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In this paper we describe a general technique which can be used to solve an old problem in
analyzing self-organizing sequential search. We prove that the average time required for the
move-to-front heuristic is no more than 7/2 times that of the optimal order and this bound
is the best possible. Hilbert’s inequalities will be used to derive large classes of inequalities
some of which can be applied to obtain tight worst-case bounds for several self-organizing
heuristics.  © 1988 Academic Press, Inc.

1. INTRODUCTION

Sequential search, a very simple way to retrieve data, has long been studied in
the literature. Various enhancements, especially the self-organizing heuristics, have
been extensively investigated by many researchers [1-5, 7, 9—13]. In this paper we
will examine a basic problem in self-organizing sequential search, which can be
described as follows. -

Suppose a set of n keys are stored in a linear list which will then be sequentially
searched for some string of requests. The so called “optimal static ordering” method
finds out the count or access probability for each key in the request string and then
places the keys in decreasing order of probabilities. Suppose we do not want to use
large memory in deriving such a count. An old memoryless scheme of ensuring that
more frequently accessed keys are closer to the “top” of the list is the “move-to-
front rule.” Namely, each time a key is requested, it is moved to the front of the list
and the order of the other keys remains unchanged. A natural question then arises:
How good is the move-to-front rule in comparison with the optimal static ordering?

Suppose the request string has the probability distribution p=(p,, ps, ..., P,)-
The cost (the expected search cost for a single key) for the optimal static ordering
(denoted by Opt(p)) is just > ip,, where p, =p, = --- 2p,. The cost M(p) for the
move-to-front rule was derived by McCabe in 1965 and can be written as follows
(also see {11, 137]):

L& Db
M(p)=2Yy ¥ =L
i=lj=lpi+pj
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It can be easily checked [11, 127 that the ratio of M(p) and Opt(p)=X"_,ip,is
bounded above by 2. On the other hand Gonnet et al. [7] have shown that the
value can be arbitrarily close to n/2 by considering the distribution p,, i=1, .., n
with p,= Ci~2 Thus the supremum of M(p)/Opt(p) over all possible distributions
p is between 7/2 and 2. The problem of determining the exact value of sup, M(p)/
Opt(p) remained an open problem [2, 7, 13].

In this paper we will prove that for any distribution p we have M(p)/Opt(p) <
7/2 by using Hilbert’s inequality. We will also demonstrate that this technique can
produce a general class of combinatorial inequalities some of which can be used to
generate tight bounds for other self-organizing heuristics.

Here we will give a brief history of other self-organizing heuristics. The transpose
rule (a requested key is moved one closer to the front of the list) was proved by
Rivest [13] to have lower cost than the move-to-front rule, and he conjectured that
the transpose rule is optimal. This was further backed by the result of Yao and
Bitner [4] that for some special distributions the transpose rule is optimal over all
rules. However Anderson ef al. [1] found a counterexample to this conjecture by
deriving a rule that is better than the transpose rule for a specific distribution.
Bitner later [3,4] showed that while the transpose rule is asymptotically more
efficient, the move-to-front rule converges more quickly and proposed a hybrid of
these two rules with mixed performance. Rivest [12] introduced the “move-
ahead-k” heuristics where a requested key is moved ahead k positions. Gonnet
et al. [7] and Kan and Ross [10] proposed the “k-in-a-row” heuristics, where a
key is moved only after it is requested k times in a row. Gonnet et al. [7] also
considered the “k-in-a-batch” heuristics, where requests are grouped into batches of
size k and a key will be moved if it is requested k times in a batch. They proved
that the k-in-a-batch rule is better than the k-in-a-row rule when in combination
with either the move-to-front rule or the transpose rule.

In Section 2 we will introduce Hilbert’s inequalities and a few auxiliary facts. In
Section 3 the main theorem on the worst-case behavior of M(p)/Opt(p) will be
presented. Section 4 contains several general classes of combinatorial inequalities
some of which are used to derive worst-case bounds for the k-in-a-batch move-to-
front heuristics. Section 5 includes some concluding remarks.

2. HILBERT’S INEQUALITY

In this section we will illustrate several auxiliary tools in mathematical analysis
which will later be used in our proofs:

(1) Hilbert’s inequality (see Hardy et al. [8]). For p,g>1 satisfying
1/p +1/g =1, suppose that K(x, y) is nonnegative and homogeneous of degree —1
and that

oC

f K(x, 1) x~ dx=f K1, y)y~ Y dy=C.

0 o
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Then
@ [ ks enaas<e(["ra) ([Tew)”
®) [“a < | ke £ dx)p <[ prax
© [ dx ( [, Kt ») g02) dy)q< o[ ey

A simple way to prove (a) is to use Holder’s inequality twice. For nonnegative
functions f and ¢, Holder’s inequality is

70 sty ax< ([ e ax) ([ )

We have

[[ Kx, ») £x) 8(3) dx ay

= Jf sk (2)7 gty ke (2)

< Pl/pQ l/q,

1,

rq
dx dy

where P=[f7(x)dx | K(x, y)(x/y)"dy=C{f?dx and Q=C |g%dy. Then (b)
follows from (a) by taking g= f* L.

(2) A generalization of (1) can be described as follows [8]: For ¢ numbers
D. q, ... r satisfying p>1, g>1,..,r>1, 1/p+1/g+ --- +1/r=1, and a positive
function K(x, y, .., z) of t variables x, y, .., z, homogeneous of degree —¢+ 1 with

ro foo K\, y,.,zyy Ya...z7Vrdy...dz=C,
0 0

we have

f"‘ ij(x, Py s 2) f(X) g(3) -+ h(z) dx dy - - dz

0

<C ( f:’ fr dx)l/p < L@ g dy)l/q - <j0°o hr dz)w.

(3) The gamma function I'(z)=lim,_  n!#n*/z(z+1)---(z+n) (z#0, —1,
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(4) The beta function

- _I() Iw)
(1+t) o I'z+w)’

B(z,w)=

where the real parts of z and w are both positive.
(5) The Dirichlet integral [6]

© ©
j j x’il_l...x::t_lf(xl_}_xz.{.....+xn)dxl...dxn
0 0

r(’n o Hip—1

for iy, .., i,>0.

3. THE MAIN THEOREM
We want to show the following:

THEOREM 1. For any probability distribution p=(p,, p,, .., p,), we have

M(p) =
Opt(p) 2’

This will be proved by using the inequality in Theorem 2, which will be proved
later.

THEOREM 2. If x;,>0 (i=1, ..., n), then

y 2x_x/ Y min(xi,xj)<g.

1<i.j<nx +x] 1<ij<n

As an immediate consequence of Theorem 1 and Rivest’s result [13] we have the
following:

COROLLARY.  For any probability distribution of the request string, the cost for the
transpose rule is no more than n/2 times that of the optimal static ordering.

Proof of Theorem 1. Using the expressions for M(p) and Opt(p) described in
Section 1, we have

M(p) . < pPip
=2 J ,
Opt(p) ,g,p,ﬂ),/ Z P
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for py=p,> --- 2p,>0. We note that

2p.p; pip; 1
= + = i
,g,p,+p, ,E,Zp,+p, 2Zp

and

1 ) 1
Z iPi='2' Z min(p;, Pj) +§ Z Di.
LJj

i

Therefore, by using Theorem 2, we have

omtn~ (S5 + ) ((Emoeee00) )

<Z 2pip.l /Zmln(PnPj) g

i j pi JUi g
To prove Theorem 2, we will first prove a continuous version from which
Theorem 2 can then be derived.
LEMMA 2. Suppose f is an integrable function on (0, o) with [ fdx=0. For any

k satisfying k <0,

fefe (X +y )l/kf(x)f(y)dxdy 1— k3<1_L 1__1_)
jo ’.0 min(x, J’)f(x)f(Y)dxdy k 2k’ 2k J’

where B is the beta function.

Proof. Set F(x)={% f(x)dx. First,
J [ minx, ) £G6) Sy dx dy
=7 [ e sy dy dxt [ [ f 0 £ de dy
=2[" ([ w1t )
=2 s (s [} Py )

-2 <L°° Xf(x) F(x) dx — f: L f(x) F(y) dy dx>
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-2 (f: () Flx) e~ fow F() j:’ f(x) dx dy)

=2 (fo xf(x) F(x) dx + j F(y) dy>

=2<

= Lw F(x) dx.

Also,

[ [ Gk 9 1) Sy dx dy

xF(x)|§

2

-J Fz(x)d ] Fz(y)dy)

153

= [ s ax (G RO = [T 0 P ) )

= _J‘OOO J'Ooo (xk_l_yk)l/k—l yk—lf(x) F(y) dx dy

— [T [T Ry ) dx
0 0

= (L= k) [ (4 442 5 A () FUp) e dy

<(1-—k) (f:o F2(x)dx><f:O (xk 4 1)Vk=2 xk—1-172 a’x>.

This last inequality is derived from Hilbert’s inequality (a) by setting

It is easy to verify that

L

K(X, y)= (Xk+ yk)l/k—Zxk~1yk—l'

X

k—3/2

T+ =
1

where B is the beta function.

Therefore we have

jo jo (X +y )l/kf(x ) f(») dxdy

1 < t—l/(2k)
f —_2_T/kdt
(1+1)

1 1
—28(1- -5 )

fe fe min(x, ) f(x) f(y)dxdy — k

2k

1'k3<1—i 1—

1

2k

)



154 CHUNG, HAJELA, AND SEYMOUR
The discrete version of Lemma 2 is as follows:
THEOREM 3. If x,>0 (i=1,..,n) and k <0 then

lei,jsn(x{'(+le'()l/k<l_k3<1_i 1_i>
lei,jsnmin(xi’xj)\ k 2k° 2%/

Proof. Let 0<x,<x,< - . Let 0<dé<§min,,;|x;—x,|. Let f; denote
the function with f;=1 in 1ntervals of length & centered at x;, 1—1 ,n and zero
elsewhere. By Lemma 2 we have

§8 J8 O+ y) fo(x) o) dr dy “"B(l_i 1_i>
§& §& min(x, y) fo(x) f(y) dxdy ~ k 2k’

2k )
Theorem 3 then follows, by letting § approach 0.

We note that Theorem 2 is just a special case of Theorem 3 by taking k = —1, for
B(3,3)=n/8.

4. GENERALIZATIONS

In this section, we will deduce several generalizations of Theorem 3. One of these
combinatorial inequalities can be used in the worst-case analysis of k-in-a-batch
heuristics.

THEOREM 4. If x,>0 (i=1, .., n), k<0, and t 20 is an integer, then

y (xf.‘]+xf.‘2+-~-+xf-‘,)l/k/ Y. min(x,, .., x;)< C(k, t)

I<i<n 1<
l<j<t IR AN

where

(1—k)(1—2k)---(1— (t— 1) k) I(1 — 1/tk)'

Clk,t)= PEEs r(e—1/k) "

As before, it suffices to show the following:

LEMMA 3. Suppose f is an integrable function on (0, c0) and [ fdx=0. For any
k <0 and fixed integer t we have

[8 08 (4 x5+ - + xS0 o fx) dxy - dx,
.[0 ' _‘-0 min Xl,..., x,)f(xl)---f(x,)dxl---dx,

C(k, 1).
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Proof. First using integration by parts, it can be easily checked that
J, Lw min(xy, - %) f0x) - of (5) dy -ty = (=1 [ Fl(x) de
Also we can get

[T [T e 4 S S x,) iy -,

0 0

% « o'
=(=1) 'fo L Py

x F(x,)---F(x,)dx,---dx,

(xf+ -+ X))

=(—1)’(1—k)..-(1_(t_1)k)r°... _[oo(x’f‘*' RESVE
Xx'f‘l---xf‘“‘F(xl)-~-F(x,)dx1---dx,.

Now we use the generalized form of Hilbert’s inequality by taking
p=¢q= --- =r=1/t and the evaluation of the Dirichlet integral (see [5])

*© °Ox'z‘*““”“/’“...xl:v(1+(1/;))
.[ L (T+x5+ .- +xi()1—(1/k)
1 r—(/ky)

Tk = (1K)

dx,---dx,

0

Therefore we get

[ [T Gl e ) S S )y o,
0

0

<

(~1)’(1—k)---(1—(t—l)k)l"(l—l/kt)"[w Fi(x) dt.

K 1(1— 1/k)

0
The proof for Theorem 4 is then complete.

Another generalization of Theorem 3 which comes up in connection with the
k-in-a-batch heuristics is the following:

THEOREM 5. Suppose k>4, x,>0, i=1,..,n Define Hy(x, y)=(x*y+xy*)/
(x* + y*). Then we have

Cien Hi(Xs X5 i1 04
lel,jsn k( i _/) S_CSC—

icijenmin(x, x;) 2k 2k

Again this follows from the following continuous version.
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LEMMA 4. Let f be an integrable function and suppose {& fdx exists. Then

[6 )8 Hio ) f() S dxdy 7«
[ §& min(x, y) f(x) f(y) dxdy ~ 2k 2k’

Proof. By similar argument as in Lemma 2 we have

|1 Hetx ) 1) Sy dedy= [ [ K, y) Fix) Fy) de dy
0 0 0 Y0

where

&2 d kxk+lyk—1+x2k+xkyk_kxkyk

K(x, y)=——— H\(x, y) =~

s =g Mt ) = e )

— [(xk+y")(k(k+ l)xkyk—1+2kxk—l +kxk—1yk__k2xk—1yk)
_2k(kxk+1yk—l +x2k+xkyk__kxkyk) xk-l](xk+yk)A3.

By Hilbert’s inequality we have

|7 Hax ) 100 £y e dy < ( [ Kty dy)( [P dx)_

Now

KL y) y2d =f°°ﬂ((1—k)(1+ SO (LR (L4 y4 Y)Y d
, 2 Y)Yy Ly A (1+yk)3 y y y ly
= C(k)+ C(—k),

where  C(k)=(1—k)I'(1—1/2k) I'(2+1/2k).  Since I'l+z)=zI(z) and
I'z)I'(1—z)=ncsczn for 0<z< 1, we get C(k)+ C(—k) = (n/2k) csc(n/2k).

As an immediate application of Theorem 5 we prove the following,

THEOREM 6. Let M,(p) denote the cost for the k-in-a-batch move-to-front rule.
Then we have

M(p) = n
<= csc .
Opt(p) S 2k ® 2%

Proof. Gonnet et al. [7] showed that

pip+ppf
M(p)= — L.
* lsigjsn P:(+Pf

Theorem 6 is an immediate consequence of Theorem 5.
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It is easy to check that Mz(p)/Opt(p)=\/5n/4~ 1.110..., which is better than

the bound 1.207 given in [7]. Also M;(p)/Opt(p)<(n/6)csc(n/6)=mn/3 ~1.04
which improves upon the bound 1.08 given in [7].

5. SoME REMARKS

We want to point out that Hilbert’s inequalities can be used to derive large

classes of inequalities because the functions involved are very general. Although in
the statement of Hilbert’s inequalities the homogeneous function X is required to
have degree —1 (see Section 2), we can use integration by parts first and then use
Hilbert’s inequalities (as demonstrated in Sections 2 and 3) to obtain inequalities
for sums of higher degree homogeneous functions.
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