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Diameters Of Communication Networks
F. R. K. CHUNG*

ABSTRACT. When graphs are used to model the linkage structure of communication networks, the diameter of the
graph corresponds to the maximum number of links over which a message between two nodes must travel. In cases where the
number of links in a path is roughly proportional to the time delay or signal degradation encountered by messages sent along
the path, the diameter is then involved in the complexity analysis for the performance of the networks, A variety of
interrelated diameter problems will be discussed here, including: determining extremal graphs of bounded degrees and small
diameters, finding orientations for undirected or mixed graphs to minimize diameters; investigating diameter bounds for
networks with possible node and link failures, and algorithms aspects for determining the diameters of graphs.

1. Introduction.

Modern communication networks typically are highly complex structures formed by various
interconnected components. Many principal characteristics of communication networks often result
from the topology of the underlying connection patterns of the network. Graph theory can then be
used to study the linkage structure of the network and to model problems arising in the optimization

and analysis of the networks, (see [11]).

A graph G consists of a finite set ¥ (G) of vertices (or nodes) together with a prescribed set E(G)
of unordered pairs of vertices of ¥(G). The vertices represent objects in a network and the pairs,
called edges (or links) represent the interconnections between objects. We note that the exact

geometric positions of the vertices or the lengths of the edges are not important unless specified.

For two vertices # and v in a graph G, a path P of length ¢ from u to v is a sequence of distinct
vertices # = @g.4),....a, = v, together with edges {a;,a;+1},i =0,....1—1,in G. A graph is
said 10 be connected if every pair of vertices are joined by a path. In a connected graph G, the
distance dg (u,v) between two vertices u and v is the length of a shortest path joining u and v in G.
The diameter D(G) of G is the maximum value of dg;(u,v), taken over all pairs of vertices

u.veV(G) (see Fig. 1).
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FIGURE 1

In the graph model for communication networks, the diameter of the graph corresponds to the
maximum number of edges over which a message between two nodes must travel., In cases where
the number of edges in a path is roughly proportional to the time delay or signal! degradation
encountered by messages sent along the path, the diameter is directly involved in the analysis and
the optimization of the networks. In particular, diameter-related problems often arise in connection

with analyzing the computational complexity of routing, distributing and scheduling algorithms,

Before we proceed to several interrelated diameter problems, we will first introduce some

definitions.*

For a given graph G, a subgraph G of G is given by taking ¥(G) € V{(G) and E(G) € E(G).
A maximum connected subgraph of G is called a connrected component of G. A bridge of a
connected graph G is an edge whose removal disconnects G. If G has no bridge, it is called

bridgeless.

In a graph G, a path is formed by a sequence of distinct vertices ag.ay, . . ., a, together with edges

*  For undefined graph-theoretic terminology, the reader is referred to [2, 15, 33).



{a;.a;+1), i = 0,..,1~1. A cycle is formed by a path ay, . . . ,a, together with the edge {a,,a,}. An
acyclic connected graph is called a tree. For a vertex v in G the degree of v, denoted by degg (v},
is the number of edges {u,v} in G which contain v. These u’s are called the ncighbors of v. We
note that the maximum degree of a graph is also a useful parameter in network optimization since
practical networks commonly satisfy some degree constraints. We will discuss extremal graphs with

small diameter and bounded degrees in Sections IT and II1.

In cases that some links only allow one-way traffic in communication networks we will then consider
dirccted graphs or mixed graphs. A directed graph G is formed by a vertex set together with a
prescribed set of ordered pairs of vertices. The edge set of a mixed graph contains ordered and
unordered pairs of vertices. Note that both undirected and directed graphs are special cases of
mixed graphs. We shall denote an edge with end vertices u and v,, by [u,v] if it is either
undirected or directed from « to v. Similarly we define paths and connectivity in mixed graphs. A
path P in G from u to v is a sequence of distinct vertices u = gg,a,,...,a, = v so that
(@;.a;41 i = 0,...t—1, are edges in G, and P is called a walk if a;'s are not necessarily distinct. G
is strongly connected if every pair of vertices is joined by a path. An orientation of a mixed graph
G is any directed graph obtained by directing every undirected edge in G. G is orientable if there
is an orientation of G which is strongly connected. In Section 1V we will discuss the problem of
choosing orientations of a mixed graph subject to minimizing the diameter in the resulting directed

graphs.

In Section V we will consider diameter problems associated with networks having possible link or
node failures. We will study extremal problems for fault-tolerant graphs with small diameters and
investigate the diameter bounds in general graphs while a small number of vertices or edges are
deleted. In Section VI we will discuss fast algorithms for finding the diameter of a graph. Many

unresolved problems will be mentioned.

2. Large graphs with bounded degree and diameter.

The following problem has been studied by many researchers in the past (see [3, 4, 5, 6]):



o
How many vertices can a graph have which has diameter D and degree at most k7
This problem can be viewed as a network optimization problem of connecting as many processors as
possible while each processor has a bounded number of ports (degree constraint) and the delay in
data transmission is small (diameter constraint). The maximum number n(k,D} of vertices in a
graph with diameter D and maximum degree k is bounded above by

n(k.D)<i+k+ - - +k (k=1)P"1 = ny(k,D)
since there are at most k (k—1)'"" vertices at a distance / =1 from a vertex.
The upper bound no(k,D), called Moore bound, is provably unreachable {34] for almost all
nontrivial values of k and D. The only graphs, called Moore graphs, which achieve the Moore
bounds must be one of the following [34]:
(i) D=1, (k+1)<cliques
e

(1) &k =2, 2D+1)-cycles

(iii) D = 2 and k = 3, the Petersen graph

(iv) D =2and k = 7, the Hoffman-Singleton graph
(v) (possibly) D = 2 and k = 57,

Problem 1 [34]: Is there a Moore graph of diameter 2 and degree 577

Best known lower bound for n(k,D},k,D <10 can be fournd in Table 1 (see [7]).



D| 2 3 4 5 6 7 8 9 10
k

3 | 10| 20] 38 70 128 180 286 462 708
4 [ 15| 40| 95| 364 731 856 1872 3708 7000
5 | 24| 66| 174 532| 2734 2988 7000 11340 30240
6 | 32| 105] 317| 820 7817| 10920 19138 43744 131232
7 | 50| 122 420 1550 | 8998 | 31248 62536 | 156340 562824
8 | 57| 200 807 | 2550 | 39223 | 40593 | 154800 | 327689 | 1310729
9 | 74| s85[1178 | 5050 [ 74906 | 156864 | 480250 | 1176690 | 5883450
10 | 91| 650 [ 1755 7550 132869 | 380835 | 1117550 | 2696616 | 14981200
11 | 94| 715[2925 [ 11388 | 142494 | 723060 | 1990050 | 5580498 | 33217250
12 | 133 780 [ 4680 | 17563 | 354323 | 1065285 | 3778261 | 11757325 | 85887453
13 | 136 | 345 | 5265 | 25844 | 394616 | 1414440 | 7211386 | 24340680 | 130631232
14 [ 183 | 910 [ 5850 | 37107 | 804481 | 2130310 | 12694773 | 46243080 | 322828871
15 | 186 | 1215 [ 7605 | 54796 | 892062 | 5133375 | 22303302 | 68145480 | 550731776

TABLE 1

For the upper bound the only result beyond n(k,D) <ng(k,D) (except for (i)-(v)) was obtained by

P. Erdds, S. Fajtlowicz and A. J. Hoffman [27] who proved that
n(2k,2) <np(2k,2)=2 for k > 1.
Problem 2 {12, 26]: Is it true that for every integer ¢ there exist ¥ and D such that
n(k,D) €nglk,D)~c ?

There are two different approaches for establishing the lower bounds for n(k,D): explicitly
construct such a good graph or prove by probabilistic methods the existence of a good graph. For
practical concern the first approach is much more desirable although the second often gives better

bounds (so far).

Many of the explicit constructions are extensions or modifications of the de Bruijn graphs. Here we

describe briefly the structure of de Bruijn graphs.

For given integers r and s, the de Bruijn graph B(r,s) has s” vertices represented by r-tuples

(a,as ..., a,), where aell,..s) and (apas ..., a,) is adjacent to (a, ..., a,b) and



This gives

o n(k,D)
up = lim inf Dy

For some small fixed values of D, the ratio of n(k,D) and no(k,D) can be arbitrarily close to one

> 270

for sufficiently large & due to the explicit construction of large classes of graphs using combinational

structures such as generalized n-gons and product constructions (see [2,5]), which we will describe.

A generalized polygon can be viewed as a bipartite graph G with vertex set PUL having the
property that for any two vertices x,y of distance d(x,y) < diameter (G), there is a unique path of
length d(x,y) joining x and y. Elements in P and L will be called points and lines, respectively,

and we say xeP belongs to (or is incident with) JeL if and only if (x,/) is an edge in G.

If the degree of cach vertex of G is at least 3 and the diameter is #, G is called a thick generalized
n-gon. It turns out that any two vertices in P have the same degree and any two vertices in L have
the same degree. We say the generalized n-gon has parameter (s,r) if every line contains s+1
points and every point is contained in z+1 lines. A theorem of Feit and Higman [29] states that

thick generalized n-gons only exist for n = 2,3,4,6 and §.

For example, the graphs of generalized 2-gons are precisely the complete bipartite graphs. The
thick generalized 3-gons are the nondegenerate projective planes with g?+g+1 points and lines

where ¢ is a prime power (see [37]).

Generalized 4-, 6-, and 8-gons are known as generalized quadrangles, hexagons, and octagons,
respectively. There are several types of generalized quadrangles, namely, the classical polar spaces
Sp (4,g), 07(6.g) and U(5,4g?) where ¢ is a prime power. These constructions are rather
complicated (the reader is referred to [37,48,49]). There are two known types of generalized
hexagons G1(g) and *D,(g?) [see 37,48] and one generalized octagon 2F,(g) which requires g to be

an odd power of 2 (see [37,52]).

Now for a bipartite graph G with vertex set PUL, the self product G? has vertex set
PxL={(p,i):peP leL} while (p.£) is adjacent to (p,£) if p is contained in £ and p’ is contained in

£. Tt is not difficult to check that G? has diameter one less than the diameter of G and G is regular



of degree kk; if vertices in P has degree k; and vertrices in L has degree k, in G (see [5)).

Now suppose we consider the generalized octagon *F4(g) which has diameter 8 with parameter
(¢,¢% and contains (1+0(1))¢"® points and (1+0(1))g"! lines. The self product of 2F,(g) has then
(1+0(1))g*' vertices with diameter 7 and maximum degree (1+6(1))g%. As an immediate

consequence, we have

o anlkD
w1 =l infS )

Although these methods were known in the proofs of u; = us = 1. Bert Wells first proved this fact

1.

about g7 Also, he pointed out that by using the following inequality derived by Delorme in [24]
Hp+1 = 2upDP(D+1) O,
one gets g 2 27878 ug > 4779% and ;o = 8771071

Here are best known lower bounds for up, for D <10,

D|l1|2]3] 4 |s] 6 7] 8 | 9 | 10
wp 1T 13271 [ 2556 | 127788 [ 477979 | 520
Using probabilistic approaches B. Bollobas and W. F. de la Vega [14] obtained a much stronger

lower bound: »n (k.D} = no(k.,D) for some constant c.

C
%D log (k—1)
The directed analogue of this problem turns out to be much more tractable. We can define the
maximum number #(k D) of vertices in a directed graph of outdegree < & and diameter D. Then
n(k,D} must satisfy

alk.D) < 1+k+k>+.. +kP = ny(k,D).
W. G. Bridges and S. Toueg [15] showed that the directed Moore bound fp(k,D) is nat achievable
for k,b > 1. M. Imase and M. Itoh [35] construct a regular directed graph with n vertices,
outdegree k and diameter [logyn]. This implies 7(k.D) 2 k®. A later result in [44) gives a

construction of a directed graph on A2+&2~" vertices with outdegree k and diameter D.

Problem 3 [16,35): Determine the exact values for 7 (kD).



3. Sparse graphs with bounded degree and diameter.

P. Erdds and A. Rényi [25] asked the following question in 1962:

Suppose there are n cities such that the airport of each city can handle at most k flights. It is
desirable to schedule the flights in such a way that from each city it is possible to fly to another city
with at most ¢ stops along the way. What is the minimum number of flights which must be set up
to satisfy the stated requirements? In other words, what is the least umber e {n,k,D) of edges in a

graph with » vertices having degree at most £ and diameter at most D where D = t+1?

The above simple-looking problem turns out to be unexpectly difficult. Relatively few exact values
for e{n.k,D) are known so far except for some of the cases with D < 3. Some partial results and

estimates were obtained in the past [12, 25, 28] and numerous questions still remain unresolved.

In Fig. 2 we illustrate the extremal graph G with n vertices having diameter 2, degree

€k, (2n=2)/3 € k € n-5, and e (n,k,2) = 2n—4 edges (see [12,25]).

Xn

FIGURE 2

Known exact values for e (n k.d) are (see [25, 261, also see [12]):



n—1 if kb =n—1
n+k-=2 ifk =n=2o0r n—3
2n—~5 ifk = n—4
eln, k,2) = [2n—4 if @n—2)/3 €k<n-5
{in—k—6 if 2222 <k <2"3—‘2
Sn—ak—10 if 223 gk g 2023
an-2k-11 if 23l < <2823

\

e(n,k,3)-n+(.2s)-1 if [r/G+D+s—1<€k<n/sl+s~2 and 1 € 5 < [(n/2)'3].

J. Pach and L. Suranyi [41] proved that e {(n,cn,2)/n tends to a limit g(c) for n large and any fixed
¢ between 0 and 1. The function g{c) is a piecewise linear function except at a sequence of

"turning" points. The values of g(c} can be determined using linear programming for any fixed .
For D 2 3, a lower bound for e (n,k,D) is obtained in {26]:

n2
kD_]

elnk D) 2 (1=(n/kP)17).

It is also proved in [22] that

eln+p k. D+2) € e(n,k,D)+p

for 0 € p € kn—2e{n.k,D).

Problem 4: What is the least number e(n,k ,D) of edges in a directed graph with n vertices having

diameter D and degree (the sum of indegree and outdegree} < k7
Clearly, e (n,k,D) € 2e(n,[k/21,D).

G. Katona and E. Szemeredi [38] proved that any directed graph with n vertices, which does not
contain any cycle of length 2 and has diameter 2, must have at least n log, » edges and that is the

best possible. We can ask analogous questions for directed graphs with degree constraints and other
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constraints as well, for example, having no small cycles.

4. Orientations of mixed graphs with small diameters.

In 1939 H. Robbins [45] asked the following question: ”When is it possible to find an assignment of
one-way directions for all the streets in a town while preserving the property that it is possible to

reach any point in town from any other point?*,

He solved [45] this problem by proving an (undirected) graph is orientable if and only if it is
connected and has no bridge. F. Boesch and R. Tindell [8) considered the more general case for a
town in which some, but not all, of the streets arc already one-way streets. They proved [8] that a

mixed graph is orientable if and only if it is strongly connected and has no bridge.

J. A. Bondy and U. S. R. Murty raised the problem of determining how much the diameter can
increase in the process of orienting edges while preserving strong connectivity. V. Chvdtal and C.
Thomassen [22] subsequently proved that every bridgeless (undirected) graph of diameter D admits
an orientation of diameter 2D?+2D. On the other hand, they show there is a bridgeless graph G of
diameter D with the property that any orientation of G has diameter at least D?/4+D (sec Fig. 3

for the case of D=4),
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Figure 3

Let f(D) denote the least number such that any bridgeless graph of diameter D admits an

orientation of diameter € (D). Therefore we have
D*4+D £ 1(D) € 2D*+2D.
Question 5 [21]: Tighten the bounds for f(D).

In [22] Chvdtal and Thomassen proved that the problem of deciding whether an undirected graph
admits an orientation of diameter 2 is NP-complete. (The reader is referred to [32] for a discussion

in NP-completeness.)

Recently, M. R. Garey, R. T. Tarjan and the author studied the problem of orienting all undirected
edges in a mixed graph so as to minimize the diameter. It can be shown [21] that if a mixed graph
of diameter D has any strongly connected orientation, then there is an orientation of diameter at
most 8D%4+4D. The proof gives a polynomial algorithm for constructing such an orientation.

Suppose we define T(d) similarly for the case of mixed graphs. Then we have
D/4+D < T(D) < 8D*+4D

Question 6: Improve bounds for T{D).
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5. Diameter bounds for altered graphs.

K. Vijayan and U. S. R. Murty [50] first investigated the following extremal problem which is

motivated by constructing optimal networks with diameter and reliability considerations:

Determine the least number of edges for a graph on n vertices and diameter D having the property
that, if any ¢ edges {(vertices) are deleted, the remaining graph has diameter no more than D.
Although this problem has received much attention in the past (see the surveys [3, 6, 12, 19)), it
seems to be quite difficult in general, and relatively little is known beyend cases with small values of

t and D (primarily ¢ = 1 and D < 5). We will just mention the following intriguing problem:

Question 7 [12): How many edges must a graph have so that after removing any ¢ edges is still has

diameter €£D?

Motivated by the following examples B. Bollobds [12] conjectured that such graph G must have

n
[2D/3]

(1+o (1)) (n + ) edges for the case + = 1. In particular he verified this conjecture for the

case that ¢ has diameter < %D, before removing edges.

KIS/

d=3 d-=4 d= ¢

FIGURE 4

For the analogue of vertex deletion, B. Bollobds conjectured that any graph with »# vertices must

H

have at least (1+0(1)}(n + 7]

) edges if it satisfies the property that after removing any edge

the remaining graph has diameter <D (see Fig. 5).
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FIGURE 5
Again he verified [12] the conjecture for the case that the graph starts with diameter < D/2.

M. Garey and the author [20] recently studied the effect of edge or vertex deletion on the diameter
bounds for general graphs. Suppose we delete an‘cdgc f.rom a 2-connected graph, the new diameter
can be twice as large as the old diameter, (deleting an edge from a cycle, for example). It is not
difficult to prove that the maximum new diameter after deletion of an edge is 2D where D denotes
the old diameter [20,43]. In general, it can be shown that when ¢ edges are removed from a Graph
G of diameter D. the resulting graph, if it is still connected, has maximum possible diameter

approximately (1+1)-D.

The corresponding vertex-deletion case is also studied in [20). 1t is proved that if r vertices are

deleted from a A vertex-connected graph G with n vertices and diameter D, the resulting graph has

diameter at most ('1;—!_;—2- + 1)D/2 and this bound is best possible.

These problems are related to the following augmentation problems which is interesting in its own
right. If t edges are added to a path P, or a cycle C,, how small can the diameter be? Let P(n,1)

denote this least possible diameter for the case of paths, and let C(n,t) denote the corresponding

value for the case of cycles, we have the following [20]:

n n
— — < _—
oy 1 € Pny) < ey 3

and
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n n .

= _ 1< a4 :

e, 1€ Cny) < e +3 iftis even
L1 < 2 +3 iftisodd
r+1 ’ r+1

Problem 8: If ¢ edges are removed from a strongly (#+1)-edge-connected directed graph, how large

can the diameter of the resulting graph be?
Problem 9: Find a fast algorithm in determining the maximum diameter of a graph after any
choice of r edges are removed.

We will also mention the following interesting problem which is relevant in the sense that many

extremal graphs with diameter constraints contain relatively few small cycles [46].

Problem 10 [1,18]: For given integers » and s, suppose G is a directed graph with n vertices and

outdegree at least r. Is it true that if n < rs then G contains a (directed) cycle of length <s?

This problem is unanswered even for the case of 5 = 3!

6. The complexity of determining the diameter.

For a given graph G on n vertices a staighforward way to determine the diameter D(G) is as

follows:

(1) Find the breadth-first search tree [28, 46] for each vertex v of G. Thereby determine the

maximum distance 4, = max d(u,v).
U
(2) Compare d, and determine D(G) = max d,.

Since the time requirement [46] for finding a breadth-first search tree is O(n+e), the preceding
algorithm has complexity O (n’+ne) where e = |E(G)|. This algorithm has in fact calculating the
distances among all pairs of vertices. The problem of finding all distances is a well-studied problem

in graph algorithms (se¢ [46,47] in a somewhat general setting.) Here we will mention the fact that
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M. L. Fredman [30] has on O(n3(log log n/log n)'/) algorithm for finding distances of all pairs,

which is faster than the straightforward algorithm for high density graphs.

The problem of finding the diameter of a graph is just to find the fartherest pair of vertices while
pairs with short distances can be ignored. To take advantage of this, we can use the matrix

multiplication algorithm to reduce the running time, which will be described in the following:

Let 4 denote the adjacency matrix of G, i.e., 4 = (ay) is a nxn and a;; = 1 if and only if {v;,v;] is
an edge. (Note that G can be a mixed graph.) It is not difficult to see that in the k-th matrix
product 4% = (4+1)% of A the (i, j)-entry is nonzero if and only if there is a walk of length nor
more than k from v; to v;. Therefore the diameter D(G) is the last integer D with the property
that A” has all entrics nonzero. The best known matrix multiplication algorithm due to D.
Coppersmith and S. Winograd [23] requires running time O(n***%). The time required in
computing D (G) for G is then no more than O {(n>4*log D), since we can first find the least integer
k with the property that 42" has only nonzero entries (by n®*% log D steps) and then use binary

approximation to determine D (by another n?*% log D steps).

For the complexity lower bound, since every vertex and edge must be examined to determine the
diameter, the obvious lower bound is n+e. There is of course the problem of further narrowing the

gap between the upper and lower bounds on the complexity of determining D (G).
Problem 11: Find a fast algorithm for determining the diameter of a graph.

Instead of finding the diameter of G, George and Lin [31] asked the question of finding a pair of
pseudoperipheral vertices, ie., a pair {x,y] of vertices such that d{x,y) > d(v.p) and

d(x,y) 2 d(x,v) for any vertex v in G.
A greedy algorithm for this problem can be described as follows:
Step (1)  Start from any vertex v and find a farthest vertex u from v.

Step (20 1f v is also furthest from w, {u, v} is a solution. Stop. If there is a vertex w with

d(u, w) >d {(u,v), go to (1) and replace v by w,
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One interesting question is as follows:

Problem 12: s it true that this greedy algorithm must stop before c+/n iterations of Step (1)?

There exists a graph together with a starting point such that the greedy algorithm takes cva
iterations (see {42]). We remark that J. K. Pachl has another algorithm for solving this problem
with worse case time vne. (Note that each iteration in the greedy algorithm takes e steps),

However, the complexity of the greedy algorithm still remains open.
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