-

N

Math. Systems Theory 19, 1-12 (1986)

Mathematical
Systems Theory

©1986 Springer-Verlag New York inc.

Minced Trees, with Applications to Fault-Tolerant VLSI Processor
Arrays

Fan R. K. Chung* and Arnold L. Rosenberg**

*Bell Communications Research, Morristown, NJ 07960

**Department of Computer Science, Duke University, Durham, NC 27706

Abstract. We derive here a lower bound on the number of edges f(c, d) that
one must remove from a depth-d complete binary tree in order to partition
the tree into ¢ equal size pieces (to within rounding). We show that for the
sequence of integers ¢, =,,,3X2/,

flend) = 1(d—21-19/6).

We then apply this bound to a graph-embedding problem related to the
design of fault-tolerant VLSI processor arrays. An earlier study has exhibited
a fault-tolerant implementation of arbitrary binary trees, using a particular
design strategy. We show here that that implementation is optimal in area
consumption (to within constant factors) among designs using that strategy,
even when the array to be simulated must have the structure of a complete
binary tree.

Introduction

We derive here a lower bound on the number of edges f(c,d) that one must
remove from a depth-d complete binary tree in order to partition the tree into ¢
pieces that are “equal” in size (to within rounding). Specifically, we show that for
the sequence of integers

CrClseees Cy_q

The research of the second author was supported in part by NSF Grant MCS-83-01213 and in

part by Bell Communications Research.

Q

’\

2 F. R. K. Chung and A. L. Rosenberg

defined by ¢, =y, 3X 2,
flend) = 15(d~21-19/6)

We then apply this bound to a graph-embedding problem related to the
design of fault-tolerant VLSI processor arrays in a wafer-scale environment. The
setting of the problem abstracts design techniques that attain tolerance to faults
by running buses past the implemented processing elements (PEs) and intercon-
necting the fault-free ones into an array of the desired structure by having PEs
tap into the buses (say, via laser-welding). Such techniques have been studied by
Bhatt and Leiserson [1] and by the second author [5, 6]. In [6], one finds such
“welded” fault-tolerant implementations of linear arrays and of arrays having the
structure of (arbitrary) binary trees, together with a proof that the implementa-
tion of the linear array is within a constant factor of optimal in area, but with no
such assurance of the area-optimality of the tree-array implementation. In this
paper, we use our bound on f(c, d) to show that the implementation of the tree
array is within a constant factor of optimal in area consumption, even when the
array to be simulated must have the structure of a complete binary tree.

2. Mincing Trees

Theorem 1. Let f(c, d) denote the number of edges that one must remove from th”™
depth-d complete binary tree in order to partition the tree into ¢ “equal size”™ pieces.
For the sequence of integers

CosCpoeeer Cyoy
defined by ¢, =, 3 x 2!,

<

fle,d) = 74(d—21-19/6).

Note. By ‘“equal size” pieces’, we mean that we partition the tree into ¢ forests,
29%1—1 (mod c) of size

2d+1_1
C

and the remainder of size

2d+1 -1
—‘-“——‘c .

Proof. In order to bound f(c, d) (from below), we consider the following related
question. How many edges of the tree must we cut in order to partition it into two
pieces whose sizes are in the ratio 1: ¢ —1? (For definiteness, let the smaller piece

N

Fault-Tolerant VLSI Processor Arrays 3

be rounded up in size and the larger piece rounded down.) Let g(c, d) denote this
quantity. Note that any partition of the tree into ¢ “equal-size” pieces can be
viewed as ¢ partitions into the ratio 1: ¢ —1; let each piece in turn play the role of
‘the small piece. Viewed in this way, any partition of the tree into ¢ “equal-size”
parts accounts for the cutting of c-g(c,d) edges; but it accounts for each cut
edge twice, once for each of its endpoints. We conclude, therefore, that

fle,d) = %g(c,d).

Our task has thus been reduced to the determination of g(c, d) for appropriate
values of ¢ and d.

Our determination of g(c, d) builds on a device developed in [2, 4, 6]. Let us
be given an integer ¢ that is not a power of 2, an integer d > 0, and the depth-d
complete binary tree T, (which has 24+1 _1 nodes). We decompose T, by
coloring its nodes red and green, in the ratio 1: ¢—1, to within rounding. We
name the subforest of T, induced on the red nodes SMALL and the correspond-
ing subforest on the green nodes BIG. Our goal is to determine how many edges
are cut by the indicated partition of 7, where we say that the partition cuts each
edge of T, that has one end in BIG and the other end in SMALL. We let ¢,
denote the number of level-k edges that are cut by the partition, where level-1
edges connect the root of T} to its sons, level-2 edges connect the sons of the root

their sons, and so on, so that each cut of a level-k edge produces a subtree with
“"’“ —1 nodes. Finally, we define the correction function k by:

(k) = ¥ e (1)

i=1

k(k) bounds from above the extent to which edge cuts below level k can
“correct” errors in rounding commited at level k.

Look at any level k of T, (the root resides at level 0, its sons at level 1, and
so on). Let BIG, denote the set of nodes from level k that are assigned by our
partition to BIG, and let SMALL, denote the corresponding set for SMALL.
Since ¢ does not divide 2% (which is the number of nodes at level k), the sizes of
the sets SMALL, and BIG, cannot be quite in the ratio 1: ¢ —1; one set must be
at least a trifle too big. Specifically, if we define p, . (resp., P,) to be the least
positive rational g such that

1

1., c—1 .,
C2 +gq (resp., — 2 +q)

is an integer (note that p, .+ P, .=1), then we must have either

ISMALL,| > %2k +pe. or |BIG] = czl 2%+ P, .. (2)

N

4 F. R. K. Chung and A. L. Rosenberg

Let X ambiguously denote SMALL or BIG, and let

% if X=SMALL
=) e if X=BIG

L C

 (Pi. if X=SMALL
T« T\ P, if X=BIG

The inequalities (2) on |SMALL,| and |BIG,| imply that, for one of SMALL or
BIG, call it X,

d—k)
1X] = (c(X)2F+m JQRITFT-1) = ¥ e, (247K -1).
i=1

The first term reflects the contribution to X of the level-k nodes and their
subtrees; the second term reflects the extent to which this contribution can be
diminished (or, corrected) by cuts below level k. By definition of k, and by
elementary manipulation, then

X1 > e(N)(@47=1)= (2 =1)) + 7, 241 = 1) = x(K)2 L (3)

Claim 1. Forall k=d/2-m (1sm<d/2),

~
k(k) > m . —c(X)272m-1_2k-d

Note. Because of the special values of ¢ we shall employ, when m is in the
indicated range, k(k) will be positive.

Proof of Claim 1. Assume for contradiction that for some ky=d/2—m (1<m
<d/2),

k(ko) < m, . —c(X)272m"1 - k4,
Substituting d /2— m for k in our lower bound (3) for | X|, we find that
|X] > c(X)(24*1-1) + "’ko.¢-2m+1+d/2 — e(X)2-m+ar
— (k)22 + (X))~ m, .
> e(X)41 1) + 242wy, w(ko)|2" — ()27 1)
since |c(X)— m, | <1. Substituting our assumed bound on «k(k,), then, we have

1X| > (X)277"' 1)

+21 442 ([e(X)27 2k d]2m — o(X)27) - 1
C(X)(2d+1 __1) + 2k—d21+m+d/2 -1

(X)) -1)+1

Fault-Tolerant VLSI Processor Arrays 5

These inequalities mean, however, that

|BIG| > & —1 (2"+1~1) +1

if X= BIG, and

|SMALL| > %(24“—1) +1

if X=SMALL. Either of these contingencies contradicts the alleged sizes of BIG
and SMALL.]

The upshot of Claim 1 is that for each level k=d/2-m (1<m<d/2) of
T,, we must have

k(k) = =, —%

2—-2m-1 - 2k—~d‘

This means, however, that

d d
2 oe = X (k) 4)
k=1 k=0

d/2-1
> ¥ ("Tk _c_122k—d—1_2k—d)

k=0

d/2-1 d/2-1 d/2-1
> Y m.- 2“22“—2@'22"

k=0

d/2-1

c—1 _

Z IE:O The T g 2 e (5)

The first inequality (4) in this sequence follows from regrouping the terms in the
definition (1) of x and noting that the sums of the coefficients of the e, are always
less than unity. The last inequality (5) follows from explicit calculation of the
second and third sums.
Claim 2. Define the sequence of values for ¢:

CO<C1<Cz< tr
by ¢, =,.;3%2". For each ¢,

d/2~1 1
Y ., 25(2d-20-2).
k=0

Proof of Claim 2. Note that if the binary expansion of 1/c is

1
Z=0:byby - bybyey

6 F.R. K. Chung and A. L. Rosenberg

then for each k, the fractional part of 2%/c, denoted {2*/c}, is given by

2k
(%) =0bibee

Now, if b, # b, ,,, then m, , which is easily seen to equal either {2%/c} or
1—{2*/c}, must satisfy

=

T, e 2

Consider now the sequence of values ¢ = 3,6,12,...,3Xx2/,... . The binary expan-
sions of both

!

consist of a block of / 0’s or 1’s, followed by a nonterminating sequence of
alternating (’s and 1’s (e.g., 1/¢,=1/12 = 0.0001010101...). Thus, in B bits,
each of these fractions has 8 —/ —1 alternations, so

B
Z Wk.(', 2 %(B_l)

k=0

To complete the proof of the claim, let 8 = d /2 —1 in this inequality. O

The inequalities we have derived yield the sought bound on the number
g(c, d) of edges of T, that must be cut in order to partition the tree into pieces
whose sizes are in the ratio 1: ¢ —1. For values of ¢ of the form ¢, =3Xx2/, we
have

d
glc,d) = Y e, =%(d—-21-19/6).
k=1

It follows that for these same values of ¢, the number f(c, d) of edges one must
cut in order to partition T, into ¢ equal-size pieces satisfies

flepd) = 16(d—21-19/6),

as was claimed. a

3. Fault-Tolerant Trees of Processors

We turn now to a graph-embedding problem related to the design of fault-tolerant
arrays of identical PEs in an environment of wafer-scale integration. We shall use
Theorem 1 to bound the efficiency of a proposed solution strategy. We describe
the solution strategy briefly, referring the reader to [5, 6] for details.

Fault-Tolerant VLSI Processor Arrays 7

3.1. An Informal Overview

As is common (cf. [3, 6]), we view a processor array as a graph whose vertices
represent the PEs of the array and whose edges represent the communication
links of the array.

The graph-embedding problem is to construct, for each positive integer n, an
n-vertex interval hypergraph H, (roughly, a graph having vertex-set {1,2,...,n}
and having possibly multiple copies of “multipoint” edges that are contiguous
sets of vertices), that enjoys the following property. No matter what m-vertex
subset (m < n) of H,’s vertices are selected, and no matter which (< m)-node
binary tree T is given, we can embed T in the sub-hypergraph of H, induced on
the selected vertices.

This problem abstracts the problem of designing fault-tolerant arrays of
identical PEs using the following strategy. One constructs one’s PEs as though for
the perfect array. One lays the PEs out in a (logical, if not physical) line, and one
runs some number of buses past the PEs. After determining which of the PEs are
free of faults, one interconnects the fault-free PEs into an array of the desired
structure by tapping the PEs into the buses (say via laser-welding), each array-link
being realized by a distinct bus. Note that connections are made but never
broken.

A solution to this design problem is presented in [6]. The n-vertex interval
hypergraph presented there requires area proportional to n-log?n for embedding
the buses/hyperedges, where the area of a hyperedge is just its length. The
question of the existence of solutions that are more efficient in area-consumption
is unresolved in [6]. Using the bound of Theorem 1, we settle this question,
showing that any interval hypergraph solving the n-vertex binary-tree problem
requires area proportional to n-log’n for embedding the buses /hyperedges, even
if we restrict attention to embeddings of complete binary trees.

3.2. The Problem Formalized

Interval Hypergraphs. An n-vertex interval hypergraph comprises the set V, =
{1,2,..., n} of vertices, together with a multiset E of hyperedges. Each hyperedge
is a subset of V, of the form {k,k+1,...,k+r} for some k>1 and some
r < n— k. The hyperedges represent buses that PEs tap into, in order to realize
the desired edges of the array. A hyperedge can be tapped into by any PE it
“contains”.

Terminology. 1. |G| denotes the number of vertices in the (hyper)graph G.
2. Given an interval hypergraph H = (V, E), the induced sub-hypergraph H* of H
on the subset V* of V is the hypergraph whose vertex-set is ¥'* and whose
hyperedges are the nonempty intersections of H ’s hyperedges with the set V' *. By
“compacting” V'* into the prefix {1,2,...,|V*|} of V, and analogously compact-
ing the hyperedges of H*, one can convert H* into an interval hypergraph. We
always assume informally that we have effected this compaction.

Simulation. The interval hypergraph H = (V,, E,) can simulate the graph G =
(V,, E,) if G can be embedded in H in the sense that there exist one-to-one

8 F. R. K. Chung and A. L. Rosenberg

mappings
oV, -V,
and
p‘e: Eg - Eh

such that, for each edge e = {v,w} of G, the image vertices p,(v) and p (w) are
both elements of the image hyperedge p.(e).

., “assigns” PEs to hypergraph vertices, while . “assigns” array-edges to the
buses that will simulate them. The compatibility condition assures that any pair
of PEs that are supposed to use a bus can both be connected to it; the one-to-one
condition assures that a hyperedge is used to simulate a single edge (which is
necessary, given our laser-welding imagery).

Fault-Tolerance. 'The interval hypergraph H with vertex-set V is a solution to the
fault-tolerant binary-tree problem if, given any partition of V into good and bad
vertices, with at least m good vertices, the induced sub-hypergraph of H on the
good vertices can simulate any binary tree having m or fewer vertices.

The bad PEs/vertices are viewed to have failed while the good ones are
operational; one wants to create a copy of the specified binary tree from the good
PEs.

Layouts and Their Areas. We embed our solution interval hypergraph H in a
grid, with the following groundrules. The vertices of H get laid out in a row, in

PE PE PE PE PE PE PE PE PE PE PE PE PE PE PE PE

Fig. 1. The 16-PE fault-tolerant-tree interval hypergraph 7.

/\

/\

Fault-Tolerant VLSI Processor Arrays 9

natural order; the hyperedges get run as wires/buses above the row, with vertical
wires connecting each PE /vertex to the hyperedges that contain it. All wires have
unit width; vertices occupy side-s squares, where s is large enough for the vertex
to have its full complement of incident edges; see Fig. 1. Wires are allowed to
cross—at most two crossing at a point—but not to overlap in any other way. The
area of a layout is the area of the smallest enclosing rectangle. In order to
strengthen our lower bound, we assume henceforth that s =1, so that we are, in
effect, bounding only the area occupied by the wires. To strengthen our bound
further, we estimate the area occupied by wires by the cumulative lengths of the
wires, thus ignoring excess area caused by (possibly inevitable) poor placement.

The major difficulty in proving a lower bound on the area of a solution
hypergraph is that a k-vertex hyperedge (in contrast to an edge of a graph, which
can be viewed as a 2-vertex hyperedge) can be used to make any of k(k —1)/2
vertex-to-vertex connections. Our bounding technique must be robust enough to
compensate for this flexibility.

Terminology. The length of a hyperedge e of an interval hypergraph is given by
length(e) = max(e) — min(e) + 1.

3.3. Fault-Tolerant Trees

The following Theorem and construction from [6] bound from above the area of
" solution hypergraphs for the arbitrary binary-tree problem.

Theorem 2 [6]. There exist interval hypergraphs H that solve the binary-tree
problem that can be laid out in area proportional to

|H|log?| H|.

Proof Sketch. In order to lend the reader intuition for our proof of the lower
bound (Theorem 3), we indicate briefly how one can construct solution interval
hypergraphs that satisfy Theorem 2.

Consider the interval hypergraph 7, with vertices {1,2,...,n} (assume for
simplicity that » is a power of 2; n=2") and the following hyperedges (see Fig.
1):

for k=1,...,r and a=0,1,2,...,2"" %k —1, there are k copies of

{a2¥+1,...,(a+1)2%).
The layout depicted in Fig. 1 clearly achieves the claimed bound on area.

The Configuration Procedure. Say that we are told that a given set of m vertices
of T, are good, and that we are given an m-node binary tree B to realize on those
vertices. We can embed B in 7, by placing the tree’s vertices down in

10 F. R. K. Chung and A. L. Rosenberg

MINORDER:

1. We place the root of B on the leftmost good PE of T,

2. on the remaining good PEs of T,, we place (left to right) the smaller-
cutwidth subtree of B in MINORDER, followed by the larger-cutwidth subtree
in MINORDER.

Finally, we connect up B’s edges by realizing an edge via the smallest
available hyperedge that contains both ends of the edge.

Since the cutwidth of the MINORDER layout of B is at most logm, the
large hyperedges in T, are sufficient in number to route all edges that cross the
midpoint of the layout of 7,. Removing these edges leaves one with the task of
realizing the edges for a forest of subtrees of B, each subtree laid out in
MINORDER and none containing more than n /2 vertices. An easy induction
verifies that these subtrees can be accommodated by 7,, so our purported
solution does indeed work. d

Theorem 2 leaves open the question of whether any solution interval hyper-
graph can be more conservative of area than those constructed in its proof
(though its full version in [6] does show that no solution constructed using a
divide-and-conquer strategy can be more compact). We now use our bound from
Theorem 1 to show that no more compact solution interval hypergraphs exist,
even when the array to be simulated must have the structure of a complete binary
tree. :

Theorem 3. Let H be any interval hypergraph that solves the complete-binary-tree
problem. Then any layout of H requires area proportional to

|H|log?| H|.

Proof. Say that we are presented with a solution interval hypergraph H that is
laid out in the most area-efficient way possible (subject to our layout rules). We
shall perform a succession of gedanken experiments in which we “kill” half of
H'’s vertices and insist that a complete binary tree be formed from the surviving
vertices. By judiciously choosing the vertices we kill in each experiment, we shall
show that the cumulative length of H’s wires/buses must satisfy the bound
claimed in the statement of the Theorem.

The experiments we perform on H will be parameterized by a sequence of
positive integers (to be specified later)

€ <€y < vnv

In the kth experiment, we select as the surviving vertices ¢, (roughly) equal-size
blocks of vertices, with cumulative population (1 /2)|H|, spaced equally along the
row of H'’s vertices. For instance, if one of the ¢, =3, then for that experiment,
we would select as good the first sixth of H’s vertices [vertices 1,..., |(1/6)|H||],
the middle sixth of H’s vertices [vertices [(5/12)|H|| +1,...,[(7/12)|H]|]], and
the last sixth of H’s vertices [vertices |H|— |(1/6)|H||+1,...,|H]|], thereby
“killing” the remaining half of the vertices. The goal of the experiments is to
show that there must be many wires passing between adjacent blocks of vertices.
Since the blocks are spaced rather far apart in the line of vertices, these interblock
wires contribute substantially to the cumulative length of H’s wires.

Fault-Tolerant VLSI Processor Arrays 11

Let us concentrate first on a single experiment, with integer parameter c.
How might we show that for this experiment there must be many edges passing
between adjacent blocks? We obtain the following reduction of the problem. Any
solution to the problem of laying out a complete binary tree on the selected
vertices can be viewed as a way of cutting a complete binary tree into ¢
“equal-size” pieces: each piece resides in one of the blocks of vertices. Now,
recalling that f(c,d) denotes the smallest number of edges whose removal
partitions the depth-d (where n /2 = 29*1) complete binary tree into ¢ “equal-size”
pieces, we know that our experiment has accounted for approximately

n

mf(c,d)

units of wire-length. To wit, each of the removed edges must, upon embedding, be
realized by a wire that passes between distinct blocks of selected vertices; and
adjacent blocks are separated by roughly n /(2(c — 1)) unused hypergraph vertices,
so each interblock wire has at least this length. We can thus, estimate the
contribution of this experiment to the cumulative wire-length by determining the
value of f(c, d). It is this task that we accomplished in Theorem 1:

For the sequence of integers ¢, ¢),..., ¢, defined by ¢, =,,,3x2/,

flend) = 16(d=21-19/6).

Thus, when we designate ¢, equal-size blocks of good vertices of our hypergraph,
spaced equally along the row of vertices, the length of wire required to realize the
complete binary tree T, on the selected vertices can be no less than

S (g3 —
32(C1_1)(d 31—4)n,

arising from the f(c,, d) wires, each of length at least n /(2(¢, —1)).

Our analysis until now has concentrated just on individual experiments. We
must now take into account the fact that we are performing a sequence of
experiments, dealing with a sequence of values of ¢, not just a single one. This
fact manifests itself in our assessment of the total wire-length requirements of our
solution interval hypergraph. We cannot merely add up the wire-lengths just
computed, since a smart construction would attempt to use the (relatively long)
wires from the “level-(/ —1)” experiment (which uses parameter ¢,_;) to satisfy
part of the wire demand of the “level-/” experiment (which uses parameter c,)
and so on, inductively. Therefore, instead of assessing the “level-/” experiment as
adding f(c,, d) new wires, each of length at least n /(2(c, — 1)), we are entitled to
assess this experiment for only f(c,, d)— f(c,_;,d) new such wires. Note that
assuming the use of even more long wires can only increase the cumulative
wire-length since a single hyperedge, no matter how long, is allowed to realize just
one tree edge. Summarizing this discussion, we find that the total wire require-

12 F. R. K. Chung and A. L. Rosenberg

ments W(n) of any n-vertex solution hypergraph must be no less than

Jd)Y Y (e, d)-f(e,q,d
W(n)Z% f£§0_1)+¥f(cl)le(lcl)

fleapnd) 4271 1
____’21_ C_djfz—_l Z f(cl’d)(c—l C—lil_—l))

v

n [fle Cas2> d) 1
ﬁ(X2 Z f(Cl,d)(21+1) (6)
Substituting our lower bound for f(c, d) in (6) and simplifying, we find that

W(n)

v

n d/2—-1
ﬁg—(E’o (d—2[—19/6)—13/96)

(const)nlog?n + Lo.t.

the last equation following since d is proportional to log n.
This completes the proof of Theorem 3. O

References

1. S.N. Bhatt and C. E. Leiserson (1984), How to assemble tree machines. In Advances in Computing
Research 2, (F. P. Preparata, ed.) JAI Press, Greenwich, CT, pp. 95-114.

2. B. Boliobas, F. R. K. Chung, R. L. Graham (1983), On complete bipartite subgraphs contained in
spanning tree complements. In Studies in Pure Mathematics, Akademiai Kiado, Budapest, pp.
83-90.

3. 1. P. Hayes (1976), A graph model for fault-tolerant computing systems. /EEE Trans. Comp.
C-25, 875-883.

4. J.-W. Hong, K. Mehlhorn, A. L. Rosenberg (1983), Cost tradeoffs in graph embeddings, with
applications. J. ACM 30, 709-728.

5. A. L. Rosenberg (1984), On designing fault-tolerant VLSI processor arrays. In Advances in
Compuring Research 2, (F. P. Preparata, ed.) JAI Press, Greenwich, CT, pp. 181-204.

6. A. L. Rosenberg (1985), A hypergraph model for fault-tolerant VLSI processor arrays. /EEE
Trans. Comp., C-34, 578-584.

Received November 29, 1984, and in revised form October 9, 1984, and in final form November I, 1985.

