DIOGENES:
A METHODOLOGY FOR DESIGNING
FAULT-TOLERANT VLSI PROCESSOR ARRAYS

Fan R.K. Chung'
Bell Laboratories

ABSTRACT. In [19]. Rosenberg introduced by exemple
the Diogenes approach to the design of fault-tolerant
VL3I processor arrays. In this paper, we uncover the
principles underiying the approach, and we derive from
them a strategy for producing Diogenes designs for arbi-
trary interconnection networks. We use the strategy to
derive optimal Diogenes designs of trees, grids, X-trees,
and Boolean n-cubes, as well as surprisingly efficient
designs of Benes permutation networks.

1. INTRODUCTION

We study here one facetl of the problem of designing
fault-tolerant microcircuitry, in an envirenment tailored
to a popular VLEI architecture: arrays of identical pro-
cessing elements (PEs). Our specific problem is the fol-
lowing.

The P{A;pn) Problem. We want to construct an n-nede
array A of identical PEs. By using conservative design
rules, we may assume that we can fabricate wires and
switches perfectly. But we wish to design PEs aggres-

sively, to maximize density and speed. As a result, the

PEs experience debilitating faults independently, with
probability p. We want to design a fault-tolerant array
of PEs, that
* can be configured to simulate the array A;
* ytilizes at least the fraction u of the fault-free
PEs (so we fabricate n/{{1-p)u) PEs to get the
desired n-PE array);
* admits an efficient layout; and
* utilizes a switching mechanism that is simple (in
structure and in ease of configuration).

Our specific objective is to study and extend the
Diogenes [19] epproach to the P{A;p,u) problem. The
qualities of the approach -- notably, transparency to the
PE designer, simplicity of configuration, and high utili-
zation of fault-free PEs -- suggest the desirability of
studying the approach with an eye to applying it to a
wide variety of interconnection networks. The first
fruits of our study are reported here. Related theoreti-
cal issues occupy [8].

We proceed as follows. By analyzing a sample
design, we uncover the principle underlying the
Diogenes approach. We use that principle to derive a
strategy for producing Diogenes designs of arbitrary
[1terconnectior networi. ‘e jllvsirate the strategy by

“Bell Laboratories, Murray Hill, NJ 07974 USA

F. Thomson Leighton'
MT

Arnold L. a‘i‘os:s.-nberg§
Duke University

deriving optimal Diogenes designs of arbitrary trees, of
grids, of X-trees, and of Boolean n-cubes, as well as a
surprisingly efficient Diogenes design of Benes permuta-
tion networks [3]. The paper closes with research ques-
tions awaiting resolution.

Felated Work, The technigues that have been pro-
posed in the literature for solving the P{A;p,u) problem
use one of two basic strategies. The schemes in
[2.9,12,13,18,22] incorporate into each PE a switching
element that can connect that PE to some fixed reper-
toire of potential neighbors, Appropriate switch setting
in the fault-free PEs interconnects some fraction of the
good PEs to realize the ideal array. The schemes in
[4,11.15.18.19,21] posit a switehing network disjoint from
the PEs. PEs are constructed as if for the ideal array,
but are interconnected through the switching network
rather than directly. The scheme in [10] employs a
hybrid strategy.

There have been a few papers that analyze rather
than present design methods. [17] evaluates four
approaches for designing fault-tolerant linear arrays.
His main conclusion is that such evaluations cannot be
absolute: one method may be preferred when designing
small arrays of large PEs, whereas another is superior
for large arrays of small PEs. {14] derives a model for
assessing the cost of a given design strategy. [20]
presents evidence that the internal-switch strategy pro-
duces designs that consume too much layout area to be
considered for any but the smallest arrays.

2. THE DIOGENES DESIGN APPROACH

2.1. An Informal Description

The major aims of the Diogenes design approach
are:
* to render the design of the fault-tolerant network
transparent to the designer of the PEs;
* to construct a configuration mechanism that is
reconfigurable and as simple as possible to "program” to
the desired structure;
* to enhance testability at a system level by building
into every array a scan-in/scan-out mechanism for iso-
lating and accessing each PE;
* to utilize (to the extent allowed by array structure) all
fault-free PEs.
The approach can be summarized as follows.

*Muthematlcs Department and Laboratory for Computer Science, MiT, Cambridge, MA 02130 USA
*Department of Computer Science, Duke University, Durham, NC 27706 USA

0731-3071/83/0000/0026$01.00 © 1983 IEEE

26

600D,

Gooo, LEAF;

6000,

LEAF,

o — P—o—
f P o+
o . - 5% J—
= r'-lb‘—‘_‘.__l] = & p—
RUSH uj { T PUSH %|] | ™ pl.:'su}
G&i}—__ “L:” _;_-; 60"00} '1——_—]_ llﬂ-_ GWO—
PCP if PGP if FOP it
id) 6000 J il 6000 ! 400D
! {afur Ly {“AE" 1 {‘&"
T D
] BEEme I B
(a) (b (C)

600D,

LEAF,

PUSH
s&u} 1
ol
{1&1;
£
7 '
L

(d)

One wishes to solve the P{A;p,u} problem for some
given array A. One begins by fabricating {A|/{{1-p)u) PBs
in a (logical, if not physical) line, with some number of
"bundles” of wires running above the line of PEs. One
then scans along the line of PEs to determine which are
faulty and which are fault-free. As each good PE is
encountered, it is hooked into the bundles of wires
through a network of switches, thereby connecting that
PE to the fault-free PEs that have already been found
and preparing it for eventual connection to those that
will be found. One =tops looking for good PEs once |A]
have been found. (Alternatively, one could look for all
the good PEs, and build the largest array of the given
structure that one can.)

27

Figure 1. One cell of the Diogenes layout of the depth-3 complete binary
tree: (a) unconfigured; (b) configured for a faulty PE; {¢) configured for
a good leaf-PE; {d) configured for a good nonleaf-PE,

For illustration, consider an example from [18], a
7-node complete binary tree. This simple network
structure needs only one bundle of wires, and that bun-
dle needs contain only three wires.

Note, To simplify exposition, we depict arrays with
unit-bandwidth communication links. Removing
this restriction is just a clerical matter.
O?e) cell of a Diogenes layout of the tree appears in Fig.
1{a)}.
Note, The lines above the PE are the single bundle
needed for the layout. The switches, reprezented
for simplicity by pass transistors, are set by two
control lines, GOOD that is high when the PE is
fault-free and low when it is faulty, and LEAF which
is high when the PE is to act as a leaf of the tree
and low otherwise. Figs. 1{b)-(d) indicate how the
switches are set.
The layout of Pig. 1{a), described in terms of & depth-d
tree, was derived as follows. We start out with the PEs in
a line. We construct a single bundle with wires num-
bered 1,2,..,d. We test the PEs so that we know which
are good and which are faulty. Next, we proceed down
the line of PEs from right to left. As we encounter a
good PE that is to be a leaf of the tree (a simple numeri-
cal formula tells us which should be leaves), we have it
connect up to line 1 in the bundle {thereby preparing it
to connect to its father in the tree), simultaneously hav-
ing lines 1 through d-1 "shift up", to "become” lines 2
through d, respectively; swilches disconnect the left
parts of the lines from the right parts so that node-to-
node connectivity remains correct. The bundle has thus
behaved like a stack being PUSHed; see the left side of
Figs. 1{c,d). When we encounter a good PE that is to be
a nonleaf of the tree, we connect it to the stack/bundle
in two stages. First, we.have the PE connect up to lines

ALy A A3 A ALS) A) A(T) (STACKED

REQUES TS
Al5) A@) AL Al o BE
f () ADOPTED

(b)

Figure 2. (a) The depth-3 complete binary tree. (b} The width-3
Diogenes {preorder) linearization of the tree.

1 and 2 of the bundie {thereby connecting the node to
ite sons in the tree), simultaneously having lines 3
through d "shift down" to "become” lines 1 through d-2,
respectively; again switches ensure that proper node-
to-node connectivity is maintained. The bundle has
here hehaved like a stack being POPped; see the right
side of Fig. 1{d). Second, we have the PE PUSH a con-
nection onto the stack, to prepare for eventual connec-
tion to its father in the tree. The process we have
described here lays the tree out in preorder (cf. Fig. 2).
Hence, a d-wire stack/bundle suffices to lay out a
depth-d complete binary tree.
Note. Cur design strategy will require highlighting
certain edges of the network being laid out, as well
as adding new edges to it. Highlighted edges in
Figs. 2-4 are represented by bold lines; added
edges are represented by dotted lines. The
significance of both kinds of special edges will be
explained in Section 4.

The preceding exemple should suffice to introduce
the Diogenes approach. The designs in [19] simplify the
problem of configuring the network by organizing their
wire bundles as either stacks {as our example) or
queues. For example, two bits of information (= control
lines) per PE suffice to configure a line of PEs into any-
depth complete binary tree: one bit tells whether or not
a PE is good; the other tells whether or not it's a leaf, A
less structured bundle {e.g., a crossbar) would require a
number of bits per PE proportional to the depth of the
tree.

2.2. Stack-Induced Layouts

The Diogenes design approach is distinguished from
other external-switch appreeches {e.g., [4,18,21]) in its
structuring switches so that wire bundles behave as
stacks or queues. It is this organizing principle that we
exploit to extend the approach to arbitrary intercon-
nection networks.

We restrict attention here to Diogenes designs that
organize wire bundles as stacks. Btack-bundles are {as
pointed out in [19]) easier to implement than queue-
bundles, thereby reinforcing our quest for easily appli-
cable results. Moreover, it is our experience that learn-
ing to reason about stacks helps one to reason about
queues.

Finally, an avenue for simplification: The Diogenes
"recipe" has two parts: a faulty PE is passed by without
heooking it into eny stack/bundle; a fault-free PE is
hooked into the bundles in some relatively complicated
way. The former prescription is not interesting: one

28

jgnores bad P¥s by straightforward use of the GOOD con-
trol lines that appear in every Diogenes design {cf. Fig.
1). The interesting aspect of Diogenes designs is how
they use stacks to realize interconnections among the
good PEs. Recognizing this, we simplify our study by
ignoring the GOOD lines and their role in network
configuration. This relegates to the background the
fault-tolerating aspect of the motivating problem and
concentrates solely on the problem of how to use stacks
to configure a line of {fault-free} PEs into any desired
array structure.

The essence of having a wire-bundle act as a stack
is that inter-PE connections made using thal bundie
never cross. {This is both necessary and sufficient.) Our
topic of study thus reduces to the following. As is tus-
tomary, we view arrays as undirected graphs (cf. [120.

The Formal Loyout Problem. To partition the edges of
the graph G and to lay G out in the plane in such a way
that:

* the vertices of G lie on a line;

* all edges of G lie above the line;

* no two edges in the same block of the partition cross.

In view of our earlier remark, it is clear that our
problem of realizing arrays using stacks is equivalent to
the formal problem just stated. A third formulation will
be useful for insight.

The graph G is oculerplonar if its vertices can be
placed on a circle in such a way that the edges of G are
noncrossing chords of the circle.

Proposition 1. [6] A graph is realizable with one steck if,
and only if, it is outerplanar.
We are, thus, studying multi-outerplenar graphs:
The graph G is k-outerplanar if it is the union of k
outerplanar graphs whose outerplanarity is wit-

nessed by the same layout of Vertices(G) on a cir-
cle,

Proposition 2. [6] A graph is realizable with k stacks it,
and only if, it is k-outerplanar.

2.3. The Quality of a Diogenes Layout

Three parameters measure the quality of a
Diogenes layout of a graph G:
1. the number of stacks employed in the layout;
2. the (a) individual and {b) cumulative (stackwidths
(= number of lines) of the stacks used in the layout;
3. the number of control bits needed to configure the
layout: given the layout, each vertex v of G has an asso-
ciated vector of pairs of nonnegative integers, called its
fype,

T(v} = <<L,R;>, <lg,Rp>, ...5:
each I; (resp., Ry} is the number of edges incident to v
that connect via Stack i to vertices lying to the left
(resp., right} of v. This measure is the base-2 logarithm
of the number of distinct vertex-types in the layout of G,
l.e., the number of "control” bits needed to conflgure
the layout in the presence of faults.

We weight these measures in decreasing order of
importance when "optimizing" layouts. In [8] we study
tradeofls among them.

3. DIOGENES LAYQUTS OF TREES

Qur layout of the n-node complete binary tree is
optimal with respect to all three qualily measures: ils
one stack respects the outerplanarity of the tree {Prop.
1); its log n width respects the lower bound of {5]; and
its two control bits per PE respects our insistence on
fault tolerance. We can do almost as well with arbitrary
trees. ’

Fact 1. (a) Any n-node k-ary tree admits a Diogenes lay-
out with one stack of width = W(n) =4 k/2log n.

(b) There is a fixed layout wsing a single width-W(n)
stack and using 1+2logy(k+1} control bits per FE, that
can be configured to any k-ary tree having n or fewer
nodes.

Froof Sketch. Let G'be a graph. Ons adds o fringe to a
vertex v of G by appending to v a line of {possibly 0} ver-
tices:

V¥ ~vg—..=v, r=0.
A fringing of G is a graph obtained by adding a Iringe to
each vertex of G.

Concentrate on one vertex v of G. Say that when G
is laid out, v is flanked by vertices u and w. Let v have
two fringes, v;, ... ,v,and v';, . .. v, {one or both can be
empty}). Lay the fringes out in the indicated order,
between either u and v or v and w. To choose the sides
and stacks, look at v's type. Put the first fringe on the
side and the stack having the smallest integer entry in
v's type: place the second fringe using the smallest
entry in v's (now altered) type. This increases the
cumulative stackwidth by at most 1, while leaving the
stacknumber unchanged.

Fact 1 now follows by verifying that any k-ary tree T
can be "built" by levels, by starting with a single vertex
and "double"-fringing the graph =< k/2 log |T| times.
The number of control bits follows from counting the
number of distinct vertex-types when all vertices have
degree at most k+1. []

4. A GENERAL LAYOUT HEURISTIC

The layout technique of Fact 1 builds explicitly on
the structure of the graphs being laid out. It would be
useful to know what to look for in an intercennection
network's structure to help one find efficient layouts of
arrays of that structure. Experience from numerous
Diogenes layouts has led us to the following heuristic.

The graph G is hamiltonian if there is & cycle in the
graph that meets each vertex just once. The graph G’ is
an augmentation of the graph G if G' is obtained by
adding k = 0 edges to G.

4.1. A Heuristic Layout Procedure.

To find a Diogenes layout for G:
1. Augment G (if necessary) so that it has a hamil-
tonian cycle.
2. Cut the cycle to obtain a layout of G in a line.
[3. Assign edges to stacks using edge coloring as in
8].

29

As one example of the heuristic, our layout of com-
plete binary trees results from applying the procedure
to "preorder" augmentations of the trees. {See Fig. 2(a);
the chosen cycle consists of bold and dotted lines.)
Other one-stack layouts of trees exist (ef. {7]). but none
has smaller width or number of control bits.

4.2. Origin of the Heuristic

The heuristic had two origins., First, the heuristic
embodies the proof of Proposilion 1. Second, it embo-
dies the proof of the following generalization of Proposi-
tion 1 to a wide class of planar graphs.

A graph is subhamiltonian if it has a planar hamil-
tonian augmentation.
Proposition 3. (8] The graph G is two-stack realizable (=
2-outerplanar} if, and only if, it is subhamiltonian.

4.3. Applications of the Heuristic.

Square Grids

The augmented cycle formed by row-by-row sweeps
in & square grid, as indicated in Fig. 3(a), leads to the
layout of Fig, 3(b). which is optimal in nurnber of stacks
(the grid is planar but not outerplanar), stackwidth {see,
e.g.. [18]), and number of node types (the layout distin-
guishes only between east-to-west and west-to-east rows
of the grid).
Fact 2 The nxn squere grid admits a two-stack Diogenes
layout with stackwidth n and with two node types. This
realization is optimal in all three parameters.

X-Trees

The dapth-d X-tree X(d) is the augmentation of the
depth-d complete binary tree that adds edges going
across each level of the tree; see Fig. 4(a).

X(d) has cutwidth d and is subhamiltonian, but not

outerplanar. Thus the best possible Diogenes layout
would use two stacks of width d. 1t is very hard to find a
two-stack layout of stackwidth smaller than roughly 24,
{All obvious harmiltonian cycles lead to this enormous
width.) The hamiltonian augmentation of X(d) of Fig.
4(a) leads to the stackwidth-3d two-stack layout of Fig.
4(b).
Fact 3. X(d) admits a Diogenes layouvt with two stacks
one of width 2d and one of width 3d. This reali=ation is
optimal in stacknumber and within a factor of 5 of
optimal in stackwidih.

The only subtlety here is lo verify the cluimed
stackwidths. As part of our sketched verification, we
describe the layout more formally. We proceed by
induction. Say that we have a layout of ¥{d-1) with the
claimed parameters and the following form. We depici
the layout schematically by its linearization of the ver
tices, together with a few relevant edges. For simplicity
we draw edges in stack 1 above the line, those in stack ;

below the line.
asa.ﬁ:

here r,s,t are, respectively, the root of X{d-l) and its lel
and right sons; o,# are the strings comprising the rest o
the trees’ vertices. Assume for induction that in Layou
1: (1) the left spine nodes [= leftmost nodes at eac!
level] of X{d-1) appear in leaf-to-root order in a; th
right spine nodes [the rightmost nodes at each level

Loyout 1.

(a)

(b)

L Figure 3. The square grid and its Diogenes linearization.
Figure 4. (a) The depth-4 X-tree X{4). (b} A two-stack, width-4 Diogenes

¥ linearization of X{4).

{a)

appear (nonconsecutively) in root-to-leaf order in #; (2)
the nodes r,s,t, and all of the left and right spine nodes
are exposed from the bottom, in the sense that no edges
pass totally under them; (3) the width of stack 1 is =<
2d-2; (4) the width of stack 2 is 0 below the left spine
nodes and is < 3k-3 to the right of the level-(d-k-1)
gpine nodes. Take a second copy of Layout 1:

Laoyout 2.
a'sTUE

The layout of X{d} [whose vertex-set is the union of the
vertex-sets of its two depth-{d-1) sub-X-trees, plus a
root node r*] is obtained frorn the indicated layouts as

follows:
a%}}x's't'ﬂ'.

Layout 3.

* A careful analysis of the composite layout extends the

induction. Analysis of small trees completes the induc-
tion, which establishes our claims.

Benes Permmutation Networks

Let n be a power of 2. The n-inpui Henes nefwork
B(n) is defined inductively as follows; see Fig. 5{a).
* B(2) is the complete bipartite graph Kzz on two inpuf
vertices iy y, i; g and two oufput verlices oy, 01
* B(n) is obtained from two copies of B(n/2); n new input
vertices, ipiinge.winy 8and n new output vertices,
On1:%n2....0pn. For each 1sk=n, one adds edges creating
one copy of Kz, with "inputs" ij,andijy.,, and

30

(b)

"putputs" iy py andin,gr and one copy of Kgg with
"inputs" o,py and o'y, a and "outputs” o,y and o k.0
{primed vertices come from the second copy of B(n/2}).

Benes networks are nonplanar, hence require at
least three stacks. We have not yet achieved this bound,
but we have found a six-stack realization, by means of
the hamiltonian cyele that alternates running up and
down the "columns” of inputs and outputs of B{n); see
Fig. 5{(a). We use three stacks to connect each "column"
of vertices to the next; and we alternate sets of three
stacks as we proceeed along the graph. It is surprising
that any family of graphs capable of realizing all permu-
tations can be laid cut with a fixed number of stacks.

Fact 4. B(n) admits a Diogenes layout using six stacks,
each of width n. This realization is within a factor of 2
of optimal in stacknumber and within a factor of 8 in
stackwidth.

The same layout strategy yields layouts of compar-
able efficiency for structural relatives of B{n), including
{log n)-stage cyclic shifters.

The Boolean n-Cube

The Boolean n-cube C{n) has as vertices the set of
all length-n binary strings. String-vertices are adjacent
just when they have unit Hamming distance. Thus C(n)
has 2" vertices and n2" edges. Since C{n) is hard to
visualize for n>3, we describe its efficient layout in
terms of strings rather than the graphical medium of
hamiltonian cycles.

Ffact 5. C{n) is n-stack realizable, with one stack of
width 2! for each O<i<n. This realization is within a fac-
tor of 2 of optimal in both stacknumber and cumulative

., LA
Ll

8 04 (20 02 04 e

LS50

AN _/
W/XX XX/

X2
VAN EAN

X
VST

Figure 5. (a) The 8-input Benes netwo
first three levels of the network.

stackwidth.

The lower bound on stacknumber is immediate from
three facts: (a) Stacknumber(C{n)) = the number of
outerplanar graphs into which C{n) can be decomposed;
(b} an N-vertex outerplanar graph has at most 2N edges;
(¢) C{n) has n2" = N log, N edges. The lower bound on
cumulative stackwidth is easy to derive.

The upper bound is seen most easily by describing
inductively the linearization of C(n)'s vertices.
* C(1)'s vertices are laid out as follows.
0o 1
80 one width-1 stack suffices.
* Assume that C(n) is realized with n stacks of widths
1,2.....2°71, via the linearization (letting N=gn)
BBz Bx
each g being a distinect length-n binary word. The
tollowing layout for C{n+1):
08,08z - - - OBn1By - - - 18218,
uses just one more stack, of width N=2". This
extends the induction.

5. OPEN PROBLEMS

1. Is there a fixed number S such that all planar
graphs are 3-stack realizeble?
8. Is there a fixed number S such that all N-node
outerplanar graphs can be realized with S stacks
of width proportional to log N?
The depth-n ladder L(n) is an nx2 grid. (a) L{n}
is outerplanar, hence one-stack realizable. {b})
Any one-stack realization of L{n) has
stackwidth = n/2. (¢) There is a two-stack
unit-width realization of L{n).
3. Is there a fixed number S such that all N-node
planar subbamiltonian graphs can be realized with
S stacks of width proportional to NI/ &?
4. Can Benes networks be realized with fewer than six
stacks?

ACKNOWLEDGMENTS. The research of the second author
(FTL) was supported in part by: a Bantrell fellowship,
DARPA Contract NO0014-80-C-0822, and Air Force Con-
trect OSR-B2-0326. The research of the third author
(ALR) was supported in part by NSF Grant MCS-8118522.
The authors would like to thank Gary Miller for
helpful and stimulating conversations on this topic.

(o)

rk. (b) A six-stack layout of the

3

REFERENCFES

1. D.P. Agrawal (1982): Testing and fauit tolersnce of
multistage interconnection networks. Computer
15, 41-53.

2. R.C. Aubusson and 1. Catt (1978): Wafer-scale integra-
tion -- a fault-tolerant procedure. [FEF J Solid-
State Oircuits, SC-13, 339-344,

3. V.E. Benes (1984): Optimal rearrangeable multistage
connecting networks. Bell Syst. Tech. J. 43,
1641-16586.

4, S.N. Bhatt and C.E. Leiserson (1982); How to assemble
tree machines. Proc. 14th ACH Symp. on Theary
of Compuling, 77-84.

5. R.P. Brent and H.T. Kung {1980): On the area of binary
tree layouts. Mnf. Proc. Let. 11, 44-48.

8. F.RK. Chung, F.T. Leighton, AL. Rosenberg (1983):
Multi-outerplanar graphs. In preparation.

7. D. Dolev and H. Trickey {1982): Embedding a tree on a
line. IBM Report RJ-3368.

8. 5. Even, A. Pnueli, A. Lempel (1972): Permutation
graphs and transitive graphs. J ACM 19, 400-
410.

8. D. Fussell and P. Varman (1982): Fault-tolerant
wafer-scale architectures for VLS. Proc, Sth
ntl Symp. on Compuler Architecture,

10. D. Gorden, 1. Koren, G.M. Silberman (1582): Embed-
ding tree structures in fault-tolerant VLSI hex-
agonal grids. typescript.

i1l. 1.W. Greene and A. El Gamal (1982} Area and delay
penalties in restructurable wafer-scale arrays.
Proo. 8rd Caltech Conf. on VLS

12. I.P. Hayes (1978): A graph model for fault-tolerant
computing systems. IEEE Trans, Comp., (-25,
875-884.

13. 1. Koren (1981): A reconfigurable and fault-tolerant
VLSI multiprocessor array. Proc. 8th nt1 Symp.
on Computer Archilecture, 425-44%.

14. 1. Koren and M.A. Breuer (1982): On area and yield
considerations for fault-tolerant VLSl processor
arrays. USC Digitai Integrated Systems Center
Rpt. DISC/82-5.

15. F.T. Leighton and C.E. Leiserson {1882): Wafer-scale
integration of systolic arrays. Proc, 28rd IEER
Symp. on Foundations of Cornputer Science, 287-
311,

18, F. B. Manning (1977): An approach to highly
integrated, computer-maintained-cellular array.
IEEE Trans. Comp., (-26, 536-502.

17. C.D. Rogers {1982): A critical survey of four tech-
niques for the construction of fault-tolerant
multiprocessor arrays. In Duke Tech. Rpt. CS-
1982-17.

18. AL. Rosenberg (1981): Routing with permuters:
Toward reconflgurable and fault-tolerant net-
works. Duke Tech. Rpt. C5-1881-13,

19. AL. Rosenberg {1982): The Diogenes appreach to
testable fault-tolerant arrays of processors.
IEEE Trams. Comp., to appear; Duke Tech. Rpt.
CS-1982-6.

20. AL. Rosenberg (16882): On designing fault-tolerant
arrays of processors. Duke Tech. Rpt. CS-82-14;
submitted for publicaticn.

21. L. Snyder (1881} Overview of the CHiP computer. In
VLST 81: Very Large Scale Integration (ed. J. P.
Gray) Academic Press, London, pp. 237-248.

22. W.W. Wong and CK. Wong (1982): Minimum k-
hamiltonian graphs. IBM Report RC-9254.

32

