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ABSTRACT

A r-uniform hypergraph H (or a r-graph, for short) is a collection £ = E(H)

of relement subsets (called edges) of a set V = V(H) (called vertices).

We say a rgraph H is (n, e)-unavoidable if every rgraph with n vertices

and e edges must contain H. In this paper we investigate the largest

possible number of edges in an (n, e)-unavoidable 3-graph for fixed n and
Q e. We also study the structure of such unavoidable 3-graphs.

1. INTRODUCTION

By r-uniform hypergraphs H (or r-graphs, for short) we mean a collection

E = E(H) of r-element subsets, called edges, of a set V = V(H), called the

vertices of H. A r-graph H is said to be (n, ¢)-unavoidable if H is contained in

every r-graph with n vertices and e edges. Let f,(n, €) denote the largest integer

m with the property that there exists an (n, €)-unavoidable r-graph having m
+  edges. In this paper we study the case of r = 3 and we prove the following:
(1) For e < (n%/6) ~ 2n, we have

. filn, e) = \/E + O(1).
n

(2) For (n%/6) — 2n < e < n"" we have

o .

cleB/Z/nS/Z Sf3(n,e) < C2e3/2/n5/2.
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(B3)Forn"" < e

e log n e” logn

where ¢;’s are suitable constants.

Unavoidable 3-graphs often consist of disjoint unions of “stars” or “books”
or some combinations or modifications of these structures (which will be
defined in the later sections.)

2. PRELIMINARIES

Unavoidable 2-graphs (or unavoidable graphs) have been studied by the authors
in [2]. First we will state some known theorems on unavoidable graphs that will
later be used in deriving results for unavoidable hypergraphs. Note that we
define f(n, e) = fin, e).

Facts on Unavoidable Graphs

fne) =1 ife= BJ . (1)
flne) =2 if BJ <e=n. )
2
fn,e) = <i) + 0<—e—> ifn <e=n* 3)
n n

(O(X) denotes a quantity within a constant ratio of X).

\/Zlogn

for some constants ¢ and ¢, where cn*® <e < (5 — n'"
and 1.
In particular, we have the following:

\/Elogn

¢

< fln,e) < ¢

"and ¢’ is between 0

fln,e) > (1 + o(1)) V2e ife > n“(or% = 0(1)) ) (5)
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In particular, f(n,e) = (1 + o(1)) V2e if n** < e < n*.

fln,e) = (1 + o(l))@ log n/log((Z)/e) + o(Ve) (6)
if n*? < e = o(n?.

The unavoidable graphs in proving (1), (2), and (3) are forests that are dis-
joint unions of stars. In proving (4), (5), and (6), we use unavoidable graphs
that are disjoint unions of bipartite subgraphs. [We note that (3) is better than
that in [2], and in (5) we have f(n,e) = (1 + o(1)) V2e for n** < e < n** by
considering the common subgraph of three graphs, a clique on V2e vertices, a
bipartite graph on e/n and n vertices, and the graph formed by using projective
plane [6]].

We will introduce some definitions, useful facts, and related theorems that
will eventually be used in the proofs of our main theorems.

A r-graph H is said to be a star if there is a vertex € V(H) such that for
any two edges E;,E, in E(H) we have E; N E; = {u}. A r-graph H' is said to
be a book if there are r — 1 vertices contained in every edge of H'. A r-graph
is said to be i-intersective if the intersection of any two edges has at most i
vertices. By using results on Steiner triple systems [11] it is not too difficult to
prove the following (also see [12]).

" Lemmal. Ife < (n — 3)(n — 1)/6, then there exists a 3-graph on e edges
which is 1-intersective.

In the other direction, one of the authors proved [1] the following:

Lemma 2. For fixed odd &, any 3-graph with k(k — 1)n + O(k*) edges must
contain a star with k edges. For fixed even k, any 3-graph with k(k — 3/2)n +
O(n + k%) must contain a star with k edges.

Lemma 2 implies that any 3-graph with n vertices and e edges contains a star of
Ve/n — 1 edges. This is almost best possible because of the following result
in [4,10].

Lemma 3. There exists a 3-graph on e edges which does not contain a star of
at least Ve/n + 2 edges.

Proof: Consider a 3-graph G with vertex set X U Y U Z where
|X| = |Y| =k = le/n] + 1 and |Z| = n — 2k + 2 and G has edge set
{u,v,wh:{u,v} C Xor{u,v} C Yandw € Z}. 1

It is easy to see that G has at least e edges and G does not contain a star of
k + 1 edges.
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The following two lemmas are obtained by combination probabilistic methods
(see [9]).

Lemma 4. If H is a r-graph on p vertices and ¢ edges with the property that
H is contained in every graph on n vertices and e edges, then we have

Proof. There are at most n” ways to map V(H) into {1,2,...,n}. There-
fore there are at most
n{ \r 4

€~4q

qg <

r-graphs on n vertices and e edges which contain H. Since there are

This implies

and
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Lemma 5. Suppose G is a bipartite graph on e edges with V(G) = V, U V,

where |V,| = m, |V,| = n, and E(G) C V, X V,. Then G contains a complete
bipartite subgraph K, , with vertex set U, U U,, |U,| = a,|U,| = b,

U CV,i=12if
e/m n
= .

The proof will be omitted (see [9]).

3. ON fy(n,e) for e < n?/6 — 2n

Throughout Sections I1I and IV we deal only with 3-graphs. For small value of
e, the values for f; (n, e) can be easily determined. For example, for
e = n — 2, it is not difficult to see that f5(n,e) =< 1, since the common
subgraph of a book and an l-intersective graph has just one edge. Thus,
fi(n,e) = 1 fore < n — 2.

Theorem 1. For e < n?/6 — 2n

e
Q filn,e) = \/; + 0(1).

Proof. The lower bound for f3(n, ¢) is an immediate consequence of
Lemma 2. We only have to consider the upper bound.
Suppose H is an (n, e)-unavoidable 3-graph. Let G, denote the 3-graph on
("3') edges with the property that there is a vertex u being contained in every
edge of G,. Let G, denote an 1-intersective graph on e edges. Since H is con-
tained in both G, and G,, H must be a star. Now consider G, to be the graph on
- e edges not containing a star of Ve/n + 2 edge. This implies that

e
fln,e) = % + 2.

This completes the proof of Theorem 2. 1

We note that for n < e < (n?/6) — 2n, the value of f5(n, e) is just the maxi-
mum number of edges in a star that is contained in all 3-graphs on n vertices
and e edges. This problem of determining the largest star has been studied in
the past [4,10]. It is of interest to determine the exact value of f;(n, e) for e in
this range.
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4. ON fy(n,e) forcn* < e < n™
First we will establish the following upper bound for fi(n, e).
Theorem 2. If cn? < e < n®™", we have

filn,e) < c'em/nm
for some constants ¢ and ¢’.

Proof. Suppose H is an (n, e)-unavoidable graph. We consider the graph
G, that is the disjoint union of n*?/(6e)'” copies* of complete 3-graphs on
(6e/n)'? vertices. Since H is a subgraph on G,, every connected component of
H has at most (6¢/n)"* vertices.

Now we consider the graph G, which has 2e/n* + 8 special vertices such
that E(G,) consists of all 3-sets of V(G,), each of which contains exactly one
special vertex. It is easy to check that G, has at least e edges. Thus G, contains
H. Suppose H has r connected components. Since each component contains at
least one special vertex, we have ¢t = 2e/n2 + 8. Therefore H has at most
(2e/n* + 8)(6e/n)" vertices. From Lemma 4 we know that the number of
edges in H is bounded above by (7/6) |V(H)|. We conclude that |[E(H)| is at
most 6¢**/n¥*. 1

Before we go on to establish the lower bound for fi(n, ), we need some
auxiliary facts about a special kind of subgraphs, called book-stars. We say a
graph T is a book-star of type (r, s) if T has vertices ug, u, . . . , 4, such that for
each i there are exactly s edges containing {u,, u;} and any vertex in V(H) —
{ug,u,,...,u,} is in exactly one such edge. A book-star of type (r,s) can be
viewed as the union of r books of size s intersecting at one vertex. We call i, to
be the center of T and u, to be a spine of T. A vertex of T which is not the
center or a spine is called a leaf.

Lemma 6. Any 3-graph on n vertices and e edges contains a book-star of
type (n*%e"?/10, en"2/10) if e < n™”.

Proof. Let H denote a 3-graph on n vertices and e edges that does not
contain a book-star T of type (n"'~*"2/10,n°"°) where e = n**® [note that
(1 -~ @)/2) > a for a < (1/7)]. Suppose v is a vertex of H having degree at
least n'*®. We consider the neighborhood graph H, whose edge set is
{uy,uy} = {u,, u,, v} € E(H)} (note that H, is a 2-graph with at least n' ™
edges). Since H does not contain 7, H, does not contain a disjoint union
of n“7?/10 copies of (2-) stars each with n*" edges. Let d, denote |E(H,)|.

*Strictly speaking, we should use | n*?/(6e)"?] instead of n®?/{6e)"?. However
we will usually not bother with this type of detail since it has no significant effect
on the argument or results.
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Here we use Theorem 2 in [2], which states that any (2-) graph on n vertices

and m edges contains a disjoint union of (2-) stars; §,,S,_,,..., where
t =[(1 — & @2m/n)] if n < en*’. This leads to a contradiction, and Lemma 6
is proved.

Theorem 3. Any 3-graph on n vertices and e edges with n’ < e = n'™’

contains the vertex disjoint union of ¢/20n* copies of book-stars of type
(n"’e™"/20, en?/20).

Proof. Suppose ¢ = n**® and a < 1/7. Let H denote a 3-graph on n ver-
. ftices and e edges that does not contain the vertex disjoint union of n“/20 copies
of book-stars T of type (n''"?/20,rn°/20). Now we partition the vertex set
V(H) into three parts. A vertex of degree at least 10n°"*" is said to be an A-
+  vertex. A vertex is said to be a B-vertex if it has degree at least 10n" ™" and at
most 10n°**2, The rest of the vertices are called C-vertices. Note that there are
at most n'*¥?/3 A-vertices and there are at most n''"*®?/3 B-vertices. Let ¢
denote the maximum number such that ¢ copies of book-star T can be embedded
into H such that the leaves of T are embedded into C-vertices and the spines of
T are embedded into vertices that are not A-vertices. We have r < n%/20. Let
R denote the set of vertices of H onto which ¢ copies of T are embedded. Then

IR| = ¢ - n""**?/400. We make the following observations:

Q (1) The number of edges containing some vertices in R is at most
- n2 + ¢ n(l*a)/Zn(3+a)/2 + tn(1+a)/2n(3*a]/2/10 < 3n2+a/20

since there are at most tn” edges containing the ¢ centers, there are at
most tn''"*?n%"*? edges containing the spines, and there are at most
T 2p 702 /10 edges containing the leaves.
(2) The number of edges containing one A-vertex and two B-vertices is
at most n' **"92/10 < ***/10. The number of edges containing
. three B-vertices is at most n' 7**¥?/27 < n***/20 since « < 1/7.
(3) The number of edges that contain at least two A-vertices is at most
n>**/10 since there are at most n''"*?/3 A-vertices.
s (4) Let W denote the set of A-vertices or B-vertices, each of which is
contained in at most n°"*?/10 edges in the induced subgraph of H on
S = V(H) — R, denoted by H'. The number of edges in H' containing
some vertex in W is at most n"' 72 %"®2/10 < n?**/10 since o = 1/7.
(5) Let W’ denote the set of pair {u, v} where u is an A-vertex or B-vertex, v
is a B-vertex, and {u, v} is contained in at most n'***/10 edges. The
number of edges in H' containing a pair in W’ is at most n'™**!*®7?/
90 = n*"*/90.

Therefore by removing all edges mentioned in (1)~(5) we obtain a subgraph
H" of H satisfying the following properties:
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(i) H" has at least n°**/2 edges and VH") N R = ¢.
(ii) An A-vertex in H" has degree at least n°~®?/10 and is not adjacent to
other A-vertices.

(iii) A B-vertex in H" has degree at least n°~*"?/10. There is no edge
containing one A-vertex and two B-vertices. There is no edge contain-
ing three B-vertices.

(iv) Any pair of vertices {u, v} where u is an A-vertex or a B-vertex and v is
a B-vertex contained in at least n'**?/10 edges in H".

Suppose H" contains an A-vertex or B-vertex u. If u is adjacent to n''"*/20 B-
vertices, then by (iv) we can embed a copy of T into H” by choosing u to be the
center and the n"'~*?/20 B-vertices to be the spine. By (iii) the leaves then are
all C-vertices. This is impossible. We may assume u is adjacent to at most
n'""®?2/10 B-vertices. In the neighborhood graph H) of u in H", there are at
least n°"2/10 edges. It can be easily proved that H| contains the forest F
consisting of n'"*2/10 copies of stars with n%/10 edges such that all leaves are
in C. (Otherwise, all vertices in V(H!) — V(F) have degree at most n*/10.
There are at most one vertex in each star of F adjacent to more than n*/S ver-
tices in V(H!) — V(F). H" can have at most n'"® + n®7¥?/20 edges that is
less than n°~®?/10.) This contradicts the assumption that ¢ is maximum.

We may assume H" does not contain A vertices or B vertices. Now from
Lemma 6 we know there is a copy of book-star of type (n''~*"?/20,n%/20)
being contained in H” since H” has ¢/2 edges. This leads to a contradiction.
Theorem 3 is proved. 1

From Theorem 2 and 3, we conclude:

Theorem 4. If n® < e < 1", we have
C1€3/2n_5/2 Sf(n,e) < ‘,263/2’1—5/2
for some constant ¢, and c,.

We remark that an unavoidable graph H that is the vertex-disjoint union of
stars cannot contain more than 10e’n ™' edges. This can be proved as follows.
We consider the graph containing (2¢/n)"* special vertices with the property
that any edge of H contains exactly two special vertices. It is easy to see that H
can contain at most 2(2e/n)"? vertices. We note that ¢'’n~"" is smaller than
¢*’n°"? for n* = e. Also an unavoidable graphs H, which is the vertex-
disjoint union of books, can contain at most n* edges (by considering two
graphs of e edges: G, with every pair in <10n“ edges, G, consisting of n*
special vertices and all edge containing one special vertex). The book-stars, a
modified combination of books and stars, are the largest unavoidable graphs we
can find so far for this range of e. It would be of interest to prove that the
maximum unavoidable graphs have the structure of book-stars or similar types.
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5. ON fy(n,e) for ™" < e < n®* ¢
Using Lemma 4 we can easily obtain the following upper bound for fy(n, e).
Theorem 5. If n'” < e < n’™ we have

fi(n,e) = ce'”
where ¢ is a constant depending on €.

Proof. An (n, e)-unavoidable graph H must be a subgraph of a graph on
(6€)'” vertices. H has at most (6¢)'” vertices. Thus from Lemma 4 H has at
most (6¢)'”’/e edges. 1

We will prove the above upper bound for fy(n, e) is asymptotically best possi-
ble within a constant factor for this range of e.

The proof is very similar to that of Theorem 3, although the values of vari-
ous parameters are different.
Theorem 6. Any 3-graph on n vertices and e edges with e > n'"""7 con-
tains the vertex-disjoint union of n'?/20e'"® copies of book-stars of type
(n**e7"2/20, en"*/20).

Proof. Suppose e = n°** where 1/7 < a. Let H denote a 3-graph on
n vertices and e edges that does not contain the vertex-disjoint union of
n''"%/20 copies of book-stars T of type (n"'~*?/20, n®/20). We first partition
the vertex set V(H ) into three parts. A vertex of degree at least 10n“**” is said
to be an A-vertex. A vertex is called to be a B-vertex if it has degree at least
107*7?¥7 and at most 10n“***”. The rest of the vertices of H are called C-
vertices. Note that there are at most n® >??/3 A-vertices. There are at most
n®*®?/3 B_vertices. Let ¢ denote the maximum number such that ¢ copies of
book-stars T can be embedded in H in a way that the leaves of T are embedded
into C-vertices and the spines of T are embedded into vertices that are not A-
vertices. We have r < n'"*¢/20. Let R denote the set of vertices of H onto
which ¢ copies of T are embedded. Then |R| = tn‘'*?/400. We first make the
following observations:

(1) The number of edges containing some vertices in R is at most
tn? + 1702 Wr5B 4 g (1m0 ey @205 /50 < 33249 /20 since a = 1/7.
(2) The number of edges that does not contain any C-vertex is at most
2+a
n*"%/10.

(3) The number of edges which contain at least two A-vertices is at most

nl+(4~4a)/3/10 < n2+a/10 .
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(4) Let W denote the set of vertices v such that v is an A-vertex or a B-vertex
and v is contained in at most n“***?/10 edges in the induced subgraph
of Hon S = V(H) — R, denoted by H'. The number of edges in H’' con-
taining some vertex in W is at most n°*%/10.

(5) Let W' denote the set of pairs {u, v} where u is an A-vertex or a B-vertex,
v is a B-vertex and {u, v} is contained in at most n'"**?/10 edges. The
number of edges in H’ containing a pair in W' is at most n****p ‘! *¥2/
90 = n***/90.

Therefore by removing all edges mentioned in (1)—(5), we obtain a subgraph

H" of H satisfying the following properties:

(i) H" has n***/2 edges and V(H") N R = ¢.
(i) An A-vertex in H" has degree at least n‘“">*”/10 and is not adjacent to
other A-vertices.
(ili) A B-vertex in H" has degree at least n***”/10. Every edge contains at
least one C-vertex.
(iv) Any pair of vertices {u, v} where u is an A-vertex or a B-vertex and v is
a B-vertex is contained in at least n"'**?/10 edges in H".

Suppose H” contains an A-vertex or a B-vertex u. If u is adjacent to
n"~¥?2/20 B-vertices, then we can embed a copy of T into H" by choosing u to
be the center. This is impossible. We may assume u is adjacent to at most
n'"¥2/20 B-vertices. In the neighborhood H, of u in H, there are n*****/10
edges. From the theorem on 2-graphs we know that H, contains n" *"*/10
copies of stars with n%/10 edges since o > 1/7, and (1 + 2a)/3 =
(1 = a)/2. (We can easily choose the leaves of the stars to be C-vertices). This
again contradicts the assumption that r is maximum. We may assume H” does
not contain any A-vertex or B-vertex. From Lemma 6 we know that H” con-
tains a book-star of type (n"'~*"/20, n*/20). This contradicts the maximality of
t. Theorem 6 is proved. 1

As an immediate consequence of Theorem 5 and Theorem 6, we obtain the
following:

Theorem 7. If n™" =< e < n*"¢, we have

c'e™ < fln,e) < ce™.

6. ON fi(n,e) for n* < < e < cn?

The value of fy(n, e)/e'” is unbounded when e is close to (5). To see this, we
need the following fact, which can be proved in a similar way as that in [5].
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Lemma 7. Any 3-graph H on n vertices and e edges contains the complete
3-partite subgraph K(s, s, ) with s = (log n/(2 log((3)/e)))"* and ¢ = n'?
where K(n,, n,, n;) has vertex set V, U V, U V;, V.| = n, and edge set
v, v, vy, € vk

Proof. First we use Lemma 5 repeatedly. Consider a bipartite graph G with
vertex set V, U V, where V, consists of pairs of vertices in H and V, = V(H)
and {w,, w,} € E(G) if w, U w, is an edge of H. Then G contains a complete
bipartite graph K, , with ¢’ = n**" since

. [ 6e
nl— N
paa nZ = n2 2/s .
2 s

N

This means there is a set A of s in V(H ) vertices with the property that there are
t' pairs of vertices {u, v} of V(H) such that {u,v,w} € E(H) for any w € A.
Let G” denote the 2-graph on these ¢’ edges. From the theorems on 2-graphs
(see [2]), it follows that G” contains a bipartite subgraph K. , where
s’ = log n/(2 log((3)/t")) = s and t = n'”. This completes the proof of
Lemma 7. §

Theorem 8. Any 3-graphs on n-vertices and e-edges with e > n®’ contains
the vertex-disjoint union of e¢'’n~'” copies of K(s,s,t) where s = log n/
(3 log((})/e)) and ¢ = n'*/10.

Proof. Suppose H is a 3-graph on n vertices and e edges that does not con-
tain ¢'’n"'?/10 copies of K(s,s,t). A vertex is H is called a C-vertex if its
degree is at most 10¢>*. There are at most ¢ */3 vertices that are not C-vertices.
Let w denote the maximum number of vertex disjoint copies of K(s, s, t) that
can be embedded in H, whereas in each copy the third vertex set (of the ¢
vertices) of K(s, s, t) are embedded into C-vertices. Suppose w < e'’n~">. Let
R denote the set of vertices of H onto which copies of K(s, s, ) are embedded
and S denotes V(H) — R. We make the following observations:

(1) The number of edges containing some vertices in R is at most
2w - sn® + e e =e/3 since e >n®.

(2) The number of edges that do not contain any C vertex is at most e/10.

Therefore by removing all edges mentioned in (1) and (2), we obtain a sub-
graph H” of H satisfying the following properties:

(i) H" has e¢/2 edges and V(H") N R = ¢.
(ii) Any edges of H" contains at least one C-vertex.
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From Lemma 7, H” contains a K(s, s, ') where ¢’ = n'”. Since there are at
most e'?/3 vertices which are not C-vertices, we can choose n'*/10 out of ¢’
vertices to be C-vertices. This contradicts the assumption that w is maximum.
Theorem 8 is proved.

Theorem 9. If n'" < ¢ we have

e logn e" log n

for some constants ¢, and c,.

Proof. From Theorems 7 and 8 we have an unavoidable graph on ce'” ver-
tices and edges for n'*” < e < n®? and (n, e)-unavoidable subgraphs on
(c’e"log n/log((3)/e) edges for n®® < e. From Lemma 4 we have an upper
bound ((6e)"” log n/log((3)/e)) since an (n, ¢)-unavoidable subgraph can have
at most (6e)'” (nontrivial) vertices. This completes the proof of Theorem 9. #

7. CONCLUDING REMARKS

In this paper we deal with unavoidable 3-graphs. A natural direction is to inves-
tigate unavoidable r-graphs for general r. As we can see the structures of
unavoidable 3-graphs are more complex than unavoidable 2-graphs, and proofs
for theorems on 3-graphs are more complicated. For the case of r = 4, the
authors have obtained some partial results. We note that the unavoidable hyper-
graphs often turn out to be combinations and modifications of strong A-sys-
tems, which can be viewed as generalizations of stars. [A strong A-system with
parameter (k, t) consists of a collection of k r-sets such that the intersection
of any pair of them is a fixed z-set (see [7,8]).] P. Erdds and R. A. Duke [4]
first investigated maximum unavoidable strong A-systems in large families of r-
sets. Namely, they ask the question of determining the smallest integer
M = f(n,r, k, t) with the property that if any r-graph on n vertices and m edges
must contain a strong A-system of type (k,¢). P. Frankl, Z. Furedi, and the
authors have studied the asymptotical estimates or bounds for such unavoidable
strong A-systems. Except for the case of r = 3, the results for higher (r = 4)
strong A-systems are far from satisfactory. This explains the difficulty in deter-
mining f,(n, ).
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