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Let f(s, t; k) be the largest value of m such that it is possible to k-color the edges of the
complete graph K,, so that every K,SK,, has exactly ¢ colors occuring on its edges. The main
object of this paper is to describe the behavior of the function f(s, ¢; k), usually thinking of s and ¢
fixed, and letting k become large.

1. Introduction

A classical question arising in Ramsey theory is the determination of r(s; k),
defined to be the least integer r such that in any partition of the edges of the complete
graph K, on r vertices into k classes, some class must contain all the edges of some
complete subgraph K; on s vertices. (For terminology in graph theory, see [1]; for ge-
neral information on Ramsey theory, see [8] or [9]; for the current state of know-
ledge on the values of r(s; k), see [3]). Stated another way, if m<r(s; k) then there
Is a partition of the edges of K, into k classes such that every complete subgraph
K, S K,, has edges in at least two of the classes. We will usually use the alternative
“chromatic” terminology in which the preceding result can be stated as follows:
If m=<r(s; k) then there is a k-coloring of E(K,) such that no complete sub-
graph K;& K,, is monochromatic.

In this paper we will study this lack of “monochromaticity” in a more quanti-
tative manner. Our investigations were initially stimulated by the following attractive
question of T. A. Brown [2]: What is the largest number f(k) of vertices a complete
graph can have such that it is possible to k-color its edges so that every triangle
(=K;) has edges of exactly two colors?

It follows at once that f(k) exists and by Ramsey’s Theorem, in fact, satisfies

Sy < r(3; k).

In Theorem 1, we determine f(k) exactly.
More generally, one can ask for the value of f(s, #; k), defined to be the largest
value of m such that it is possible to color the edges of K, so that every K,ZSK,,
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has exactly ¢ different colors occurring on its edges. The main object of this paper is
to describe the behavior of f(s, ; k) as function of its arguments s, 7 and k, usually
thinking of s and ¢ fixed, and letting k become large.

We should point out here that a number of earlier papers of Erd8s and others
have dealt with related questions in which it is required, for example, that at least
t colors appear in each (or some) K;. A particularly nice result of this type, due to
Erd8s and Szemerédi, is the following:

Theorem [7]: There exists a constant ¢=0 so that if E(K,) is k-colored then there is an
o= cklogn
~ logk

More results of this type can be found in [4], [6], [7].

and a K, S K, which spans only k—1 colors in its edge set.

2. Preliminaries

A k-coloring of the edge set E=E(G) of a graph G will be thought of as a
map x: E-[k]:={1,2, ..., k). If XCE, C(X) will denote the set of colors occurring
in X, and ¢(X) will denote the cardinality of C(X). That is,

CX) = {x(x): xeX}, c(X)=|CX).

If A, BEV=V(G), the set of vertices of G, then [4, B] will denote the set of edges of
G of the form {a, b}, ac 4, beB.

As mentioned earlier, for s,1, k¢Z™, the set of positive integers, define
f(s, t; k) by

SGs, t; k) = max {m: for some y: E(K,) —~ [k], c(K,) =t for every K, & K,,}

where the abuse of notation with ¢(K,) has the obvious meaning. Of course, f(s, t; k)
is not well-defined for all values of s, ¢ and k. In particular, we will always assume:

K}
2§t.—‘_k,t§[2].

Quite relevant to our discussion will be the so-called canonical partition theo-
rem of Erdds and Rado (see [5] or [9]). A particular consequence of it is the following
result:

Theorem [5]: For all s there exists an r*(s) such that if mz=r*(s) then in any coloring
1. E(K,)—~Z" there is a subgraph K, S K, with c(K)=1, s—1 or [;] .

We have already ruled out consideration of the case t=1 since all edges must

have the same color when s=3. On the other hand, if t:(;) then f(s,t; k) is

not particularly interesting since we now require any K,C K,, to have allits edges with
distinct colors. Thus, if s=4 then all edges of K,, itself must have distinct colors and

m .
(2)§k. For the case s=3, it is easy to see that

iy Jk+1Af kois odd
f(3’3’k)—{k if kis even
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Since by the theorem of Erd8s and Rado, f(s, t; k) is bounded as k—o if
t=1,5s—1or (;:) , and we have dispensed with the cases t=1 and tz(;) then the
only case of interest left is that of t=s5—1. To simplify notation we define

S(s: k) =f(s,s—15 k)
Jk) =f(3: k)

We discuss these functions in the remainder of the paper.

3. The case s=3

Theorem 1.
5kf2 if kis even.
S = {2-5("‘1)/2 if k is odd
Proof. First, we claim that
1) Sflk+2) = 5f(k).

To see this, let x: E(Kyq)—~[k] be a k-coloring of E(K;g,) in which every K; has
exactly two colors. Consider the graph K, with the vertex set denoted by

i(D:1=i=fk), 1=j=5)

Define a (k+2)-coloring y* of E(Kjq,) by:

1(xp xp) iF =
(), x0 (7)) = Yk +1 if j—j=+1(mod>5)
k+2 if j—j =+2(mod 5)

where y(x;, x;;) denotes the color assigned by y to the edge {x;, x;} in K;y,. It is
easy to check that x* is a (k+2)-coloring of K, (actually, its edges) in which every
triangle has exactly two colors, and (1) is proved.

Note that f(1)=2 and f(2)=5. Also, a similar (but simpler) construction
shows that f(k+1)=2f(k) and consequently.

2 Jflk+d) =2%k), d=0.
It suffices to prove
1) f(k+2) = 5f(k),

since this, together with the stated values for f(1) and f(2), implies the theorem.
Suppose x: E(K,)—[k] is such that every triangle has exactly two colors, where
k=3. It will be enough to show that

3) n = 5f(k—2).
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Choose an arbitrary fixed vertex x,€ V(K,)=V. For i€[k], define
Nii={yeV: x(xy, ) =i}, n:=|Ny|, ¢;:= C(N), ¢;==|C,

Obviously i¢ C; since every Kj is 2-colored.

Fact 1. Suppose i€ C; and jeC;. Then N; has a spanning complete bipartite sub-
graph in color j and N; has a spanning complete bipartite subgraph in color i.

Proof of Fact 1. First, observe that all edges in [V;, N;] must have colors i or j.
Suppose {«, B} is an edge in N, with color j and {«’, §’} is an edge in N; with color i.
Define

A:= {x€N;: {«,x} has color i}, B:= {y€N;: {a, y} has color j}.

Thus, AUB=N;,.

@)

(i)
(iii)

If A=0, B=0 then ucAd, véB implies {u, v} has color i since K;(a, u, v),
the triangle determined by «, % and v, has only color / and j, and j¢ C;.
If B=0 then we reach a contradiction since K,(2, ¢, ') has only one color.
If A=9 then x€N; implies {f, x} has color i. But now K;(f, ', f") has
only color i edges which is impossible.

Hence, we are forced into the conclusion that (i) must hold, i.e., N; can be

written as N;=AUB with 40, B#0 and all edges in [4, B] have color i. By
symmetry a similar conclusion applies to N; and the Fact is proved. |}

We will call such a monochromatic spanning complete bipartite subgraph

in N; an MSCBS. Note that a set XS ¥V can have at most one MSCBS.

cases.

Relabel the colors if necessary so that ¢;=c¢; for all i€[k]. There are several

Case 1. N, does not contain an MSCBS. Thus, by Fact 1, icC; implies 14 C;.
Therefore,

n= 1N1|+1{iyc NiU{xo}}l+E{j%JC N} = fle)+ftk=D+ 2 fle) =

= fle)+fk—D+(k—1—cy) fler) = (k—c) fle) +f(k—1) =
= ((k—ep2~¢1=D4 1) f(k—1), by (2),

since ¢;=k—1.

But
a-2'7*=1, a=0,12, ..

and consequently n=2f(k—1) which is actually stronger than (3).

Case 2. N, contains an MSCBS in color 2 but N, does not contain an MSCBS in
color 1. As before, by Fact 1, 14 C,. Also, jeC,, j#2, implies 1¢ C;. Thus

14¢ |J C;. Thus, we can argue as before that
jce,

n= MY MUBGEH Y N =

= f(e) + k=D +(k~ 1~ fley) = 2f (k—1).
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Case 3. N, contains an MSCBS in color 2 and N, contains an MSCBS in color I.
Let Ny=AUB and N,=A"UB’ be the bipartitions induced by the hypothesized
MSCBS’s. If there are a€A4, a’cA’, b’¢ B” with x(a, a’)=y(a, b')=2 then for any
beB, y(b, a)=y(b, b’)=1 which is impossible. By this argument, we easily conclude
that all edges {a, a’}, ac 4, a’c A" and {b, b’}, b€ B, b’€¢ B’ have the same color, say 1,
and all other edges {a, b}, {a’, b} have the other color, in this case, 2. We next claim
that if jeC,UCGC,, j=1,2 then 1¢C;, 2¢C;. Suppose the contrary, say jcCy,
2¢C;. Thus, all edges in [N;, N;] must have color 1. (They must have colors 1 or j
and if any one has color j then because of the MSCBS in N,, all must have color j,
which is a contradiction). Similarly, all edges in [N,, N;] must have color j. But now
Ki(a,b’, x), x€N;, spans 3 colors, which is impossible.

A similar argument applies if j€C,, 1€C;. Of course, we cannot have j¢C,
and 1¢C; since by Fact 1, this implies N, has an MSCBS in color j>2 (and simi-
larly, we cannot have jeC, and 2€C;). This proves the claim.

Thus, we have, in this case

n= |A|+|BI+!A’|+IB,I+i{jqcUUc NjU{xo}}i—F}{jECUUC Nj}1

1 o

1,2 J=1,2 "
= (e —D+2f(ce— D+f(k—2)+ VQCZUC Sfep)
Jely 2
j=1,2

= 4f(a—DHfk=2)+(k—1—c)f(cy)

If ¢;=k—1 then this implies n=5f(k—2), as desired.
If ¢;=k—2 then this implies (by (2))

n=4.2-6-2=at) £k —2) 4 fk—2)+(k—1— )2~ *~2=¢0 f(k —2) =
= (kI (k—1—¢)2- k2= £ 1) f(k—2) =
= QP41+ ) f(k—2) = 4f (k—2).

Hence, in all cases
SR = 5(k-2), k=3,

This proves (1") and the proof of Theorem 1 is complete. | |

We point out here that by a similar analysis, the colorings which achieve
equality in Theorem 1 can be described completely, as follows:

If G, and G, are (disjoint) edge-colored complete graphs, define [G,, G4](a)
to be the complete graph having V(Go)U V(G,) as its vertex set and with each edge
having its original color if it is in G, or G; and having color « if it joins G, and G,.

Similarly, if G;, 0=i=4, are (disjoint) edge-colored complete graphs, define

4

[Gy, Gy, Gy, G, G4l(b, ¢) to be the complete graph having U V(G) as its vertex set

i=0
and with the edge e having its original color if it is contained in G; for some i, and
otherwise, baving color b if it joins G; to G;, i—j=+1 (mod 5) and having color ¢
if it joins G; to G;, i—j==2 (mod 5).
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The graphs for which equality holds in Theorem 1 are exactly those graphs on
J(k) vertices with k colors which can be formed by recursively applying the two pre-
ceding procedures where new colors are always used when combining graphs. Note
that for k even, the [G,, G,](a) construction is never used.

4. The case s=4
Theorem 2.
4 f@, kY =k+2 for k=4.

Proof. To show that f(4, k)=k+2 for k=4, consider the k-coloring y of K, ..
with vertex set [k+2] defined as follows:

(L) =2G4=1 x(LH=x2H=2, x(1,H=yx273) =3
(L) =x2,0)=2 for 5=i=k+2

(3, D) =y@,1)=3 for 5=i=k+2

x(G, ) =min {i, j}—1 for S5=i,j=k+2

It is straightforward to check that in this coloring every K; spans exactly three colors.
The theorem will be proved if we can show

®) J@ k) =k+2 for k=4

Assume now that y: E(K,)—[k] so that c(K,)=3 for every K;SK,. There are
several cases.

Case 1. Suppose c(K;)<3 for every K;&K,.
In this case we will show by induction on k that n=k+1, for k=3.
Choose an arbitrary fixed vertex x,£V="V(K,). As before define

Ni= {oeV: x(x, 0) =i}, ni=|N|, Ci=CWV), ¢ =|Cj
where we can assume without loss of generality that n,=max {n;}.

Subcase 1. n;=0 for i=#1.

If 1¢C,, say y(, B)=1, o, B¢ N,, then since K, («, 8,7, x,) spans three
colors for some y€N; then K;(e, 8, y) must span three colors as well, contradicting
the assumption of Case 1.

Thus, we can assume 1¢ C;. Therefore, by induction

no=|N| =1+k—1) =k,
and
n=14n, =k+1.

Of course, to complete this part of the argument, we must know that the induction
gets started correctly at the beginning, for example, that if K,, is 3-colored so that every
K,S K, spans three colors and no K;C K, spans three colors then n=4. This, in
fact, is not difficult to show and its straightforward argument will not be given here.

Subcase 2. n;=0 for some i#l.
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We can assume (by relabelling if necessary) that n,=0. By the hypothesis of
Case 1, all edges in [N;, N;] have colors i or j.

Suppose for some i, j, i#j, that i€C;, say x(a, f)=i, «, B¢ N;. This implies
that for y€N;, K (x,, ®, B, y) has only colors i and j, which is a contradiction.

Thus, we can assume thatif i7#j then i¢ C;. Asbefore if i€ C;,say x(y, §)=i
where 7y, 5¢N;, then for a€N; we would have K,(x,, «, y, 8) with only colors i and
7, which is impossible.

Claim. C;NC;=0 for i#j.

To see this, suppose mcC;C;, say a, BEN,, y, 06 N; with y(x, f=m=
= (7, ). Now, if both 7 and j occur in [ {x, f}, {7, 8}] then we would have a 3-colored
K;, which we are assuming does not occur. On the other hand, if at most one of i
and j occur then K,(x, 8, y, §) only has two colors, which is a contradiction. This
proves the claim. [

Therefore,
n=1+2N| =1+ X n+ 3 n+ 3 n,
i ;=2

c;=1 ;=3

By induction,
;=3=>n=1+4¢,

Also, if ¢;=2 then n;=3 since otherwise we would have a K, in N; with two colors.
If ¢;=1 then n;=2 since otherwise x«, f, yeN; results in K(x,, a, f, y) having only
two colors. Hence, in every case, n;=14c¢;. Therefore

) n=1+ J+e)=1+{{i:n;=0}+ > ¢, =1+k
n,>0 n;>0
by the preceding remarks. This completes the proof in Case 1.
Note that if some K;E K, has only one color then some other K; S K, must
in fact have three colors. Thus, the only remaining case is:

Case 2. Some K,E K, has c(K;)=3. For definiteness, suppose «, B, 7€V with
2B=1 x(y)=2, z(x B)=3. .
The argument will proceed by a sequence of claims.

Claim 1. All edges incident to K;(x, 8, y) have colors 1, 2 or 3.
If not, we would have a K, with four colors.

Claim 2. Any edge spanned by V—{x, §, y} with color 1 must have a vertex v such
that all edges incident to ¢ have colors 1, 2 or 3.

Proof. Suppose 4, pueV—{x, 8,9} with x(%, w)=1. Since K,(B, 7, A, x) must span
three colors and the only colors incident to § and y are 1, 2 and 3 then both colors 2
and 3 must occur between {f, y} and {4, u}. Thus, at least one of 4 and u forms a K,
with f and/or y having three colors. By Claim 1, this vertex can only be incident to
edges with colors 1, 2 or 3. |

Let § denote the subset of vertices in V defined by:
S:={veV: y(v, x)€{1,2,3} for all xe¥V—{v}}.
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In other words, S consists of all vertices which are incident to only colors 1, 2 and 3.
It follows from Claim 2 that ¥ — S spans no edge of color 1, 2 or 3 (since «, f8, y€5).

Claim 3. If |V—S|=4 then every K; in ¥V— S spans exactly two colors.

Proof. Suppose K;(m,0,0)=S":=V—S spans three colors, say a, b, c. By Claim
2, we must have {a, b, ¢} {1, 2, 3}=0. But also all edges in [{«, B, v}, {n, 0, 6}]
must have colors a, b or ¢ (since this is true for any edge incident to K,(n, o, d)).
This now contradicts Claim 1.

On the other hand, suppose K;(n, 0,3)S S’ spans a single color a. Since
|S’]=4, some K;CK,(xm,a,9, 1), T€S’, spans three colors and we are back to the
preceding case. This proves Claim 3. |

Thus, in S”, all K;’s span three colors and all K;’s span two colors. Therefore,
by (6)
@) ISl =14+e(SH=14+k—3=k-2.

Since we are assuming k=4 then we can also assume |S’|=2 (because S is incident
to edges of only colors 1, 2 and 3).

Subcase 1. |S’|=4.
Claim 4. For each vertex »€.S, all edges {v,s’}, s’¢.S’, have the same color.

Proof. Suppose the contrary, say, there exist «, € S* with y(v, 0)=1, y(v, f)=2.
Choose y€S” and consider the triangle Ky(x, 8, y). By Claim 3, ¢(K;(a, B, 7))=2
and these two colors cannot be 1, 2 or 3 (by Claim 2). Thus, K,(v, o, 8, ) spans four
colors, which is a contradiction. J

We pext partition S into the sets M;, i=1,2,3 as follows:
M;:= {ucS: x€8" = y(u, x) = i}.
Claim 5. For ue¢M;, v¢M;, i#j, we have yx(u,v)=i orj.

Proof. Suppose not, i.e., y(u,v)=msi, j. For =m, 6€S’, we now have
¢(Ky(u, v, 7, 6))=4, which is impossible. J

Claim 6. i¢ C(M)).

Proof. Suppose the contrary, say, x(u,v)=i, u,v€M,. Thus, for =, 6€S’,
c(Ki(u,v,m,6))=2 a contradiction. ||

Thus, we conclude that each M; spans at most two colors and consequently,
|M|=3.

Claim 7. > |M}|=4.

Proof. Suppose >’ |M;|=5. We can assume without Joss of generality that |M,|=2
and |M,|=|M,|=|M,|.
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Subcase (a). |M,|=3. Then |M,/=1 and M, must span both colors 2 and 3 (since
otherwise three points in M, and one point in $” form a K, spanning only two colors).
Suppose u, v€ My with y(u, v)=2. By Claim 5, if y€M,, n€S’, then K,(u, v, y, )
spans only colors 1 and 2, a contradiction.

The same argument applies to M, if |Msl=1. Thus, we can assume |M,|=
=|M,|=0 and consequently, > |M;|=3, contradicting the initial hypothesis in this

13

claim.

Subcase (b). |M,|=2. Let My={u,v}. If y(u, »)=2 then as before, we must have
|M,|=0 so that > |M;|=4, which again is a contradiction.

This proves the claim. [

Therefore, we can conclude that > |M=|S|=4, and consequently, by (6)
n=|S+I|8=k+2.

This completes the proof for Subcase 1.
We remark that |S|=4 can occur only when |My|=|M,|=2, |[M,=0 (or,
of course, in general, where two of the |M] are 2 and the other is 0).

Subcase 2. |S'|=2.

If for every uc S the colors of all {u, v}, v€S’, are the same then we can
apply the same arguments as in Subcase 1 and again conclude that n=k+42 as
desired. (The requirement that |S’|=3 was only needed in the proof of Claim 4.)
Thus, we can assume without loss of generality that there are x€S; y,z€ S’ such
that x(x, y)=1 and y(x,z)=2. Note that all edges {x, w} must have colors 1 or 2
(i.e., not 3) since otherwise K,(x, y, z, w) would have four colors.

Claim 8. No edge in S— {x} has colors 1 or 2.
For, if u, 2€ S—{x} and y(u,v)=1 (or 2) then K,(x, u, », ¥) spans only two
colors. |

Therefore, all edges in S— {x} have color 3. This implies |S—{x}|=3, ie.
|S|=4 and so, n=|S|+|S"|=6=k+2.

This completes the treatment of Subcase 2 and Theorem 2 is proved. | |}

We mention here that by tracing through the preceding arguments carefully, it
follows that the k-coloring of K, given for the lower bound at the beginning of the
proof of Theorem 2 is the only way (up to isomorphism) that n=k+2 can be achieved.

We also point out that by using arguments similar to those above, one can
show

®) J(4,3) =9,

thereby filling in the missing value in Theorem 2 (and showing that (4) does not
apply for k=3).

6F



324 F. R. K. CHUNG, R. L. GRAHAM  PRECISELY COLORED SUBGRAPHS

5. Concluding remarks

A natural question to raise at this point is for the values of f(s, k) for s=35.
Indeed, these values can be determined exactly, by arguments similar to (but much
more complicated than) those given for the preceding results. Space limitations pre-
vent us from giving more than just the statement:

Theorem 3.
9 f(s, k) = k+1 for 5=s=k.

On the other hand, when s is allowed to be larger than k then f(s, k) increases drama-
tically, as the following result shows.

Theorem 4.
(10) (Lo (D) = f(k+1, k) = k2 + k.

The lower bound in (10) is relatively straightforward and follows from the stronger
result

(107 k2= flk+1, k)

which holds for infinitely many values of k (e.g., k prime). The upper bound in
(10) is considerably more difficult and will appear in a future paper. Conceivably,
Stk+1, k)=k? could hold for all k=3!
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