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Abstract. The “distance” from vertex u to vertex v in a strongly connected digraph is the number of
arcs in a shortest directed path from u to v. The addressing problem, first formulated in the
undirected case by Graham and Pollak, entails the assignment of a string of symbols to each vertex
in such a way that the distances between vertices are equal to modified Hamming distances
between corresponding strings.

A scheme for addressing digraphs is proposed, and the minimum address length is studied both
in general and in certain special cases. The problem has some interesting reformulations in terms of
matrix factorization and extremal set theory.

1. Introduction

Packet-type communications networks, proposed by J.R. Pierce [5] in the early 70’s
and now in operational use, permit computers to send information (in the form of
strings of bits, called “packets”) to other computers without waiting for clear lines.
In such a system each interchange point, or vertex, has an address which can be
appended to a packet in order to identify its destination.

Graham and Pollak [2, 3] proposed assigning addresses in such a way that the
distance (number of edges in a shortest path) between two vertices can quickly be
determined by comparing their addresses. Then, when a packet reaches a vertex u,
en route to a destination v, it “knows” the distance d(u, v) to its destination. It then
proceeds to the first vertex w that it finds, among those adjacent to u, for which
d(w,v) = d(u,v) — 1; thus it is guarariteed a minimal-length path to its destination.

In the original formulation all edges of the network are assumed to be capable of
carrying packets in either direction, and addresses are strings a = (a,, a,, ..., a,) of
0’s, I’s and *’s with distance defined as follows:

d(a,b) = |{k: {a, b} = {0, 1}}.

Graham and Pollak conjectured that address length ¢t = n — 1is sufficient (it is often
necessary) for any connected graph on n vertices, and this indeed proved to be the
case [7]. Thus the scheme above turned out to be a practical solution of the
addressing problem for Pierce’s network.

We now consider the situation where some lines in the network may be capable
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of carrying packets in only one direction. Then the model for the network becomes a
directed graph (digraph) and distance is measured by number of arcs in a shortest
directed path. The distance between addresses must be modified to permit asymme-
try; we will do this by counting only (0, 1) pairs in one direction, and (1,0) in the
other. The resulting scheme turns out to be about as good as any of its type in terms
of address length, but much worse in some cases than the scheme for undirected
graphs.

2. Notation and Preliminaries

Let G be a digraph with vertices v,, v,,...,v,; G will always be assumed to be strongly
connected, so that for any pair of vertices v;, v; there is a directed path from v, to v;.
The number of arcs in a shortest such path will be called the distance from v, to v;,
and denoted by d(v;, v;) or simply d;. Of course d;; satisfies the triangle inequality and
is zero only when i = j, but is not symmetric in general. Welet D = {d;;} bethen x n
distance matrix of G.

If M = {m} is any n x n matrix then an addressing of M of length tis an n x t
matrix A with entries from {0, 1, *} such that

m;={ka,=0 and aq,=1 1<k<t}

for all i, j between 1 and n. An addressing of the digraph G is just an addressing of its
distance matrix D.

Theorem 1. Let M = {m;;} be an n x n matrix with non-negative integer entries and
zero diagonal. If M, is the largest entry in row i then M has an addressing of length
Y M,
Proof. We split 4 into n blocks of M, columns each, devoting each block to the i**
row of M. For each k, 1 < k <) M,, write

rik)—~1

k=Y M+s(K)

i=1

where 1 < r(k) < nand 1 < s(k) < M,,. Then set

0 ifi=r(k)
ag =< 1 ifi#r(k)and s(k) < m,;
* otherwise. O

Corollary. Any digraph G on n vertices can be addressed in length n(n — 1).

Proof. No distance in G can be greater than n — 1. The unique extreme case is the
directed cycle, which, as we shall see later, does have a more efficient addressing than
this one.

Our {0, 1, *} addressing scheme can be generalized as follows. Let Q be an s x s
matrix of non-negative integers and define a Q-addressing of an n x n matrix M to
be a matrix 4 = {a,} such that

my; = ;qaik,ajk'

The 0, 1, * scheme then amounts to Q-addressings for
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010
o=[0 0 0
000

which is about as good as any in terms of address length:

Theorem 2. For any Q there is a constant ¢ such that for any Q-addressing of a matrix
M of length ¢, there is a {0, 1, *} addressing of M of length ct.

Proof. We may assume Q has zero diagonal, since g; # 0 implies that any ap-
pearance of i in A would foul the zero diagonal of M. Hence there is a {0, 1, %}
addressing B of Q itself, say of length c. If A is a Q-addressing of M of length ¢ then
each integer g, can be replaced by the string

baik, 1 baik,z. o ba,-k,c
and the result is a {0, 1, *} addressing of M of length ct. ]

It may seem strange that the symbols 0, 1, * themselves do not satisfy the triangle
inequality, since digraphs do. An addressing of a digraph G is equivalent to an
isometric embedding in the Cartesian product of ¢ copies of {0,1,#}. The next
theorem justifies this shortcoming,.

Theorem 3. Let Q be an n x n matrix of non-negative integers which satisfies the
triangle inequality, i.e. q; < q; + qj. Then there is a digraph (in fact, a graph) G such
that G has no Q-addressing of any length.

Proof. Suppose not and let A be a Q-addressing of the bipartite graph K, ,.,, where
v, and v, are the vertices in the part of size 2. Foreachi,j > 2we haved; = d;; + d,,
hence q,, 4, = Qau,are T ayn,ay 10T every k between 1 and the address length; the
same holds for v, replaced by v,. Now for each k there must be a pair i, j > 2 such
that a, = aj, since the entries in A range over only n values; theng,,, ,, = Osinced;
= 0. Thus

qa“‘,ajk = qalk,aik = 0 = qaik,GZk

and therefore g, ,, = 0; since this is true for every k we have d;, =0, a
contradiction. O

Corollary. There is no finite metric space X with the property that for every graph G
there is a Cartesian power of X into which G is isometrically embeddable.

3. The Complete Digraph

The complete graph K, was an interesting special case in [3], as an (undirected)
addressing of K, amounts to a partition of its edges into complete bipartite sub-
graphs. The necessity of address length n — 1 (and therefore of at least n — 1
subgraphs in the partition) has been shown in several ways, all involving linear
algebra.

Let K¥ be the complete digraph on n vertices, i.e. for every i # j there is an arc
from v; to v;. Theorem 1 addresses K} by the {0, 1}-complement of the identity



44 F.R.K. Chung, R.L. Graham and P.M. Winkler

matrix; any permutation matrix or its complement will do. There are also length-n
addressings with stars, as the following example (suggested by R. Roth) shows in the
n = 5 case:

*x 0 0 1 1
0 = 1 01
01 = 10
1 01 = 0
1 1 0 0 =

Any addressing A amounts to a partition of the arcs of K* into complete bipartite
graphs all of whose edges are directed from the first part to the second. If A is
regarded as undirected it becomes an addressing of the matrix

022 - 2 2
20 2 -+ 2 2
220 -2 2
222 20

which has n — 1 negative eigenvalues, and the argument in [3] shows that 4 must
have length at least n — 1. Is length n — 1 possible? Again, linear algebra gives the
answer.

Theorem 4. An n x n matrix M with non-negative integer entries and zero diagonal
has an addressing of length t if and only if there are n x t and t x n {0, 1}-matrices B
and C such that M = BC.

Proof. If A is an addressing of M of length ¢, let by, =1 if a;, =0, and b, =0
otherwise; let ¢; = 1if a, = 1, and ¢,; = 0 otherwise. Then
t
m;; = kZ bycy = |{k: ay = 0 and a;; = 1}|
=1

as desired.

For the converse note that we cannot have b, = ¢,; = 1 since otherwise m;; # 0.
Hence we can define

0 ifb, =1
ap =<1 if¢c,;=1
* otherwise. O

Corollary. K has no addressing of length less than n.

Proof. Since the distance matrix of K¥* is non-singular, it cannot be factored into
matrices of rank less than n. O

The factorization argument turns out not to be useful in the best-case analysis
(below), since there are n x n matrices M with zero diagonal and positive integers
everywhere else such that rank(M) is only 3. Instead we use combinatorial analysis
to show that any digraph on n vertices requires addressing length more than log, n.
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4. The Best Case

Instead of asking which digraph on n vertices has the shortest addressing, it is more
convenient to look for the largest diagraph which can be addressed in length ¢. In the
undirected case [3] the answer is easily seen to be the hypercube of dimension ¢,
which has 2° vertices; the directed case is only slightly more subtle.

Let H, be the (symmetric) digraph whose vertices uy, ..., u,, are the subsets of
{1,2,..., t} of size [¢/2], with u;and u; connected by arcs in both directions just when
lu; Ny = [¢/2] — 1.

Theorem 5. H, has an addressing of length t and is the unique largest such digraph, i.e. if

G has at least ( ) vertices and is addressable in length at most t, then G is

t
[¢/2]

isomorphic to H,.

Proof. The addressing of H, is straightforward: set a; equal to 0 if keu, and 1
otherwise.
On the other hand, let B = {b,} be an addressing of the digraph G on

t
n> ([t /2]> vertices, and set S; = {k: b, = 1}. We cannot have S; o S, for i # j, else

d; would be zero; hence the S;’s form an antichain in the Boolean lattice of subsets of
{1, ..., t}. The strong form of Sperner’s Theorem [6] says that when t is even, the

unique largest such antichain is the set T of subsets of size ¢/2; thus n = (t;Z)’ {8:}
= T and no stars may appear in B without collapsing a distance to zero. The map
v;+ S; thus induces an isomorphism from G to H,.

If ¢ is odd there are two largest such antichains, the sets of size [¢/2] and the sets
of size [¢/2] + 1; in the latter case the isomorphism from G to H, takes v; to the
complement of S,. ]

5. The Case of the Directed Cycle

The directed cycle C, has vertices v, ..., v, and arcs (v;,v,), (v2,03), .- ., (Va=1,Vn),
(ve»vy). As a strongly connected digraph on n vertices it has the fewest arcs and the
greatest distances, and is the extremal case for the addressing given in Theorem 1.
The addressing problem for C, may be formulated as an abstract problem in
extremal set theory as follows: Let {(A4;, B;)}, 1 < i < n, be a family of pairs of sets
such that for all i and j, |4;N B;| is less than n and equal to j — i modulo n; now
minimize the cardinality of the union of the A4;’s and B;’s.

Theorem 6. There is a constant ¢ > 0 such that C, has no addressing of length less than
cn®?,

Proof. Let A be an addressing of C, of length ¢, and let U, be the k™ column of 4. U, is
said to reduce the pair (i, j) if (ay,a;) = (0,1); for each i, 1 <i < n, let S, = {k: U,
reduces (i + 1,i)}. Since d;,;;, =n—1, each S; has cardinality n— 1; but
18;N Syl <j— 1becauseif ke S;N S;,;then U, also reduces (i + 1,i + j)and d;y ;4
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is only j — 1. Fix m = [(2n)"*] and note:
t>|S;US,U---US,|

i<m i<j<m

Zm(n—l)—mili(m—l——i)

i=1
=m(n — 1) — (1/6)m> + m* — (5/6)m — 1
which is asymptotic to (8/9)*2n2. a

Itis in fact possible to take care of all the (n — 1)’s in the distance matrix in order
n*?, using a simplification of the first procedure used in the proof of Theorem 7
below. Somewhat greater address length seems to be required to take care of the
whole matrix, but not as much as n(n — 1).

Theorem 7. There is a constant ¢ such that C, can be addressed in length cn®*(Inn)'.

Proof. The required addressing of C, is obtained by a carefully tuned amalgamation
of three procedures, details of which will be selectively omitted.

For convenience let ¢ =[n"’(Inn)"'?)], r=[n"*(Inn)'?] and s=
[n'%(In n)~V6].

The first procedure reduces all entries in the distance matrix D of size at least n
— g, while doing minimal damage to the rest of the entries. Let Uj, be the column (of
the addressing matrix A4, potentially) whose i entry ; is given by

0 ifi=k(modj)
u;=<1 ifie{k—1,k—2,...,k—q}(modj)
* otherwise.

Let V] be the block {U;: k=0, 1,...,j — 1}. Then V; reduces every D-entry of
size > n — g exactly once, and every entry of size h < n — g is reduced once for each
multiple of j between h + 1 and h + g. Let W, be the union of r copies of V.

Now let P be the set of all primes p between r and 2r, so that | P| is asymptotically
n'?(In n)""2 by the Prime Number Theorem [4]. Let J = {sp: pe P} and let W be the
union of {W;: je J}. Then W reduces each large entry r - |J| ~ n times, i.e. completely;
and the number of columns in W is about r-|J|-rs ~ n*3(Inn)*>. Further, if r < h
< n — q then only g/s ~ s numbers between h + 1 and h + g can be multiples of s
and none can have more than one factor in P, so no entry of size k can be reduced by
more than rs ~ n?*(In n)'?; entries of size less than r will not be reduced at all.

The entries of size less than n — g are reduced by a second procedure. Let X '« be
the column whose i entry x; is given by

1 ifi+ke{l,2,...,j}(modn)
x;=<40 ifi+ke{j+1,j+2,...,2j} (modn)
* otherwise.
Let Y; be the block {X,: 1 < k < n},forj < n/2,and let Z; comsist of n/2j copies of ;.
If fi(h) is the amount by which Z; reduces each D-entry of size h, then fin—1=1
= fi{n — 2j + 1) and f(n — 2j) = n/2; f; is linear in the intervals between these
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values, and fi(h) = 0 for h < n — 2j + 1. Finally, let

Z=J{Zwayi=1,2,...,[log,(n/g)]}.

The effect of Z is indicated by the dotted line in Fig. 1; essentially, it wipes out
every D-entry below n — g and helps out somewhat with the large entries as well.
The number of columns in Z is nZ(n/(2n/2)) = nZ2'"! = p(2Ues20) — 1) ~ n2/q
~ n**(lnn)'A.

Now the two large blocks W and Z defined above cannot immediately be
combined, as they would overkill some entries of the distance matrix. Instead, W is
modified to allow for the assistance given by Z on the large entries; and Z is shrunk
slightly to allow for the incidental reduction of small entries by W. When finally
combined, W and Z reduce every entry of D to a number between 0 and n**(In n)*>.

Finally an application of Theorem 1 completes the addressing with one more
block of n*3(In n)'? columns. O

6. The Worst Case

Several heuristic algorithms for addressing digraphs have been devised by Dent [1]
and they appear to work fairly well (giving addressings of length not much more
than linear in n) on random digraphs dense enough to be strongly connected.

47
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However, the bottom line on digraph addressing is that it does take lengths of order
n? in the worst case.

Theorem 8. There is a constant ¢ such that for any n, there is a digraph G on n vertices
which requires addressing length at least cn®.

Proof. Let G have vertices u,, ..., u,;vy,...,v,;and wy, ..., w,. The arcs of G consist of
(Wes 01); (V15 41); (0> )5 (s, wy); @ll (wy, i) for i =1,2,..., s — 1; and all (u;, v;) for
1 <i<j<r(SeeFig 2)

W W3
Wy ‘e
* e
Ur < Ve
° .
° L]
° L]
. o
Ug Va
Uz V3
Us V2
W,
Uy < J& *
Fig. 2

We then have that d(u;,v;) = 1 for i < jbut d(u;,v;) =s + 5Sfor 1 <i <r;atthe
ends, d(u,,v,) = s + 3 = d(u,,v,). If A is an addressing of G of length ¢ and U, is the
k™ column of A4, let

S; = {k: U, reduces the entry d(u;, v;)}.

If Uy reduces both d(u;,v;) and d(u;,v;) for i < j, then it must also reduce d(u;, vy);
hence |5;N S;] < 1 for i # j. We then have
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£>S,US,U-US,|
>r(s+5)—4—r@r—1)2

&n?+n—4 for r=1%in, s=31n, O

Noga Alon has found a more complex construction which requires addressing
length asymptotic to n?/8. In the other direction, Alon has shown that any digraph G
can be addressed in length at most (7n?/8) + O(n). We sketch the proof below.

We first construct a new undirected graph G from G as follows:

V(G) =

E(G) = {{a,b}: dg(a,b) > 4n or dg(b,a)> 3n}.
Since G is (strongly) connected, then the maximum degree A of G is at most (n/2).
Thus, the chromatic number ¥ of G is at most A + 1 <(n/2) + 1. Let V(G

= V¥, U---U Vz be a partition of the vertex set of G into ¥ independent sets. Note that
if xe V(G) and a, be V, for some i with

dg(x,a)=3n+1
for some t > 0 then
dg(x,b) > t.

This follows from the triangle inequality for d; and the fact that by the definition of
v,

i’

dg(a,b) < 3n, dg(b,a) < 3n.

Also note that we always have t < n/4. Thus, we can reserve a set of n/4 coordinates
in the addresses to take care of all distances from some x € V(G) to some a € V; which
exceed 3n/4. We do this by putting all 1’s in these positions for each u € ¥, and exactly
t(x) 0’s and n/4 — t(x) ¥’s in these positions for each x € V(G)\V; where

t(x): = max {dg(x,u) — 3n}
provided this is positive (otherwise define t(x) to be 0).

Doing this for all ¥, 1 <i <7, requires at most (n/4)(1 + (n/2) coordinate
positions, and has the effect of reducing all distances to be at most 3n/4. The
remaining distances can now be taken care of in the usual (trivial) way, using at most
3n%/4 more coordinates. Thus, G has been addressed with length at most (7n%/8)
+ O(n) as claimed.

We point out that by applying an iterated form of this argument, it is possible to
reduce the bound to (3n%/4) + o(n?) (we omit the details). At present, we have no
clear idea as to what true constant should be.
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Alon, Eric Dent, and Robert Roth.
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