¢; grows faster than the size of Y. But at least for the obvious example to demonstrate
this, the (log m)-dimensional subcube, one notices that for log m« p, only a small
subset of the ¢ can be coded by many pairs. Thus there is hope that, disregarding a
small subset of {e,,- -, e,}, the remaining ¢, have a much smaller number of pairs
which simply 2-code them.

For X {0, 1}’ and 1 =i=p, define r(X, i) as the number of edges in G(E,, X).

with label i
For 1 =k=p define
n(X})= min Y r(X i)

Dc{y,---plicD
|D|z=k

and
pr(X)= min maxr(X, i},

Dc{l,p) ieD
ID|zk
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and for me IN,

r{m)= max r{X)
| X|=m

and

pr{m)= max p(X).
| X|=m

One checks easily that for m=2°, p,(m)=|m/2|, whereas from Lemma 2 it
follows that r,(m) = &{m log m).

Let In (x) denote the natural logarithm of x and In* (x) =[In (x)1*.

THEOREM 4. There are constants « >0 and C, h= 1 such that for all | =k <p and
m/(p—k)=C/aq,

k
COROLLARY 6. For any ¢ >0 and m = O(p),
p(!—s)p(m)z O(l)

Theorem 4 follows from the following:
LEMMA 5. There are constants $>0, h=1 such that for any X < {0, 1}*,

L r(Xx, i -
S (r(X, D+ h)='B|X1'

Proof of Theorem 4. Assume

m m
= In® +h).
pr(m) ap_ n (ap—k )

m m
p(m)y>ri= ap_k]n3(ap_k+h).

Then there exists X = {0, t}” of size m such that #(X, i)>= r;> r holds for more than
p—klabels ie{l,: -, p}. Define

X
TS Gy

Later it will be shown that for appropriate h= e’, F(x) is monotonically increasing
for x = 0. Hence,

T F(r)ZE T F)>(p-K)E(r)
~ In® (@(m/(p—k))+h)
= M0 (a(m/(p— ) In° (a(m/(p—k)+h) + k)

For an appropriate C= 1,

x+hzIn® (x+h)
holds for all x= C. Thus if am/{p—k)= C, then

In® (p“_’"k In® (p“_'"k + h) + h) =1n® (—n-—p“_"'k (p—“_'"k+ h) + h)

2
<10 (2™, ))= s(im_J, )
n((p"-k h 81ln —k h

Therefore, T.{_, F(r;)> am/8. But this contradicts Lemma 5 if /82 8. 0O
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Proof of Lemma 5. Define h=¢e>~7.389 and y=0.16.

g(x)=7m, forx=0
and
= i: 12( ¥ forneN, nz=1.

We will show in the Appendix:

(g) 0=g(x)=0.16x forall x=0,
(g2) g(x)=0 for all x=0,
{g3) g'{(x}=0 forall x=0,
(f1) l1=f(n)=f(n+1)=5 foralln=1.

Now let X < {0, 1}*. Lemma 5 follows from the following:
ProposiTiON, If n={{i|r,> 0}, then

£ g =fm)IX|

Praaf. The proof is by induction on n. Define r =max,5:<, r. For each i, the edges
with label i are a matching. Hence, |X|=2r. For all 1 = h=n,=98, we get

r 49| X| =39y

L &) =) =y S e (e = 2

— | X|=[XI=f(n)| X].

Thus, the claim holds for all » = n,. Now assume
(7.1) n+1>n,=98,

and the claim is true for all n'=n,. We may assume that r, = 1=  Z 1> Fosz =
- =r, = 0. Define for [€{0, 1},

X'={xeX|x, =1},

and for 1 =i=n r! as the number of edges in G(E, X Y with label i, this means we
cut X in dimension n+ 1. Obviously,

(7.2) X=Xx"Ux’, r=ri+r forl=i=n.
D=D"N D" and d'=|D'|. One can check easily
(7.3) |X!|zmax {r,,,d'+1} forl=0,1.

Define Ag(x, y)=g(x)+g(y)—g(x+y). Now
£ 8n=F gt gD+ £ gD~ T aglh h+stran)

Applying the induction hypothesis to X° and X' gives
r
(7.4) _2_:! g(r) =X @)+ X" |f(d") - ‘ZD Ag(rt, i)+ g(rur1)

The idea of the proof is as follows: if D is large, then Y, , Ag(ro, ri) is large enough
to compensate the term g(r,+,); otherwise one of the d' must be relatively small, such
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that the difference between | X'|f(n+ 1) and | X'| f(d’) is bigger than g(r,.,). We have
to distinguish several cases. First, we state some more properties of f and g which will
be proved in the appendix.

(g4) Agi{x,¥y)=0 forallx, y=0,

{g5) Ag(x, y)=Ag(x, z) forall0=xand0=y=z,

{g6) Ag(1, 1)=0.0298y,

g7 Ag(x,y)§1.4—g(-&— forall0=x=yand y=3h
In(x+h)

Define 8f(n, m) =f(n)~f(m) for |l =m=n. Then

(£2) 5f(n, m)éim for all 16§m§§n.

Case 1. 3 with d'=2/3n. Assume I= 1. Then (7.4) yields

gr) =X f(d)+|X"|f(d") + g(r01)

it

=X +IX"Nf(n+ 1)+ g(rae) =X 8f(n+1,d").
If d'=16 and d'=7r,,,, we get

1 1

! = 1 - )
glrac ) =1 XY 8fin+1,d ) =g(r)—d AT AR by (7.3) and (f2)
d’ ) 1 y
= o Pl S S
=g(ran) Yin? (d'+ k) S = (d' +h)
=g{ry+)—g(d")=0 by (g2).
If 15zd'=r,,,, we get
(ra) =X 8f(n+1, d) S g(15)—d' T —mmg(15)——> <0
ElTn1 4= It 161’16
If16=d'=r,,,, we have
(Faer) = | X" 8f(n+1,d")=g(r )_1¢5 (Fasr) =y 2t =0
B+ y =g+ 4]n2(d'+h)——g n+1 yln3(r,,+l+h) -

Ifl=d'=15and d'=r, ., we have

1
_ 1 1y = ¢_
gl ) XAt L A=y oy @ D (@ 1)

< rﬂ+l ( 7 _ l ) 0
@ +D\In@'+1) d'+1/°"
because In (d'+1)/(d'+1)>y for all d'€{1,- - -, 15}. Finally, if d' =0, then

1
- t + 1 = Fati _
g(rn-H) IX | af(" 19 d ) .y]n3 (f,H_!"‘h) rn+l 211’122

¥ 1
=r, ——— ] <0,
l"*‘(8 21n22)
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Thus, Y7, g(r}=|X|f(n+1). We now assume

(7.5) d'=zin forl=0,1.

Case 2. r,. =cnln’ (n+h), where ¢, =0.0099. By (7.1), n=98= e — h. Thus
In(n+h)=c;'"?* and

(7.6) cnln®(n+h)=n,
This implies

cnln®(n+h) -
I’ (c,nln (n+th)+ k) T

gr)=glenln’ (n+h)=1v

From (7.5) follows {D|= n/3. Thus
2 Br) SIXCUS) XU ~ 3, 8802 )+ ()

=|X|f(n+1)- _ED Ag(l,1)+g(r.) by (g5)

=|X|f(n+ 1)—§o.oz9sy+ yein by (g6)
=|X|f(n+1) since 0'0298§c,.
Let us now assume
(7.7) reazenln® (n+h).

From (7.1) it follows that
(7.8) I =En=Zn,Z98=6h.

For 1 =i = h, define z, =min {r), r'} and v, =max {r?, r/}. We have

i T+t
== =3h
(7.9) v,_z_ ) =3
Case 3.
1 Tnt1
= —rr
2,8 B m Ty
Then
L g(ri, i)=Y Ag(z, v)
=3 l.4in) by (7.9) and (g7)
In(z;+h)
=1. Y g(z) =14 (1/8) 1112("n+|/("n+1+h))
In (¥ g(z)+h) T In ((1/8)(re /10 (1 + B)) + )
=0.175 —— k! = g(r,,.), since0.175= 1.

In* (o +h)
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Hence in (7.4),
P
L g(r)=( X4+ X Mf(n+1)+g(r,e))— T Ag(rd, rD=|X|f(n+1).
i=] iel

It remains the case that

1 Fott
J=— ——
Z 8= gim T

Define for 1=0,1, B'={i|ri>r!"'} and b'=|B|. Since b°+b'=n, we may assume
b'=n/2.

If we remove from G(E, X '} edges with labels not in B', the remaining graph
consists of some connected components G(E,, Y'), - - -, G(E,, Y") where U, 5z, Y/ =
X', Let us denote by y} the number of edges in G(E,, Y’} with label i. Each such
graph contains only labels from B'. Hence by the induction hypothesis,

) g(y{)éww(g)
and

L gr)= 1 > g(y) sincer!= érﬁ

ieB j=1

= 1 1vir(3) ~x1s(3)

Thus we can conclude

I []w

8= T gD+ T gD+ T g(r)+ern)

J=1 icB

=S| Xf(n+ DX f(n+1) =X 6]‘(n+1,§)

+ ¥ g(z)+g(r.1) since r} =z, for i B!
i=1

1 Tt 1 Tnt1
= +h-2 T3
XU+ ) = e ) 8 i G 1)

rn+l
+y— By (f
yln3 (fns+hR) v
- 11 y ]
=Xt ) = 27 . -
1X|f(n+1) lnz(r,.+1+h)[4 8 In(r.. —h)

=|X|f(n+1).

This completes the proof of the Proposition and Theorem 4. O

For Y<{0,1} and Q<{l,---,p}, let G?(E, Y) denote the subgraph of
G(E,, Y) that has the same set of nodes, but only edges with labels in Q.

The previous result can then be stated as follows. For any g, x>0, there is a
constant A(e, u) such that for any Y= {0, 1}* of size at most up, one can find a set
Q<{l,- -, p} of size at least (1 —z)p such that in G(E,, Y) the occurrence of each
label is bounded by A(e, 1), and hence GQ(E,,, Y) has less than A(e, p)p edges.
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-
This does not necessarily imply that in GQ(E,,, Y) the labelled edges are distributed
in a nice uniform manner such that every node gets about the same number of labels,
There might exist a neighborhood of nodes in GQ(E,,, ¥) where each node has a high
degree (increasing with p), and some of them might have to accept many labels. It
will be shown that the structure of the cube excludes such cases. Define

L(Y)= min min max #L{v)
Q<={1,---,p} transformation L vEGQ(Ep.Y)
Qlzk  for GO(E,Y)

and
IL(m)=max L(Y).
|¥i=m
Obviously, for n~(log p)/2=k=n, it holds that L,{ p) = é{log p).
THEOREM 5. For any e, p >0 there exists a constant R(e, u) such that

l(l—E)P(“‘p)gR(Bs 'U.), fﬂranyp.

Proof. From Corollary 6, we know that there is a constant A= A(e/2, 1) such
that l,_,,,(up), (pup)= A for all p.

Let R=R(e, u) > 10A/eg(1). If the theorem is false, then there exists peN and
Y <{0, 1}, | Y| = up such that for any Q<= {1, - - -, p} of size at least (1 —&)p and any
transformation L of labels to nodes for G%(E,, Y), we find a node v with # L(v)> R.

By Corollary 6, for the given Y there exists aset U< {1,- -, p} of size (1—£/2)p
such that GY(E,, Y) has less than Ap edges. Among all transformations of labels in
G"“(E,, Y}, choose L that minimizes the function

F(Ly= % max {0, #L(v})— R}.
veY —~
By assumption, for L and also any restriction ‘_f: of L to a graph G9(Ep, Y) where Q
is a subset of U of size (1 —&)p, F(L) and F(L) are positive. L defines an orientation
of the edges in GY(E,, Y): edge {v, v'} is changed into the directed edge (p,v)iff L
assigns the label of {v, v’} to »". Let us call this directed graph H.

Let Z< Y be the set of all nodes from which there is a path of length =0 in H
to a node v with #L(v)> R, and let A be the subgraph of H induced by Z. By
assumption, Z is nonempty, since there is at least one node that gets more than R
labels. Notice that for z € Z, 4 L(z) equals the indegree of z in H.

CraiMm L. Each node of Z has indegree at least R in H.

Proof. Assume z € Z has indegree less than R, and let z=z,, z,, ' - -, z; be a path
in A from z to a node z; with indegree bigger than R. By definition of Z, such a path
must exist.

Change L into L by assigning for 0=i <! the label on edge {z, z.,,} to node z
instead of z;.,. Since in a cube all edges adjacent to a node have different labels, we
have # L(zo) S R, # L{z)=#%L(z)— 12 R and # L(z) = % L(z) for all remaining z¢ Y.
Hence

F(L)> F(L),
which contradicts the minimality of L. [
Therefore, we now conclude that H has at least R|Z| edges.

Since H is a subgraph of H, and H has the same number of edges as GY(E,, Y),
we know that R|Z|= Ap. Hence

A
|Z| §Ep.
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On the other hand, G(E,, Z) must have at least £p/2 different labels; otherwise, deleting
this set of labels from U would yield a subset Q of {1, -, p} of size at least (1~ ¢)p
such that L restricted to GQ(EP, Y} does not assign more than R labels to any node.
From the Proposition in the proof of Lemma 5, it follows that

1 »
Z g—— r; s
1Z| o El g(r)
where r, =number of edges in G(E, Z ) with label i and n = number of r,>0.
Since g is monotonic and f is bounded by five, we get
1 ¢

HE
5 2

p g(1)=~l-%g(t)p-

Combining the two inequalities for | Z| gives

€ A
—g{l}=—.
log() R

Hence
104
R= .
eg(1)
This contradicts the definition of B 0

CoroLLARY 7. If Y= {0, 1}, # Y = O(p) and Y simply 2-codes E,, then Y 2-codes
E, O(1)-robustly.

8. Problems. (i} How good are the bounds of Theorems 1 and 27

(ii) Consider 3-coding or more general r-coding for r=3. Now G(x, ) becomes
a hypergraph, and a result analogous to Lemma 3 holds. Are there, even in the case
of simple 3-coding, any nontrivial bounds on {G(x, y))?

9. Appendix. Proof of Properties (g1)(g7) and (f1)(f2). Let h=¢ let y=0.16
and for x =0 let

(x) = - *
B =Y (x+ )
(gl) is obvious. To prove (g2) we get
, In* (x+h)—x3In*(x+h)/(x+h) 1 3x
glxy=vy 5 =73 1- .
In®(x+h) In’ (x+h) (x+h)In(x+h)

Let ¢(x):={x+h}In(x+h)—3x

Then for xz0, g'(x)z0&e{x)=0. We have ¢'(x)=In(x+h)—-2 and
lim, . ¢(x) =cc, and hence x =0 is the only minimum of ¢ for x = 0. Since ©(0) = 2¢?,
we get ¢(x)=0 for all x=0, and g'{x)=0 for all x=0.

") = ( -3 1 [1_ 3x ]
EV =N In* (x+h) x+hl (x+h)In(x+h)
1 [3(x+h)]n(x+h)—3x(1n(x+h)+1)])

TIn® (x+h) (x+hY1n? (x+h)
3
AT (x+h)(x+h)2[(x+h)]n (x+h)=3x+hlIn(x+h)—x]
3

= YV i (DG Al X T2 In (et k) - 4x],
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Let ¢(x)=(x+2h)In(x+h)—4x. Then for x=0, g"(x)=0=(x)=0,

, o x+2h_
¢(x)_mgx+h)+x+h 4,
wpon ) (x+h)—(x+2h) x
=T (x+h)?  (x+h)?

Since ¢'(0)=0, ¢"(x)=0 for x=0 and lim,_.» ¢(x) =2, x =0 is the only minimum
of ¢{(x). From ¢(0)=4h =0 it follows that

(23) g"(x)=0 forallxz=0.

Define Ag(x, y) = g(x)+g(¥)—g(x+y). Calculation proves (g6):

1 11
In®(1+h) In*(2+h)

Ag(l, 1)=2y[ ]30.02931/.

Assume 0=x and 0=y =z Since for all refy, z], g'(x+t}=g'(#) by {g3), we can
conclude that g(x+z)—g(x+y)=g(z)—g(y). This yields g(x)+g(y)—g(x+y)=
g(x}+g(z)—g(x+1z), or

(g5) Ag(x,y)=Ag(x,z) forall0=xand0=y=z
For Ag we can show the bound for 0=x=y:

Ag(x,y)=g(x)+g(y)—gx+ty)zg(x)-x sup g'(z)=g(x)—xg'(y).

zefyx-+y]
This yields

As(xy)=g(x) "”uﬁ(ym)(‘ (y+h)an(y+h>)

3 “ln3(x+h) B 3y
“g(")[‘ lna(y+h)(' (y+h)1n(y+h))]'

Since In(x+h)=In(y+h) and 0=3y=(y+h)In(y+h) (see proof of (g2)),
Ag(x, y)= 0 follows from g(x)=0. The case x>y follows from Ag(x, y) =Ag(y, x).
This proves (g4). If x+h=(y+h)*>, we get In(x+h)=(2/3) In{y+h) and

1 = o(x) 3y 2/3 2 3y g{x)
= hin(x+h) 3y+hin(x+h)

- By 1
Ag(x.y):g(x)y+h Yy

If y=3h then Ag(x, y) Z3g(x)}/In (x+ h). If on the other hand x+ h=(y+ h)*/?,
we can bound Ag{x, v) by

- _1113 {x+h)
Ag(x,y)=g(x)[1 PRI (y+h)]

a0
=0.7g(x)

- g(x)

=l T sinceln (x+h)=2,
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Therefore we have shown (g7): .

=Ex= dy=3h
In (x+h) forall0=x=yandy=3

Aglx, y

For neN, nz= 1, define

fmy =1+ §

min“m
Then
fln)=1+ f ;—14‘(10 e)’ E — L
= mamlin®m g2 m=2 m(log, m)*

o 1
=1+(log, e)* —————
(log; ) i§l 2'smz<2‘+' M(logz m)2

2

T
T 1+ (log, e)z?é S,

Thus (f1), 1 = f(n) =35, holds for all nz 1, Define 8f(n, m)=f(n)—f(m)forl=m=n.
For 162 m=2/3n,

=1+(log,e)* ¥ 2
i=1

5 ) n 1 [3m/2| 1
A, m)= - = ; ;
4 j=rzn:+lj 11'12_] j=m+1]} lﬂz_l
1 1 1
= [m/2]

==~ .
[3m/2]1n? [3m/2] ™ 3 In® [3m/2]
7 Since m= t6,

[3m/2]§(%+21—0)m§ L6m=(16+h)*Sm=(m+h)"5=(m+ k)",
Hence
4
In? [37'"] élnz(m+h)‘/m=§ln2(m+h).
This proves
1 | 2
2-— =m=In
(f2) 6f(n,m)_4ln,_(m+h) foralllﬁ_m.h3n
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