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A common question in the planning of packet-switched networks concerns the constraints on
total network size imposed by the capacity of the individual nodes.

This memorandum pursues an approach to answering that question relative to the packet-
switching networks envisioned for providing public service in the BOCs.

1. BOC Requirements

Reference 1! provides network capacity requirements of approximately 25,000 busy-hour
calls. Using an estimate of 0.33 packets per second per call and call holding times in a range
from 20 minutes to several hours gives from 2500 to 8000 busy-hour packets per second as @
network throughput requirement.

A number of BOC RFPs for packet-switching networks have specified network designs with a
mazximum end-to-end {(one-way) packet delay of 300 ms. average.

In this memorandum we raise the issue of whether it is always possible to build aetworks of
sufficient capacity, while meeting the worst-path delay criterion, from switches with given
throughput/delay characteristics.

The approach draws together results from two areas: pecket-network design and
combinatorial graph theory.

2. Packet Network Design

A Bell Laboratories technical memorandum written in 1982/7) addresses the relationship
between packet switching node capacity and packet switching network capacity under certain
simplifying assumptions. The conclusion is that if ¢ represents the throughput capacity of &
node then the throughput capacity of a fully connected network of s such nodes carrying
uniform traffic (the assumptions will be discussed further later) is not cs but rather -—"'ii—
2
s
One way to Jook at this result is that, for a network made up of more than a few nodes of
capacity ¢, each node contributes only about 0.5 to 0.6 times ¢ to the capacity of the network.
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2.1 The Simplifying Assumptions

The two obvious objections to be raised at this point concern the uniform traffic assumption
and the fully-connected-network assumption. We will argue that these simplifications
influence the result in opposite directions, admitting that the magnitudes are not yet
understood.

The meaning of the uniform traffic assumption is that traffic entering the network at each
packet switch is equally likely to exit the network at any packet switch (including the one
where it entered.) The effect of this assumption is probably to ignore the existence of
communities of interest within individua! switches. Communities of interest reduce multiple
switching, and so the 0.5 to 0.6 factor for derating switch capacity would be unrealistically
low.

The fully-connected network assumption is used to assert that a packet is switched at most
twice, leading to 0.5 as the worst-case derating factor. Relaxing this assumption allows for
triple- or more switching of a single packet, in which case the 0.5 to 0.6 factor might be
unrealistically high. .

3. Network Topology Constraints

The throughput capacity of a switch constrains the number of other switches it can connect
to. The relationship depends also on trunk occupancy, and is demonstrated in the following
example: if a switch can support a throughput of 100 packets per second (pps) and trunk
occupancy is such that each trunk imposes a load of 33 pps on the node then the node can be
connected to just 3 other nodes. If the trunk occupancy were lower, so that each trunk
imposed a Joad of 25 pps on the node, then that node could be connected to 4 others. If the
network is viewed as a graph, this property is known as a degree constraint for the graph.

Because of the BOC cross-network delay requirement, the delay property of a switch also
constrains the network graph. The sum of cross-switch delays and queueing and transmission
delays on each network link must be less than the network delay requirement for the shortest
path between each node-pair of the graph. A constraint on the maximal shortest path length
between any two nodes in a graph is called a diameter constraint for the graph. As is the
case for the throughput-degree relationship, we note that the delay-diameter relationship is
dependent on trunk occupancy, which determines the trunk queueing factor.

A graph which has both degree and diameter constraints is finite in size. It is therefore
conceivable that such a constrained network could not grow large enough to handle the
required throughput at the desired delay level. The question now is to relate switch
throughput and delay to maximum network size, using the concepts of degree and diameter
constraints.

3.1 Formulating the Graph Constraints

To get the degree constraint we first choose a trunk utilization u and calculate the load
imposed on a switch by a trunk. We assume 128-octet average data packet length, and 15%
line and protocol overhead, so that a 56Kbps channel has theoretical (u=1) one-way capacity
of about 48 data packets per second (dpps).

Supposing for a moment that the 56 kbps trunk were carrying 48 dpps in each direction, the
throughput capacity of the switch that this load would use up depends on the mix of
originating/terminating traffic with tandem traffic. Tandem traffic gets switched through to
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another trunk, so if a packet were counted as being switched once on this trunk it would be
counted again on the other trunk. We must count each tandem packet as half a packet to

- avoid this double counting. A well-studied number for the mix is not at hand, so for now we

will arbitrarily choose one third each of originating, terminating, and tandem packets. Now
our trunk at 100% utilization uses up 80 dpps of switch throughput capacity.

This gives us the formula :
degree constraint = 8%."]

The diameter constraint arises from delay considerations, both through the switch and
through the transmission links. Cross-switch delay (denoted here by d) varies from switch to
switch and with varying loads. In general, cross-switch delays for current switching products
loaded to near capacity are in the range from 20 to 80 ms.

Transmission link delays depend on link speed and occupancy. Again assuming 128-octet
packets and 56 Kbps. links, the service time for a packet is about 20 ms. The queuing delay
on the link is approximately I:u service times.

To obtain the diameter constraint, using the previously mentioned 300 ms. cross-network
delay objective, we first realize that for a given diameter, the associated path will include a
number of links equal to the diameter and a number of nodes which is one greater. We
account for the extra node by subtracting d from 300, then solve for the diameter by dividing
by the delays for each link and node. The formula for diameter constraint is:

20

diameter constraint = 300-d_ .
1~u

Applying this formula to a reasonable range of u and d values we find a worst-case constraint
(80 ms. cross-switch, ¥ = 0.7) of less than 2 (i.e. two links and three switches in the path)
and a best-case constraint (20 ms. cross-switch, zero trunk queuing) of 7 (7 links and eight
switches).

3.2 Network Bounds

The problem of determining the maximum number, denoted by n(k,D), of vertices in a graph
having diameter = D and degree = k is one of the oldest Problems in extrema) graph theory.
It has received quite a lot of attention in the literature. (1% 14 ,!5) 1) However this neatly
formulated problem turns out to be quite difficult. Relatively few exact values of n(k,D) are
known so far. For most values of k and D, there are some general upper and lower bound
techniques, which we will soon describe. In general these bounds have substantial gaps which
notably need further research.

The maximum number n(k,D) of vertices in a graph with diameter D and maximum degree &
can be bounded above by

1+k+ ..+ k(k=1)2} = nyk,D)
since there are at most k(k—1)"-! vertices at a distance { = 1 from a vertex.

The upper bound n,(k,D), called the Moore bound, is provably unreachable ("] for alrsost all
nontrivial values of k and D. The only graphs, called Moore graphs, which schieve the
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Moore bounds are!™:
i. D=1, (k+1)-<cliques

ii. k=2, (2D+1)<cycles

ili. D = 2andk = 3, the Peterson graph

iv. D= 2andk = 7, the Hoffman-Singleton graph
v. {possibly) D = 2and k = 57.

The current known bounds for n(k,D) for general k and D are indeed very poor. For the
upper bound, the only result beyond n(k,D) < my(k,D) (except for i-v above) was obtained
by P. Erdos, S. Fajtlowicz and A. J. Hoffman'® who proved

n(2k,2) = ny(2k,2) = 2 fork > 1.
It is not known whether it is true that for every integer m there exist k and D such that
n(k,D) = n,(k,D) — m.

There are two different approaches for establishing the lower bounds for n(k,D) : explicitly
construct such a good graph or prove by probabilistic methods the existence of a good graph.
For practical concerns the first approach is more desirable although the second often gives
better bounds (so far).

For the purposes of this memorandum, which is concerned with the question of constructing
actual networks, we will draw upon the literature for known constructions of graphs with
given degree and diameter.

Figures 1, 2, and 3 divide the space of switch throughput versus cross-switch delay into
regions of corresponding degree and diameter constraints. Each figure assumes a different
value of average trunk occupancy #. All the figures use the formulas given earlier for
deriving the constraints. In each degree-diameter cell of each figure is printed the size of the
largest known graph having that degree and diameter, as drawn from®).

4. Implications and Conclusions

The figures can be used to estimate the network capacity attainable with a switch of known
throughput and delay characteristics. (The reader is reminded to derate capacity by
approximately 0.5 to account for multiple switching.) A range of network capacities is
obtained by consulting all three figures. In this way it becomes clear that the trunk occupancy
u is really a very critica] parameter.

One may also note that these results are rather sensitive to changes in the diameter
constraint. They were computed based on a 300 ms. worst-case cross-network delay, but it is
not easy to argue that relaxation of that constraint is an unacceptable way to increase network
capacity. Therefore some flexibility of thought is demanded when using these figures.

Even with these reservations, the calculations presented here do support several conclusions:

e extremely small packet switches, say those having under 50 dpps. of capacity at 20 ms.
delay, may be unable to be configured into networks handling several thousand dpps.
without compromising delay objectives.
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o Diseconomies in the form of low trunk utilization may be a hidden cost of small packet
switches.

e Approaching the known lower bounds given here should be treated with caution. The
configuration of even those networks known to exist may be difficult or expensive, since
some of these bounds represent unique constructions which may not be desirable {from a
BOC network point of view. Also there is no guarantee that constructions exist for

networks slightly smaller than those described in the literature. There may be a large

jump from the size of the largest known graph of given degree and diameter to the next
largest such graph.

‘(%.AIZ((C&M?

F. R. K. Chung

R. R. Goldberg = vuj/
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