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Abstract. Ordinary minimal trees and Steiner minimal trees are
two kinds of graphs which interconnect »# given vertices A; and have
minimal length. Lines of ordinary minimal trees must be of the form
A;Aj. Steiner minimal trees may also have extra vertices S; (Steiner
points) in order to reduce the length further.

For points in the euclidean plane the Steiner minimal tree length
Ls and the ordinary minimal tree length L were conjectured to
satisfy Lg/Lay >+ x 342 = 86603. Equality holds when x# =3 and
Ay, As, Ag are vertices of an equilateral triangle, Likewise, in D-
dimensional euclidean space it was conjectured that Lg/L = p(D),
where p(D) is the ratio achieved for » = D + 1 vertices at the corners
of a regular simplex. However, p(D) was not known for D> 3.

Here we find p(3), p(4), p(5) and derive an upper bound on p(D)
for all larger D. Our bound approaches .669842 for large D. The
bound is obtained by constructing trees which, for D <13, satisfy the
usual necessary conditions on trees which minimize length (Steiner
trees).

Introduction. Minimal trees and Steiner minimal trees are two
kinds of graphs interconnecting given points Ai,---, A,. The length
of a graph is defined to be the sum of the lengths of its lines. The
(ordinary) minimal tree has the least length of all #*~? trees with
A,,---, A, as vertices. The Steiner minimal tree has vertices
A,,---, A, and may have other vertices S;,- - -, S;, called Steiner points,
to help minimize the length. Properties of these trees are reviewed
by Gilbert and Pollak [1], who emphasize trees in the euclidean
plane.

The minimal tree is easy to construct. By contrast, the Steiner
minimal tree is found by constructing a finite, but often large,
number of topologically different trees. These trees, called Steiner
trees, satisfy certain requirements necessary for minimal length.
The main requirement is that each Steiner point must be the end-
point of three lines meeting at 120°.

Received hy the editors June 21, 1976.

313



314 F.R.K. CHUNG AND E.N. GILBERT [December

The length Ls of the Steiner minimal tree is typically smaller
than the length Ly of the minimal tree by only a few percent. In
the plane, the smallest known ratio of Ls/Ly is obtained by pre-
scribing three points A, A, As; at the corners of an equilateral
triangle. That configuration has Ls/Lu = 3"?/2 = 86603, which in
[1] was proved to be the smallest ratio possible when # =3 and
was conjectured to be the smallest ratio, Min Lg/Luy, for any 2=
points. Pollak [2] recently verified that conjecture for # =4. Kall-
man [3] proved, for any #, that trees with only one Steiner point
have length = 4 3'2Ly.

Some lower bounds on Ls/Ly are known. The simplest is
Ls/Ly = %, which in [1] was proved to be best possible for trees
in arbitrary metric spaces. Graham and Hwang [4] obtained a better
bound Ls/Ly > 3712 = 57735, for trees in euclidean spaces of any
dimension. For euclidean space of given dimension D, it was also
suggested in [1] that the ratio o(D) = Ls/Ly for the =D+ 1
vertices of a regular simplex might be the Min Ls/Ly for all con-
figurations of points. That conjecture, of course, is not proved, even
for D = 2. Moreover, the ratio po(D) and the Steiner minimal tree
of a D-dimensional regular simplex are not known. In [1], short
trees were given for simplexes of several dimensions D. Except
when D = 3, 4, and 5, these trees were not even Steiner trees; how-
ever, they provided a bound on p(D), and hence on Min Ls/Lu,
close to (1 + 3Y2)/4 = 68301 in the limit of large D.

Here trees will be constructed for regular simplexes to get a
bound on Min Ls/Ljy which comes arbitrarily close to C = (3/2)'2
«(232 — 1)1 = 66984 for all sufficiently large D. In dimensions
D <5 these trees are proved to be Steiner minimal trees. In higher
dimensions such that D + 1 is a sum of three powers of 2, the tree
is a Steiner tree having a high degree of symmetry, but it is not
proved to be Steiner minimal in general. In other dimensions the
tree may not even be a Steiner tree. These trees supply upper
bounds on po(D) which appear in Table I. Although Min Ls/Lu
must be a monotone decreasing function of D, the same is not
obviously true of o(D).
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TABLE 1. Upper Bound on o(D) = Ls/Ly for a
Simplex in Dimensijon D.

D Bound
1 1

2 .866026
3 .813053
4 .783748
5 .764564
6 751427
7 741264
8 .733982
9 727434
10 722504
11 718118
12 714967
13 711555
14 711033
15 .706485
16 704923
17 702721
18 .701083
19 .699453
20 .698390
40 .684995
80 677754
160 673921
large C = 669842

2. The regular simplex. The simplex is a generalization, to
D-dimensional euclidean space, of the 2-dimensional triangle and
3-dimensional tetrahedron. It has # =D -+ 1 vertices Ay----, A,.
If all 4+#nD distances |A; — A;| between distinct vertices are equal,
the simplex is called regular. We use a convenient D-dimensional
space consisting of #-tuples (Xi, -+, X,) of real coordinates X; which
satisfy Xj+---+X,=1. Take A; =(1, 0,---, 0),---, A4,=(0, 0,---, 1),
each A; having X; = 1 and all other coordinates 0. Then |A; — A;]
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=942 All trees with vertices A;,---, A, are minimal and have
length
(1) Ly = 2D,

A Steiner tree with # — 2 Steiner points is called full in [1].
All other Steiner trees have fewer Steiner points. A Steiner tree
which is not full contains a vertex A; at which 2 or more lines are
incident. Then the Steiner tree is a union of smaller Steiner trees
which are disjoint except for the common point A;. One can easily
show that any non-full Steiner tree for the regular simplex has
length o(D — 1)Ly or more. We therefore particularly want to
construct full Steiner trees.

Figure 1 illustrates the general form of our full Steiner tree
for the regular simplex. The construction requires # to be written
as a sum of powers of 2.

o T:

/
/ {27 vertices)

T,

(2% vertices)

e

Ag

\*—"—~—--—O AN /——A——-—O
o (2% vertices)
FIGURE 1. Binary trces T and core.
(2) n:2R1+2Rz+...
Partition the set of vertices {A:,---, A,} into disjoint subsets con-
taining 21, 2F2... vertices. Each set of 2Fr vertices will be

connected through a binary tree 1%, to be derived presently, to a
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Steiner point S;. The Steiner tree will consist of the binary trees

Ty, T,--- and a central core, which is a Steiner tree connecting
Sy, Si,e -

Although (2) can be the binary representation of the integer
n, the Ry, R,,--- need not be distinct. Indeed, if # = 2%, a power

of 2, it will be necessary to write 7 = 28! + 2E-1 5o that the core
will not be empty. Since the core is itself a Steiner tree, Figure 1
will be useful only if (2) contains a small number of terms. With
2 terms, the core is just the line & S;. With 3 terms, as in Figure
1, the core contains one additional Steiner point, determined by the
methods used in the plane (see §4). Only numbers # having binary
representations containing 4 or more ones require more complicated
cores.

3. Binary trees. The topology of each binary tree 7% in Figure
1 or 2 may be described in terms of a system of levels. The Steiner
point S; is the root of the tree, at level 0. Each Steiner point S at
level 7 is connected to two points at level j -+ 1. Then there are
27 Steiner points at level j for j =0, 1,---, Ry — 1. The tree ends at
level R, with the 2%+ vertices 4.

Any Steiner point S in a binary tree for 2% vertices determines
a subtree containing all points which can be reached from S along
paths on which the level increases. If S is at level j one can reach
2R-i vertices A; from S. This set of vertices will be called V(S).
An important point associated with S is the centroid of V(S),

(3) C(S) =28 3 A,

AeV (S
the vector average of all 287 vertices in V(S). Note that (3)
determines C(S) even before coordinates of S are known.

The line which leads down from S to the next lower level will
be called the exit line from S. If S is at level 0, the exit line is
defined to be the line of the core at S.

One may expect the 2%~/ vertices of V(S) to be arranged
symmetrically with respect to the exit line at S. We therefore try
to construct a tree in such a way that

(4) the extended exit line at S passes through C(S)
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level 0

Core

FIGURE 2. Level structure of binary tree T.

for every Steiner point S of every binary tree T3, T3, - - in Figure 1.
At this stage it is not necessary to prove (4). It will suffice that
we finally do obtain a Steiner tree. A uniqueness theorem in (1]
guarantees that this is the only Steiner tree with the given tree
topology.

When (4) holds, S lies in a space spanned by C(S) and the
vertices A; which do not belong to V(S). Thus (4) implies

(5) S =aC(S) +V,
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where & is a constant and V is a vector orthogonal to every A; in
V(S). Now let S, S” be the two points to which S is connected on
the next higher level. Then V(S) = V(S) U V(§”) and C(S)
=% {C(S") + C(S”)} while (5) shows that C(S"), S, C(:S”) determine
an isosceles triangle. As shown in Figure 3, the median from S
intersects the opposite side C{S")C(S”) at C(S) and is the perpen-
dicular bisector of that side.

2R-i-1 vertices

ver 2R-i-t vertices
C(8") C(S) C(S")
& W"""““*"""'V%% -

level j

FIGURE 3. The isosceles triangle C(S') S C(S¥).

If Sis at level j < R in a binary tree for 2% vertices, the vector
C(S’) — C(S) has 2B~7 nonzero coordinates, all & 2/*'"®_ Then
(6) IC(S') — C(S")| = 9ti+z-R)I2

In order to obtain 120° angles at S, shown in Figure 3,

S = C(8) | = [C(S) — C(8)[(2/3")
(7) = [C(8") — C(8") |/3'"
IS — C(8") | = (27+2-R/3)/2,

Also
(8) IS—C(S)| = +IS—C(S)| = (2/-8/3)t/2

These formulas determine the lengths of the lines between levels
j and j+ 1. Since S, S, C(S") lie on a line,

I§—8] =[§—C(8)| — I8 —=CS)I.

The first term is given by (7). The second is obtained from (8)
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by replacing j by j + 1 (the level of S’). Then
(9) [S . S’l —_ {(21[2 . 1)/31[2}2(1/2)(j+1-—R).

Condition (4) determines the Steiner tree inductively, proceeding
from the core out. The core is a Steiner tree for the (unknown)
Steiner points Sy, Sy--- in Figure 1. However, (4) requires that the
core, with lines extended beyond Si, S:,---, be a Steiner tree for
the known points C(S;), C(S:),---. Thus all lines of the core may
be constructed before locating Si, Ss,- - -.

Now consider any binary tree, such as 7%, in Figure 1. At level
0, the point S; lies on a line of the core which has been constructed
to pass through C(S;). The location of S; on this line is determined
by the distance [S; — C(Sy)|, given by (8) with 7 = 0. Knowing S
determines the two lines upward from S; to C(S"), C(S”). The
location of the points S’, S” (of level 1) on these lines is again
determined by (8). Continuing in this way, (8) determines all the
Steiner points in the binary tree.

4. Steiner tree length. The length L, of the entire Steiner
tree will be a sum of lengths of all binary trees plus the length
of the core. It will be simpler to find the length Lc of the extended
core connecting C(S;), C(S:),---. Then each binary tree for 9F
vertices contributes additional length f(R), the length of the binary
tree minus the extra length [S; — C(S;)| which was included in L.

Begin with a binary tree for 2F vertices A;. The cases R — 0
and 1 are atypical; consider first 2< R. For each 7=01---, R—2,
27! lines from Steiner points S at level j to Steiner points 8§ at
level j + 1. These lines have length given by (9). The total length
is
(10) {(21/2 — 1)/31/2;2(1/2)(3]’—{-3—1?).

Lines between levels R~ 1 and R are different because level R
contains vertices A; instead of Steiner points. The lengths are
derived as in (7), where now C(S') is a vertex 4;. The total con-
tribution from the 2% lines is

(11) (2/3)12 2R.
Adding up the lengths (10) for j =0, ,» R — 2 and including
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(11), we find the total length of the binary tree to be

(12) Ly — OUC{OR — [4 — 9%12) /3] 9-RI2} |
where
(13) C = (3/2)12)(2%* — 1) .

To get the contribution f(R), defined above, we must subtract
|S: — C(S:) | = (27F/3)'"2,

as given by (8). The final result is

(14) f(R) = 2M2C{2R — 2-RI2} |

Although the derivation assumed 2 <R, note now that (14)
also gives the correct results f(0) =0, f(1) = (3/2)"%

When # = 281 + Rz the core is a single line from S; to S: and
the extended core is the line from C(S:) to C(S:). An easy calcula-
tion gives the length Lc of the extended core

(15) Lc = |C(S1) — C(8,) | = (27F1 + 27F2)12,

Now (14) and (15) provide the length of the Steiner tree, Lr = Lc
+ f(Ry) + f(R;). This length may be compared with Ly, given by
(1), to get a bound (D) < Lz/Lum, or

#(D) < D1[Cln — 2~ Aaf* — 27Falt) + ([2°F1 + 9-Ral/2) %)

(16) (m=D+1=2R + 2Rz),

This bound applies to dimensions D=1, 2, 3, 4,5, 7, 8 9, 11, 15,
16, 17, 19, in Table L

In order to verify that the tree just constructed is a legitimate
Steiner tree we must check that the Steiner points lie on the line
C(S,) C(S;) in the order C(S;), Si, Sz, C(S:). That requirement may
be stated

[C(S:) — S| + [C(S:) — S:| < [C(Sy) — C(S:)

and verified with the help of (8) and (15) for any Ry, R..

When # = 2Rt + 2Rz + 2R3, the extended core is a Steiner tree
for three points C(Sy), C(S:), C(S;). As shown in Figure 4, it
consists of lines from these points to a single Steiner point So.
The distances between C(S:), C(S:), C(Ss) are numbers b1, b, bs
having formulas like (15), e.g.
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~ az aa i

C(S:)
FIGURE 4. Extended core for three binary trees.
by = |C(S;) — C(S5) | = (272 + 2—Rs)1r2,
The line lengths
at'=|C(St')—SO’5 i=1y 27 37

can be determined by the usual methods for plane Steiner trees.
The length Lc =a; + a; + as of the extended core may be found
from

(17) Lt = % {b1 + b3 + b5 + [6(bib3 + bIb2 + Bib3) — 3(BE + Bt + B2) ]2,
Individual line lengths have formulas like
(18) @ = {Lc + (b3 + b — 2b3)/Lci/3.

Now the Steiner tree has length Lr = Lc¢ + f(R) + f(R;) + f(Rs).
An upper bound Lz/Ly on (D) may now be computed from (1),
(14), and (17). This bound provided numbers for the other dimen-
sions D+ 14 in Table I. In these computations, (8) and (18) were
used to check that

IC(S:) ~ Sl <a;, i=1,2 3
Dimensions of the form
D=3 x28 —1
afford a comparison between two constructions because
D +1=2R 4 2R 4 OR = 9R+1 4 9R

Actually the same Steiner tree is obtained whether the number of
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binary trees is taken to be 2 or 3. Using either (16) or (17) one
obtains the bound

(19) p(D) <D '{Cn —[(9 x 2'* — 6)/14In~/?}

forn =D+ 1=3x 2%,

5. Other dimensions. The bound (19) approaches C as D— o
but applies only to dimensions D of special form. This section
obtains a bound o(D) < C + O(D!), applicable for all D.

The bound will be obtained by modifying the construction in
§2. Now (2) will be the binary representation of D + 1. Instead
of using a Steiner tree for the core, we merely connect Si, S,---
directly to the same point O = (1, 1,---, 1)/, the centroid of the
entire simplex. For the binary tree with 2% vertices A4;, the extended
core contains a line from O to C(S;) with length (27R — p-1)1/2,
Then the extended core has length

(20) Lc = Z (2-Re— )2 < Z 9-RyI2

The length of the entire tree is
(21) Ly = Lc + Z SR},
Ly <2'Ycn + (1—2'%) > 27Fe'2,

the inequality following from (2), (14), and (20). Since the R; are
now distinct integers,

Zz—Rk/z < 970 4 9-l2 4 (9-12)2 4 ...

=1/(1— 2712},
Then (21) simplifies to L <2!%c{n+.22} and
(22) o(D) < Ls/Ly<<c+ 122/D.

When D=14, n=15=2+ 2 + 2* + 23, Lo =2.29407, L7 =14.0777
and one obtains the bound 0(14) <.711033 in Table L.

6. Steiner minimal trees. The trees which were constructed
for D<5 in Table I are the Steiner minimal trees for these
simplexes; the tabulated bound is actually the exact value of o(D).
That is easily proved when D =1, 2, 3, or 4 by the following induc-
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tion. When D ==1 the minimal tree is the only possible tree; then
p(1) = 1. In higher dimensions D, any tree that is not full can be
decomposed into a union of smaller trees to show that its length is
at least p(D — 1)Ly. But o(D — 1), is the value in Table I by the
induction hypothesis, and so trees which are not full are all longer
than the tree which gave the bound on o(D). In [1], Figure 3
shows all possible topologies of full Steiner trees with # < 9 vertices.
Aside from permutation of the # vertices, which does not affect the
length of trees for a regular simplex, there is only one full topology
for simplexes of dimension 1, 2, 3, and 4. Then if D <4 the full
Steiner tree that was constructed must be a Steiner minimal tree.

At D =5 the argument becomes complicated because there are
two full topologies to consider. Table I used the tree based on the
representation (2) 6 =4+ 2 or 6 =2+ 2+ 2. The other topology
is shown in Figure 5. Again the construction of §3 applies but with
a representation 6 = (2 + 1) + (2 + 1). The core now must connect
4 points in a 3-dimensional arrangement.

A 4.9

FIGURE 5. Another tree for D =5,

To simplify the problem we anticipate the core will have a
center of symmetry M of the form

M=p(A1 + Ag + .A5 + Ae)/4— + q(As + A4)/2,

where p, g are constants with p + g =1. Then the Steiner points
can be found by first solving the triangles M, C(S:), A; and
M, C(S.), Ai.. Afterward p and g may be adjusted to minimize the
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length. This minimization also makes the two lines at M join
smoothly. A tedious calculation finally produces a Steiner tree with
Ls/Ly = 7650, larger than the earlier ratio .764564 which is now
proved to be p(5).

There are also only two full topologies when D = 6. The extra
topology corresponds to 7= (2 + 1) + 1+ (1 +2). That requires a
core connecting 5 points which has not been constructed. When
7 < D there are too many topologies to make this approach attractive.
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