2

vy

Ty

Graphs and Combinatorics 3, 111-126 (1987)
Graphs and
Gombhinatorics

{© Springer-Verlag 1987

The Maximum Number of Edges in a 3-Graph
Not Containing a Given Star

F.R.K. Chung! and P. Frankl?

! Bell Communications Research, Morristown, NJ 07974, USA.
2 CNRS, Quai Anatole France, 75007, Paris, France

Abstract. Suppose that & is a collection of 3-subsets of {1,2,..., n} which does not contain a k-star
(ie., k 3-sets any two of which intersect in the same singleton). For k = 3 and n 2 n,(k), the
collections having largest possible sizes are determined.

1. Introduction and Statement of the Results

Let & be a family of 3-subsets of X = {1,2,...,n}. Such a family is often called

" a 3-graph. A k-star is a collection of k distinct sets which intersect pairwise in the

same one-element set. In the language of Erdds and Rado [8] a k-star is a strong
4-system with kernel of size 1. One of the basic problems in extremal set theory is
to find large families of sets which do not contain certain strong 4-systems. This
problem is not only interesting in its own right, but it also has applications in
various problems arising in theoretical computer science.

Let f(n, k) denote the maximum number of edges (or 3-sets)in a 3-graph without
a k-star. For the case of k = 2, the value was determined exactly by Erdds and Sos
[14]. Namely,

n if n = 0(mod 4)
f(m2)=<n—1 ifn=1(mod 4)
n—2 ifn=2or3(mod4)

The extremal families are basically the disjoint unions of 3-graphs consisting of all
3-subsets of a 4-element set. The situation gets more compiicated for k > 3. Duke
and Erdds [5] obtained lower and upper bounds for f(n, k) which are linear in n
for fixed k. Their bounds were improved in [11], where, f(n, 3) was determined for
n > 54. The bounds for f(n,k) were further improved in [2], where, nearly best
possible bounds were obtained.

The aim of this paper is to determine the exact value of f(n, k) and the structure
of the largest families which do not contain a k-star. Before we start analyzing such
optimal families, we will first illustrate-a few examples:

Example 1. Let G and H be two disjoint sets of X of size k. Consider a family of 3-sets
of X # ={F:(IFNG|>2and [FNH|=g) or (|[FNH|>2 and FNG = @)}.
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Suppose k is odd. Then it is easy to check that % contains no k-star. Furthermore
|l = (1 — 20)k{k — 1) + z(;‘)

Example 2, Let G, be the (2-) graph with 2k — 1 vertices, called x,, ..., x,_,:
Yis+..5 Ve—y and z. The edge set of G, consists of all the pairs (xi,yl-), except for (x;, y,-)
with 2i > k together with the pairs (x;, z), (y;,2) with 2 > k. It is easy to see that for
k odd, G, is regular of degree k — 1 and for k even it has all degrees equal k — 1
except for the degree of z, which is k — 2.

Let (G, ) consist of 3-subsets of X each of which either intersects the vertex set
V(Gy) of G, in an edge of G, or contains two edges of G,. Again it is easy to check
that %(G,) contains no k-stars, If k is even, #(G,), however, is not a maximum
3-graph containing no k-star. We can add to #(G,) all the triples of the form

{x,ynz} with 1 <i < k/2. The resulting graph, denoted by #(G,) still contains
no k-star,

Remark 1.1t can be easily verified that, for k odd,

F(G)l = (n — 20 + 1)(Zk -~ Ig(k— 1) (k- 1)<k; 1) B 2(k — )(k—3)

4
= k= D1 ]2)(]‘ —1_ (k = 12(k + 2).

A straightforward computation shows that |F(G,)| < |%]| if and only if n >
(4k? — 2k + 12)/3,

The main results of this paper consist of the following two theorems. In the first
theorem we determine exactly f(n, k) for k odd and n large. We also show that the
extremal graphs which achieve S(n, k) are #’s. In the second theorem we take care
of the case of & being even by showing that & (G,) are the extremal graphs which

achieve f(n, k).

Theorem 1.1. Suppose that k > 3 is odd and n > k(k — 1)(S5k + 2)/2. Then f(n,k) =
k

nk(k — 1) + 2 (3) Moreover, a 3-graph & has f (n. k) edges and contains no k-star

if and only if & is isomorphic to %,

Theorem 1.2. Suppose that k > 4 is even and that n > 2k® — 9k + 7. Then flnk) =
~ 2k — )k —-1)—1 k—1 k—2
]ﬁ*’(Gk)|=(n—2k+1)( ‘ )(2 ) +(2k—2)( 5 >+< >_

2
—2)(k — 4 k—3 1
&-—%L—) + %{‘: nk~(27~) - -2—(2k3 — 9k + 6). Moreover, a 3-graph % with

S(n, k) edges contains no k-star if and only if F is isomorphic to & (Gy).

The proof of both theorems is based on properties of a weight function which

is a simplified and improved version of the one used in [2]. In the case of even k
there are further difficulties which lead to a new type of extremal graph problems
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(cf. section 5). These difficulties arise from the fact that many (2-) graphs with

maximum degree k — 1 contain no k independent edges and have the maximal

2k — k-1 -1
2

a 3-graph without k-stars and the number of edges of such 3-graph is within a

constant number of the optimum.

The paper is organized as follows. The weight function is introduced in Section 2.
Section 3 establishes the main lemma concerning the weight function. The proof of
Theorem 1.1 is given in Section 4. Section 5 deals with the minimum number of
triangles in a graph with prescribed degree sequence. These results are used in
Section 6 to prove Theorem 1.2. Section 7 gives a short overview of related

problems.

edges. Each of these graphs can be used to construct

number of

2. A Weight Function

Suppose that & is a family of 3-element subsets of the n-set V = V(H). Let P denote
the set of all pairs of vertices in V. We define, for each {u, v} in P, the pair frequency

z2(u,0) = [{w: {u,v,w}e F}|.
We also define
A= {{u,v}eP: z(u,v) = 2k — 1}
Bi= {{uv}eP: 2k —2 > z(u,v) = k}
C=P—-—A-B

Now we define a weight function w: & x P — R which distributes weights to
pairs within each triple in # according to the pair frequency.

For a fixed triple Te # we denote by py, p2, ps the three pairs in T with
2(p,) = 2(p,) = z(p;). The weight function w is defined as follows:
(1) If p;, py, Pa€ AUBOI Py, pa, p3€BUC, then W(T;pi) = 1.
(i) Suppose p; €A, p;eC.1p,eAUB, then w(T,p1) = w(T,p;) = 5. W(T, p3)=0.

If p, e C then w(T, p;) = 1, w(T,p;) = w(T, ps) = 0.

(ili) For convenience we set also w(T,p) =0forp¢ T.
Obviously, we have

1

Y, w(hp)=1 (2.1)

1<ig3

and

Y S w(Tp) =|F| (2.2)

TeF p

For a vertex v, we define N(v) to be the set of all pairs p with the property that
the union of v and p is a triple in &. Clearly N (v) is a 2-graph.

Lemma 2.1. Suppose that & does not contain a k-star. Let v be a fixed vertex and
let r,(ry,73) denote the number of vertices u with {u,v} € A(B, C) respectively.
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Then we have
(i) n<k—1landifr, =k—1thenr,=ry=0.
.. r 1
(II) 5T +‘2‘2'Sk‘“'2*.

Proof. (i) is obvious (cf. also [2], [10]). We only have to consider (ii).

Let G denote the induced subgraph of N(v) on the set of all points 4 with
{u,v}¢ A. I G contains k — r, vertex-disjoint edges, then we can find a k-star
centered at v by considering these k — r, triples formed by these vertex-disjoint
edges plus vand r triples each containing exactly one of the pointsu’ with {u’,v} e A4,
Therefore, we may assume that the maximum matching in G, say E|, ..., E, satisfies
h<k—r — 1. Define ¥ = E,U--UE,. We want to show that there is at most
one vertex u with {u, v} € B which is not in Y. Suppose the contrary. Then there are
two vertices u, u, not in Y and {u,,v}, {u,,v} & B. For Ej={x1,x5} if {xy,u,} is
in G, then {x,,u,} is not in G because replacing E;by {x;,u;} and {x,,u,} would
give a larger matching, Thus the number of edges from u;, u, to Y is at most 24,
Since {u,,v}, {u,,v}eB, u, i=1,2,is adjacent to at least k —r, > ki + 1 points
in G. Therefore, either u, or u, must be adjacent to some point not in Y which
contradicts the assumption that the E/'s form a maximum matching. Therefore, we
haver, <2h+ 1 <2(k —r, ~ 1} + 1 as desired.

Lemma 2.2. Suppose that # contains no k-star. Then for any two vertices u and v
we have

W=§:w({y,u,v},{y,u})sk— L (2.3)

Moreover, W < k — } unless {uv}eC, z{uv} =k —1 and for k — 1 y's w({y,u, v},
{»u}) =1 holds.

Proof. We consider three possibilities:
() Suppose {u, v}ed,
By definition w({y,u,v}, {»u}) =0 unless {y,u}e AUB and the weight is at

most 1/2. From Lemma 2.1 and {u,v} € 4 it follows that there are at most 2k — 3
choices of y contributing positive weight. Thus

Wik —3)=k—3p,
(i) Suppose {u,v}eB.

Now z{u,0} <2k — 2 and each term in the summati

\ . on is at most 1/3 except
possibly terms with {, u} e A. However, by Lemma 2.1(i

), this number is at most
k — 2. This gives an upper bound %(k -2)+ %k =k-1- ]—c
(iii) Suppose {u,v}eC.

Now z{u,0} <k — 1, which implies (2.3). Ifz{uv} <k — 2then W<k —2 <

k-3
Similarly, W < k — 3 unless for k — 1 y
s W< y's one has w({y,u,v), =
thus {y,u}e 4 and {yv}ecC ({3, v} {nu})=1 aréi
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3. More Bounds on the Weight Function

A classical theorem of Berge [1] states that the size of a maximum matching,
denoted by ¥(G), in a graph G satisfies

(6) = minls +5(¥(0) — 151~ (6 - ) (3.1)

where S ranges over all S € V(G) and ¢(G — S) denotes the number of odd com-
ponents in the induced subgraph of G on ¥(G) — S.

Let now # be a 3-graph without a k-star and v be an arbitrary vertex of .
Applying (3.1) to the neighborhood graph G =N (v) we infer the existence of
S = S(v) satisfying

S| + %(IV(G)| —1S|—¢(G—S8) sk -1

Furthermore, let j; denote the number of components of G — S of size i. Then
we have

7 2

even

P %ji + 3 i 1)j,- +1S|<k—1. (3:2)
odd

Lemma 3.1. For every vertex v in a 3-graph & which does not contain a k-star, the
following holds:
W, = Zvl( )W({v} Up,p) < k(k — 1). (3.3)
peN(v

Moreover, W, < k(k — 1) —% unless G =N (v) is the disjoint union of two complete
2-graphs on k vertices and every edge of G is in A.
If k is even, then one has the stronger inequality

W,,sk(k—%). (3.3)

Moreover, W, < k(k — %) — % unless (a), (b) and (c) hold.
(a) G — S consists of isolated vertices and one connected component with 2k — 1 — 215|

vertices and degree sequence k — 1, ..., k—1,k—2;
(b) the rest of G is the edge disjoint union of |S| stars, each with degree k — 1; and
(c) every edge of G isin A, and all edges connecting v to G are in C.

Proof. We break up the summation in (3.3) according to where the edge p is lying.
Let K be a component of N(v) — §. Then

S w(pU{vhp) < (”2(1> (3.4)

peE(C)

<and < <112<|> — 1 unless K is a complete graph).

If K has more than k vertices then (3.4) can be improved using Lemma 2.2:
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w(pU {v},p) =

PEE(C)

w({y,w0}, {u,y})

uek yek

IK|(k — 1). (3.5)
For edges p with at least one endpoint is S, we have
Lo wpUfohp) < T T w({yy v} {u,v})
PeNW),pNS g ues 'y
<I8|(k - 1). (3.6)

Suppose first that every component has no more than k vertices. Then (3,4), (3.6)
and (3.2) imply, for k& even,

<

B~ N3 =

>, wpU{ohp) < > ii’;ji + il 1)jk + (k= 1)|5|

PEN(v) i<k 2

i—1 i
< (k— 1)(2 Tji + Z Ej" + ISI) <(k—1)2
odd cven

For k odd, similarly we have

PeN()

wpU{ohp) <3, i%ji + (k — 1)|3]

< k(Z —lle,- + 3 21_1;- + I51) < k(k — 1),
ocid cvlen
Moreover, one has < k(k — 1) — 1in either the following cases. S # g j, # 0 for
some i < k. Suppose now that W, > k(k — 1) — 1. Then Ji=0unless i = k = odd
and § = g. Therefore N (v) has exactly two components of size k. In view of the
remark in brackets at (3.4) both components are complete graphs of order k.
Since # contains no k-star, all pairs {u, v}, with u in the complete graphs, are
.in C. Thus for an edge {u1,9,} of the complete graphs w({v,u;,u,}, {u,, u}) <%
holds unless {u1,u,} isin A. This concludes the proof of the lemma for the case of
all components having no more than k vertices.

Next we consider the case when there is a component of size greater than k
(by (3.2) one could not have two such components).

Let D denote this large component and Suppose that it has d vertices, Again by

(32) we have d < 2k — 1, Also, all the other components have size smaller than k.
Summing up (3.4), (3.5) and (3.6) gives

ms(k—l)(;%ji+;sl)+(k— Ik

<k~ 1)(2 1:21]}+ ) Eiji+ ISI)+£;S(1¢— 1)(k—%>. (3.7)

i
odd even

For k 0dd the proof is complete.
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Now we deal separately with the case k even. Let us define the partition
V(D) = LUM, so that L consists of all vertices of D whose degree is at least k or
who are adjacent to a vertex of degree at least k in N(u).

Then for ue L one has ¥ w({y,u,v},{y,u}) < k — } by Lemma 2.2. Therefore the

total weight distributed to edges of D is at most% |M|(k— 1)+ |L| (k - %)) =

1 |L|
Now together with (3.4), (3.6) we get
i—1, i k—1 (L]
W, < (k—1 . L AT o
o=l )(i;;d 2 ]'+evzen21’+lsl)+ 2 4

3 1 |
$k<k—i‘>+§—“4—.

If N(v) has one vertex of degree at least k, then |L| >k + 1 > 4. We obtain
W, < k(k —3) — 3. We may assume that all vertices in D have degree at most

k—1.
The total weight distributed to edges in D cannot exceed the number of edges,

i.e., it is at most
LIDI(k — 1)/2] = |D|(k — 1)/2 — 3.

Thus on the RHS of the first inequality in (3.7) we can write instead of (k — 1)d/2
the above quantity, which is smaller by 1/2. This leads to

3
<klk—Z)

Moreover, we have W, < k(k — 3) — 5 unless D has degree sequence k—1,k—

1,...,k — 1,k — 2, and for every edge p in D w(p U {v},p) = 1and pe 4.
If W, > k(k — 3) — 3 then equality must hold in (3.6) as well as j; = 0 for i <k.

Now Lemma 2.2 implies the rest of the statement.
This proves Lemma 3.1.

Remark 3.2. From the proof above we note that if b edges of D have wleU {v},e) <1,
then W, < k(k — 3) — % holds.

4. The Odd Case
Suppose that for every v e V(%) one has
2
w({v}Up,p) < k(k — 1)—§ (4.1)
peN(@)

Summing over v and using (2.2) yields

If”f|=TZ”~ ZTw(T,p)=Z Z)w({u}Up,p)Snk(k—1)——2n/3.

eF pc p peN(




T

118 F.R.X. Chung, P. Frankl

k
Forn > k(k — 1)(5k + 2)/2, one has nk(k — 1) — 2n/3 < (n — 2k)k(k — 1)+ 2 (3)
The statement of the theorem then follows.

Suppose now that for some ve V(%) (4.1) fails. By Lemma 3.1 N (v) must be
the disjoint union of two complete graphs, say with vertex sets S and R where
[S] = |R| = k. Moreover, every pair p with p < S, orp< Risin A,

Claim 4.1, If Te# then |TNS|# 1 and I TNR| # 1,

Proof of the claim. Suppose without loss of generality that T,NR = {u}. Let
P15 -+ vy Pr—y be the pairs in R containing u. Since pis, 1<i<k—1, areall in A,
we can choose T;, 1 <i<k —1 such that pcTiand T, —{u), 0<i<k-— 1,
are all pairwise disjoint. To, 7o, ..., T, form a star with center {u}, which is a

contradiction. O
Claim 4.2. If p is a pair with IpNS|=1or|pn R| =1, then pe C holds.

Proof. Suppose that pN S = {u}. If p has degree at Jeast k, then one of the triples
T containing p satisfies TNS = {u}, contradicting Claim 4.1. ]

From Claims 4.1 and 4.2 it follows that for a vertex ues
function w(u U {p}, p)iszero unless p = § (P <R, respectively)

1/k—1 ’
is only 1/3. Consequently: 2 w({u}Up, p) < —(k 5 ) holds.
P

3
Summing this over ue SU R gives

k
Yw({u} Up,p) <2 (3) (4.3)
ueSUR p
Moreover, equality holds if and only if all triples in both §
Combining (3.3) and (4.3) yields in analogy with (4.2):
Fl= 2 Tv@Unn)+ Y T Up, )
P

#eSUR weV—(SUR) p

k :
< 2<3) +(n = 2k)k(k — 1), as desired.

If equality holds in the above ex
€ V(%) —~ (SURY). This implies that

S R
h
graphs (2) and (2)

(ueR) the weight
. Even then, its value

and R are edges of &.

pression, equality must hold in (3.3) for every
N (ﬁ) is the disjoint union of the two complete

Also, Claim 4.1 implies that the vertex set of the two complete graphs in N(5)

cannaot partition SUR in a different way. Since equality in (4.3) implies (i) cF
R

and (3) = &, we obtained

F = {Te(?):]Tﬂ(SUR)I 2 2and |TNS| # 1,|TNR| % 1}.

This completes the proof of Theorem 1.1,

W TR

TN

T T

|
{
E

Bef

wil
tio:

Tt i
trie

Th
2t

vie
nu

Pr

the

are

the

" in.



‘ranki

k

3 )
t be
here

les

ht
ue

3)

The Maximum Number of Edges in a 3-Graph Not Containing a Given Star 119
5. On the Minimal Number of Triangles in a Graph with Given Degree Sequence

Before we proceed to the case of k even, we examine an exiremal problem for
2-graphs which is crucial to the proof in the next section. In this section all graphs
will be 2-graphs. Let k = 2t + 2 > 4 and consider the graph G, from the introduc-
tion with vertex set {x;,...,Xg—1,¥1,.., Y1, 2} and edge set:

{(eny) i £ U{(xpy) 1 <i<t+ 1U{(Ex )Gt +2<i <k}

1t is easy to see that except for z, the graph G, is bipartite and G, contains (t — 1)t
triangles. Let 4(G) denote the number of triangles in G.

Theorem 5.1. Suppose G is a graph on 4t + 3 vertices and with degree sequence 2t + 1,
2t +1,...,2t + 1, 2t then we have

4(G) = (t— 1)t. (5.1)

Moreover, if 4(G) < t* — 1 then G is isomorphic to G,.

We remark that this leads to many interesting extremal problems which can be
formulated as follows: For given degree sequence (instead of the number of edges)
how many triangles (or other subgraphs) must G have? Such problems can be
viewed as extension of the well-known theorem of Turan about the maximum
number of edges in a graph which contains no small cliques.

Proof of Theorem 5.1. Tt is trivial for t = 1. Suppose ¢t > 2 and that G contains fewer
than 2 — 1 triangles. Then the triangles cover at most 3t> — 6 edges. Therefore

2t+1 .
there will be at least {(it__—i:_’a%_—i_—__)J — (3t — 6) — 2t = t* + 3t + 7 edges which

are not contained in triangles and with both endpoints of degree 2¢ + 1.
Let E, be the set of these, at least ¢* + 3t + 7 edges and for ee E, let (e) be
the number of triangles having one vertex in common with e. The number of edges

* in E, having one vertex in common with a fixed triangle is at most | V(G) — 3 =4t

Hence, 3 . 5, T(€) < 4t(t* — 2). By averaging we find e = {u, v} so that

4¢(t2 — 2)
’C(E) < {tz—-(ﬁt—'l—‘—?‘l =m. (52)

Let us set A, = {v} UN(u), B, = {u} UN(v). By definition 4,1 5, = &, |4,] =
|B,| = 2t + 1, We know that there are altogether at most m edges inside A4, or B,.
The total degree of vertices in A,U B, is (4t + 2)(2¢ + 1) or (4t +2)(2t + 1)~ 1
according whether or not the vertex of degree 2¢ is in 4, U B,. There is exactly one
vertex w in V(G) — 4, — B,.

Suppose, without loss of generality, that w is adjacent to no more vertices in 4,
than in B,. Let A; be the union of w and 4,. If 4, contains a vertex v which is
adjacent to fewer than ¢ vertices in B, then we can replace 4; by B,U {v} and. B,
by A, — {v} so that the total number of edges inside A, or B, decreases. Repeating
this procedure we finally obtain a partition 4 UB, with |4] =2t + 2,|B| =2t + 1;
every vertex in A is adjacent to at most ¢ other vertices in A and there are at most
m + t edges inside 4 or inside B. There are two very similar cases:
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Case (a). Suppose the vertex z of degree 2¢ is in A.

Let s be the number of edges inside B. Then degree considerations show that
there are s + ¢ edges inside A,

Thus we have

2s < m. , (5.3)

Note that if ve 4, v 5 2, has degree d, in A then it is not connected to exactly
d, vertices in B. For v = z, this number is d, + 1. Consequently, the number of
triangles in G with one edge inside A4 is at least

f+d+1)- ¥ g2- d,(d, + 1)
ve(d-{z}) (54)
=(+2+1)—d,~ Y a2
ved

Also, the number of triangles with one edge inside B is at least s — (2t + 2 — 25).
Since ), 4d, = 2(s + t), it is easy to minimize (5.4) for a given s. In fact, it amounts
to maximize ) d2, which is achieved by choosing the d, as widespread as possible
subject to the underlying constraints, ie., d, <t and the d’s form the degree
sequence of a graph with s + ¢ edges.

For s =0 the unique maximum is achieved by choosing d, = ¢, d,=1 for
t vertices and d, = 0 otherwise. Then the value in (5.4) is bounded below by
U+ 1) —t -2 —p=p2_ t,and we obtain G = G,. Note that if we choose d, =t
for some other vertex instead of z, then the number of triangles comes out at least
24+ 1)~1 2 —p=p2_ 1 Similarly, if the maximum degree is at most ; — 1
then we obtain at least £(2f + D=t —1)—(t—12-22_ t-1)=r24+1t-3
triangles. For ¢ = 2 we get from (5.2) s = 0. We may assume ¢ > 3, First, we will
deal with the case ¢ = 3 separately here. From (5.2) we derive s < 1. We only have
to consider the case that s = 1. We note that the number of triangles with one
edge inside B is at least 3. The value of (5.4) is bounded below by 7 (by choosing
the d,’s 4,2, 2, 1). The total number of triangles is 10 > 2 — 1.

Now it suffices to show that for 1 < s < m/2 the value of (5.4) is at least ¢ — 1
fort > 4,

From (5.2), we can deduce m < 4¢ and s < 2t. One can give explicitly the graph
minimizing (5.4). Namely (5.4) is minimized by the graph on vertex set {0, 1,2, ..., t}
and where 0, 1,...,a — 1 are connected to all other vertices and a is connected to 0,

L.,a—la+1,..,a+ bwhereata + b < rands + ¢ = at+a+b — (a ; 1).
Thereflore the following function fla,b)is a lower bound for (5.4):

f(a,b):(az+a+b-—(a;1))(2t+1)—t—at2—(a+b)2
= bla+1)* —(t —a — b)a?

We want to show that flab)=t? —1for1 <s <m/2 (i.e. t+1<at+a+b~

a+1<t m
2 )Pt
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The Maximum Number of Edges in a 3-Graph Not Containing a Given Star

To prove this, the calculation is done by crude manipulation as follows:

(1) We note that the second derivative of 1 (a,b)in b is —2, therefore the interior
minimum is attained at b= 0 or ¢t — a. However the case for b=t —a is
equivalent to the case of a being one larger and b = 0.

(2) From (5.2) we know thata=1fort =4, 5 and a < 3 for t > 6. We only have
to consider f{a,0) for a =2, 3,4 and the case of a=1and b= 1. Namely, it
suffices to show that f(1, 1) and f(2,0) are bounded below by t* — L fort = 4, 5
and to show £(1,1), f(2,0), f(3,0) and f(4,0) are = t* —~ 1 for t > 6.

By straightforward calculation we get

fL)=+t-521*—1 fort >4
f2.0) =2 =5t +3=21* -1 fort=4
f(3,0) =3 —13t+152¢*~1 fort =5
f(4,0)=4>—25t+42=21>~1 fort=6

This completes the proof of Case (a).

Case (b). Suppose z is in B. Let again s be the number of edges inside B. Then there
are s + ¢ + 1 edges inside 4 and thus 2s + 1 < m. (5.4) is replaced by the lower
bound
(s+t+ D2+ 1)— Y d2.
ved
Similar considerations as above give that this is always greater than (¢ + 1)(2¢ + 1) —
P—d—t=t2+2-321"-1 a

By essentially the same, but technically somewhat easier proof one can determine
the minimum number of triangles in a graph on 4t + 1 vertices and regular of degree
2t.

Let F* be the graph with vertex set {X;,..., X2, ¥1,-+-» Y2, 2} and edges {xi,¥;}
except for i = j < tand {x; z}, {y;, 2}, i < t. It is easy to compute thal A(F¥) =1 —t.

Theorem 5.2. Suppose that G* is a graph of order 4t + 1 and regular of degree 2t

Then 4(G*} > t* — t. Furthermore equality holds if and only if G* is isomorphicto F*.
O

For the proof of Theorem 1.2 we need some more bounds on the number of
triangles in graphs with given degree sequence.

Theorem 5.3. Let d >t > 1 be integers, d <2t and suppose that G is a graph
on 2d + 1 vertices with degree sequence 2t + 1, ..., 2t +1, 2t. Then 4(G) =

2t+1
(2d+1)6(2t+1)(4t+1_2d)_ t;— ‘

Proof. Let Q(G) denote the number of triples (X, y, z) of vertices of G with (x, y), {x, z)
edges and (y,z) a non-edge. If (y, z) is a non-edge, then it is contained in at most
the minimum of the degree of y and z such triples.
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This implies

Q(G)S((2d+1)_(2d+1)(2t+1)—1)(2t+ N2

2 2

On the other hand we have

1 2
2d<2t + ) + ( ) = Q(G) + 34(G).
2 2
Thus we infer

34(G) > ((2d + 1)(”;r 1) - 2t)
B («2d2+ 1> _(d+ 1)(22t + 1) — 1)(2t +1)— 2t>

2t +1

=(2d+1‘)2(2t+1)(4t+1—~2d)~— 0
, 2t +1) iderab]

Note that already for d = 2¢ we obtain A(G) > —3 which is considerably

more than the bound 12 — ¢ from Theorem Slford=2t+ 1.

6. The Even Case

Now we will prove Theorem 1.2 by considering the following three cases:

Case (a). For every vertex v one has W, <k(k—-3)~1
Summing over v gives

IF1=Y W, < nk(k -%) —321< |Z(Gy) forn>2k3 — 9k + 7.

Case (b). For some vertex v we have W,=k(k~3)and N (v) =G is a graph on
2k — 1 vertices with degree sequence k — Lo, k—1Lk—2

Since Lemma 3.1 implies that every edge of G is in A, by Lemma 2.1

triple Te # with non-empty intersection with ¥ = V(G)
conditions:

i) TNVisan edge of G,

() TV and T contains at least 2 ed
(i) TcV,zeTand T —
(iv) TNV = {z).

Since # contains no k-star with center z,
Also no two triangles in (iii) and (iv)
of triangles in G. Let there be g
nonzero.

(i) every
satisfies one of the following

ges of G;
{z} is an edge of G;

(iii) and (iv) cannot occur simultaneously,
intersect in only 7, Let 4 = 4(G) be the number
triples in (iii) and r in (iv), g and  can not both be

ges from v to V are in

C. This, in particular, implies q,
for all other triples Fe

r<max{3,k — 1}, Also & with Fn V+#g, Fd¢V and

NG
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The Maximum Number of Edges in a 3-Graph Not Containing a Given Star 123

ueFNV one has w(F,F — {u}) = 0. First we consider the subcase G ~ G, and

r=0.
Now |# | can be expressed as

F|=Y W+’.970(I;> < (n— 2k + 1)k(k~—%)+ y (dGz(”))—24+q.
k

véV veV
—2 k-4

Substituting the values k— 1, ..., k=1, k — 2 for dg(v), 4 = 5 and

using the fact that g < g, we have

k—-1>+(k~2>_(k~2)(k«—4)+§

17| < (n~ 2k +.1)k(k—%>+(2k~2)( 2 2 2 2
= |F(Gy)I-

If equality holds, then for all vertices v¢ V one has W, = k (k - %) This easily

implies N(v) = G, for all v. Furthermore, there is essentially only one way to have

qg=73.
2
The subcase G # G,, r = 0 is similar but somewhat simpler. Mainly, one notes
g <k —1 and uses the proof of Theorem 5.1 that 24(G) — 24(G;) = k — 4 and

therefore —24(G) + g < —24(G,) + gholds for k > 8. The same follows for k = 4

from 4(G) > 0 = 4(G,), and for k = 6 unless 4(G) = t* — 1 = 3. In this case one
can go through the proof of Theorem 5.1 to show that there is only one graph on
11 vertices, with the desired degree sequence and exactly 3 triangles and for this
graph g < 4 holds.

In the only remaining subcase G = G,, ¢ =0, one notes that for a triple
T = {x,y,z} in (iv) Lemma 3.1 implies w(T, {x, y}) + W, < k(k —3) + %.

Thus we infer

‘ 3\ 14
|9°‘|=ZW,,s(n—2k+1)k(k—§)+%+lﬁﬂ(3)‘

~ rok

Case (c). Suppose W, = k(k — 3) holds for some vertex v and N (v) contains non-

empty S as defined in Lemma 3.1.
Set s = | S|. We will use Remark 3.2 and Theorem 5.3. The rest of the proof will

be quite similar to the preceding case. We will be somewhat sketchy in describing
this proof. First note that if T = {x,y,z} is a triple of which at least two pairs are
in N(v) then we can add T to & and the resulting 3-graph still has no k-star. If
v is a vertex of D (as defined in the proof of Lemma 3.1) of degree k — 1, then
Lemma 3.1 implies that w(T, T — {v}) = 0 except possibly if T = V(D) and at least

two pairs of T are edges of D.
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Similarly to the case (b) the “extra contribution” of the vertex z of D of
degree k —2 is at most k — 1. It suffices to prove that =730z W, is less than
F(G) (k1) | o

Now for triples T with TNS # & let us change the weight function — if
necessary ~ so that W, becomes zero for all ue S, In fact ifue TN S then either one
or two of the pairs of T'through u are in N(p) (and consequently are in A). We put
all weight equally on these one or two pairs. One easily checks through the proofs,
that the inequalities concerning the weight function remain valid.

Note also that ifueS, yisavertex of N (v) which is connected to u, then in view

of Remark 3.2 the other k — 2 edges in N(v), connected to u, reduce W, by at least
k-2
7
k—2 k—1
These losses add up to at least (k — I)T— =1, )

Now we can write

f=U§zW,,£(n——2k+1+s)k<k_§)__(k;-l)_l_,g’_ﬂ(V(D;—z)

<(n-2k+1 +s)k<k—§>+(2k— 3 -'2s)<k; 1) +<k"2> — 24(D).

2
Or, equivalently:

f<IF(G) + s(k(k “’2‘) ~ 2<k; l)) - (k; 1) —%‘— 2(4(D) — 4(Gy)).

3 k—1 3
Notethatk(k—§)~—2( 2 >_§k_2

By applying Theorem 5.3 we obtain

f<|37(Gk)]_.k+<S<§k_2)+§_(k;1)_(2k—1—25)gk—1)(2s_1)

foa— "

3 2 2

The term in brackets is

k—1 k-2 k-4)

a polynomial of degree 2 in s, which is negative for k > 4
ats=land s =

—Z thus it is negative for 1 < s < (k — 2)/2 yielding the desired

inequality:
[<IZ(G)l -k O

7. Related Problems

A general problem first considered by Duke and Erdés [5] is the following;
Letr, k, t be integers satisfying 0 < ¢ < rr>3

» k 2 2. Denote by fi (n,1,k, £) the
. . . |4
maximum size of a family & ( r)’ [Vl = n such that # contains no sunflower

sur

R

D LR —

-] N
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of type (k,t), i.e., there are no Fi, ..., F,e # so that for some z-element set T and
alll1<i<j<konehas FNF;=T.

In fact, Erd6s and Rado [8] have already introduced the function y(r, k) which
is the maximum size of a family & of r-element sets such that & contains no
sunflower of size k, ie, no Fy, ..., F, have pairwise the same intersection.

It is trivial that y(r,2) = 1. In [8] it was proved that y(r,k) < r!(k — 1) and
Erdés [7] proposes the problem of deciding whether /(r,3) < ¢* holds for some
absolute constant c.

Suppose now that #” is a collection of y/(t + 1, k) subsets of size ¢ + 1 containing
no sunflower of size k. Let V be an n-element set containing V() and define

| 4
F(H) = {F e( . ): FnN V(J’f)eﬂ}. It is easy to check that %#(s#) contains no

sunflower of type (k,t) and

| ()] = (W (t + 1,k) — o(1)) (" -t 1)

r—it—1

This construction is believed to be essentially best possible for r > 2t + 1. The
following results confirmed several special cases of this conjecture.

k=2t=0 Erdds-Ko-Rado Theorem [9]
k=3t=0 Erdos [6]

k=2,r=3,t=1 Erdssand Sés [14]
k=2,r>2t+ 1 Frankl and Fiiredi [12]
k=3,r>2t+ 2 Frankl and Fiiredi [13]

In this paper we gave the complete solution for the case r = 3, ¢t =1, n > n,(k).
In [12] f(n,r,k, t) = O{n') is proved for r < 2t + 1 and for all k.

Another general direction is the problem of unavoidable hypergraphs. Namely,
for given n and m what is the maximum number g(n, m,r) of edges in a r-graph
G which is contained in every r-graph on n vertices and m edges. Various results
concerning the cases = 2, 3 can be found in [3] and [4]. The maximum un-
avoidable r-graphs are often not sunflowers but combinations of sunflowers of
different types. Results on unavoidable sunflowers are often very useful in studying
unavoidable r-graphs in general.
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