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Ezhaustive self-testing of combinationel circuttry within the frame-
work of the LSSD design discipline requires that every output node depend
on o small number of input nodes. We present efficient algorithms that
take an arbitrary block of combinational logic and add to it the small-
est number of bits of new LSSD registers necesaary to: (1) partition the
logic 80 that no output depends on more than k inputs, and (2) main-
tain timing within the block (so that all input-to-output paths encounter
the same number of register bits). Our partitioning algorithme conform
to two different design constraints. We also show that the unconstrained
partitioning problem is NP-complete.

1 Introduction

Integrated circuit technology, most particularly VLSI, has rendered
the problem of circuit testing more difficult in at least three re-

" spects:

l e Scale: VLS! circuits have tens or even hundreds of thousands

of devices, compared to the few hundreds of devices of earlier
technologies.

o Access: Components on a chip can generally be probed only
from a small number of pins along the peripheries, so that
most devices cannot be directly accessed.

o Fault Models: Perhaps worst of all, the “old reliable” single
. stuck-at fault model is of limited validity, in terms of both
single faults (fault numbers increase with area and densities)
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and stuck-at faults (VLSI devices have many nasty ways of
failing). ) )

Somevg};a& moderating these ways in which testing has become
harder azesewo-new avenuey for solving the problem) First, certain
VLSI design styles, such as LSSD [5] obviate testing sequential
circuits; their register-to-register design discipline allows all logic
to be tested as combinational logic (after the registers have been
tested). Seeend Fhe vastly increased densities of devices on chips

allows one to contemplate the use of self-testing circustry (STC),(£57 )

extra circnitry whose role is to test the other circuitry)'fl‘he STC
must be very small compared to the working circuitry, and so can
comfortably be tested via external probes. In order for self testing
to become a viable approach to the testing problem, it must be
achieved within the following constraints:

¢ The STC must occupy a very small fraction of the chip area;

é ¢ the STC must not appreciably degrade the performance of
i the circuit;
|

\1 o the process of testing must not be excessively time-consuming;

¢ the STC must give good fault coverage.

The LSSD design discipline yields an approach to self testing
that satisfies these criteria in many situations. Specifically, at the
cost of very little additional circuitry, one can add linear feedback
[13] to the LSSD registers, thereby converting them in test mode
to test generators [2, 10-12] which create the test inputs for each
combinational logic block and to signature accumulators (1, 3, 4, 7]
which collect the output results for subsequent analysis. The choice
of appropriate linear feedback is crucial if one wants to be assured
of good fault coverage. Indeed, in the absence of generally accepted
fault models for VLSI circuits, the authors of [2, 10-12] have pro-
posed to add linear feedback that will test the combinational logic
blocks ezhaustively.

The major shortcoming of this suggestion, as noted in [2, 10],
is that exhaustive testing presupposes small “cones of influence” in
the logic block to be tested; i.e., no output node of the circuit can
depend on more than some small number (call it k, suggested to
be about 20 in [2]) input nodes, since 2* cycles would be required
to test such an output node. The authors of [2, 10] suggest that
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circuits that violate this small-cone requirement be partitioned by
the addition of new LSSD registers, so as to reduce the size of
any offending cone. It is our goal in this paper to devise efficient
algorithms for performing this circuit partitioning in an optimal
way, i.e., by adding the minimum number of bits of new register.

One overall constraint on our partitioning algorithms is that
they not impair the correctness of the circuit by upsetting the tim-
ing of the circuit. Our specific concern is that added registers not
change the lengths of only some input-to-output paths. Thus we
shall interpret the mandate to partition the circuit as requiring
that all input-to-output paths receive the same number of bits of
new register.

In summary, this paper is devoted to presenting efficient algo-
rithms that take an arbitrary block of combinational logic and add
to it the smallest number of bits of new LSSD register that will:

e partition the logic so that no output depends on more than
k inputs (k being an input to the algorithm), and

¢ maintain timing within the block (so that all input-to-output
paths encounter the same number of bits of register).

We present efficient partitioning algorithms that conform to
two different design constraints: the edge partitioning constraint
discussed in Section 3, and the levelled partitioning constraint dis-
cussed is Section 4. Finally, in Section 5, we show that the uncon-
strained partitioning problem is NP-complete.

2 LSSD partitioning

Level Sensitive Scan Design (LSSD) [5] is a design discipline that
reduces the impossibly hard problem of testing sequential circuitry
to the very hard problem of testing combinational circuitry. The
essence of the approach is to design all circuitry in a register-to-
register format, with blocks of combinational circuitry intervening,
and with all feedback loops also being register-to-register. Addi-
tionally, each register is designed to be convertible to a shift regis-
ter for purposes of scanning test inputs in and test results out. In
operation mode the registers merely latch the signal lines between
blocks of combinational logic; in ¢est mode each input register scans
in an input vector and transmits the vectar to the combinational
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logic, while each output register collects the output of the logic
block and scans that vector out.

This section investigates ways to partition a large combinational
circuit by inserting extra LSSD registers. We illustrate some of the
main concerns with an example. Figure 1a shows the skeleton of
a combinational circuit; the nodes denote boolean gates, and an
edge from one node to another signifies that the output of the first
node is an input to the second. In general, the value computed at a
node is determined by each input from which the node is reachable
by a directed path. Thus, in Figure la, the output depends on the
values in 8 input registers. Suppose that for purposes of testability
we require that no node be affected by more than four registers in
one clock cycle. By placing additional registers as in Figure 1b, the
output (and in fact every node) is affected by at most four registers
in one clock cycle; since every path from inputs 1, 2, 3, and 4 is
blocked by a new register, these registers can affect the value of the
output only at the next clock cycle. The modified circuit therefore
meets our requirement for testability.

Unfortunately, the modified circuit is not functionally equiv-
alent .to the original one. This inequivalence stems from timing
considerations: in test mode, the values computed at nodes A and
B will arrive as inputs to node C at different clock cycles. As a
consequence, the output of the modified circuit is affected by the
initial values in the new registers, and will differ from the output
of the circuit of Figure la.

Since we are only inserting new registers without structurally
modifying the circuit, the modified circuit will be equivalent if and
only if each node receives all values computed by its predecessors
in the same clock cycle. At any given node this condition is met if
every path from any input to the node contains an equal number of
registers; since every input encounters an equal number of registers
to a node, and every register contributes a delay of one clock cycle,
every input to a node arrives at the same clock cycle. Figure lc
shows a circuit that is equivalent to the circuit of Figure la, in
which every node depends on at most four registers. Although this
solution uses more registers than our original attempt at a solution,
one can verify that it cannot be improved on.

It is important to mention here that under normal operation
the registers inserted for testing may be bypassed using simple
circuitry. In this case one may ask whether it is at all necessary to
add extra registers simply to preserve timing equivalence: why is it
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critical that the circuit compute the same function under both test
and normal modes? To counter this argument, observe that the
bypass circuitry will upset the timing of the circuit during normal
operation; consequently, we need to insert equal delays {which may
be introduced by means other than extra register bits) along every
input-output path. Our intent is to focus on both the added delay
and the extra hardware, hence our simplifying assumption that the
delays are added by extra register bits.

In the example above, we placed registers on the nodes and
not on the edges of the input circuit. When each node denotes a
boolean gate which computes a single value that is sent to other
nodes, this is only reasonable, since there is no need to store the
same value more than once. A node may, however, also be used
to represent a combinational circuit module, an adder for exam-
ple, whose output values are not all the same. In this case one
register cell must be placed on each outgoing edge of a node, be-
cause each edge carries a different computed value, We distinguish
between these two models: in the node partitioning model regis-
ters are placed on nodes, whereas in the edge partitioning model
registers are placed on edges.

In practice, many circuits are designed so that nodes fall into
distinct levels, with edges directed only between consecutive lev-
els. The FFT network is an important example of such a levelled
circuit. In partitioning levelled circuits, a designer might require
(for instance, to preserve synchronization) that for any given level,
registers be placed either on every node on that level or on none
of them. We call such a node partition a levelled partition. When
a levelled circuit is symmetric in the way that the FFT circuit is,
optimal node partitions are automatically levelled partitions. As a
final note, observe that levelled partitions automatically maintain
timing equivalence,

In summary, the two quantities that we wish to minimize are:

o the total number of bits of register added to the circuit, and

e the delay introduced, as measured by the number of registers
along any path from an input to an output (any input and any
output will do, since the modified circuit maintains timing
equivalence).
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3 Computing optimal edge ‘partitions

This section presents an efficient algorithm for computing optimal
edge partitions for circuits satisfying the property that the fan-out
at each node is no greater than the fan-in. Certain circnits may
not obey this fan-in/fan-out constraint, as, for instance, when the
result of one computation is used repeatedly. In general, however,
one would expect the fan-out of a node to be reasonably small,
since it is costly to drive a signal across many wires. In the edge
partitioning model, a node is used to denote a circuit module and
many common circuit modules, such as adders and multipliers for
example, meet this fan-in/fan-out restriction, as do clocked closed
systems whose input and output ports are the same.

A combinational circuit is modeled as a directed acyclic graph.
Nodes of indegree O are the inputs to the circuit, and nodes of
outdegree O are the outputs. We assume that circuit inputs initially
reside in registers, and that the value computed at each output
node is loaded into a register. An assignment ¢ of registers to
edges of a directed acyclic graph G is said to be well-timed if the
number of registers along every path from an input to an output of
#(G) is the same. The delay of a well-timed assignment ¢ equals
the number of registers along any input-output path of ¢(G).

We say that (the computation of) a node v dependson a node
u if there is a directed path from u to v in the circuit. If ¢ is a
well-timed assignment of registers to G, and R is a register from
which there is a directed path to a node v which does not contain
any intermediate registers, then v depends on register R within the
same clock cycle. The register dependency of a node v in a well-
timed circuit is the number of registers that v depends on within
a clock cycle.

The optimal edge partitioning problem is precisely stated as
follows:

Input: A directed acyclic graph G and an integer k.
The indegree of each node v in G (except inputs) is no smaller

than the outdegree of v, and k is greater than the indegree of every
node.

Output: A well-timed assignment ¢ of registers to edges which
uses the minimum number of registers and introduces minimum
delay, and for which every node in ¢(G) has register-dependency
no greater than k.
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Figure 2: The retiming operation.

Two simple observations underlie the algorithm. The first is
the use of the retiming operation to maintain timing equivalence
while moving registers around in the circuit. Suppose that every
outgoing (incoming) edge incident to a node has a register on it.
By removing these registers and placing one on every incoming
(outgoing) edge incident to that node as in Figure 2, the resulting
circuit remains well-timed although the retimed node computes its
result one clock cycle later (earlier). Retiming has been extensively
used earlier in optimizing synchronous circuitry [8, 9]. Retiming is
a general operation in the following sense.

Proposition 1. Suppose that ¢, and ¢; are two well-timed as-
signments of registers to a graph G such that ¢,(G) and ¢3(G) have
equal delay. Starting with the assignment ¢, it i3 possible to obtain
the assignment ¢g using o sequence of retiming operations.

The second observation exploits the fan-in/fan-out restriction,
which guarantees that each application of the retiming rule which
pushes registers forward (from incoming to outgoing edges) cannot
increase the total number of registers in the circuit.

Proposition 2. Suppose that a well-timed assignment ¢,(G) s
obtasned from ¢,(G) by a sequence of retiming operations, in each
of which registers are pushed from sncoming edges to outgoing edges.
Then if G satisfies the fan-in/fan-out restriction (the fan-out at
cvery node 13 no bigger than the fan-in), the circust ¢,(G) contains
no more registers than does ¢2(G).
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Proposition 2 gives a strategy to compute an optimal edge par-
tition for graphs with the fan-in/fan-out property. For example,
consider a directed acyclic graph whose single output node is bad,
in that its register-dependency is greater than k, but all other nodes
are good, i.e., have register-dependency no greater than k. By plac-
ing a register on every incoming edge incident to the output node,
the output node becomes good because the number of incoming
edges (and hence its register dependency) is no greater than k. By
propositions 1 and 2, this assignment of registers is optimal both in
minimizing the delay and the total number of registers. In general,
if a node is good, there is no advantage in retiming it.

Algorithm I generalizes this simple idea to graphs with many
bad nodes and having multiple outputs. The algorithm proceeds
in stages. In each stage, we compute the register-dependency of
each node, to determine whether the node is good or bad; next, by
adding unit-delay we retime the circuit so that nodes which should
be delayed by one cycle are converted to good nodes. Then, proceed
to the next stage using the registers introduced in the previous
stage as the new inputs to a truncated circuit. The algorithm
terminates when each output is good, which also means that every
node in the circuit is good.

To see that the algorithm computes a minimum-delay partition,
observe that in the original circuit every minimally bad node (a
bad node each of whose predecessors is good) must be retimed to
perform its computation at least one clock cycle later. Similarly,
every node that is minimally bad at the start of the second stage
must be retimed so that it lags by at least two clock cycles — if
this were not the case, then the node would not be minimally bad
at the start of the second stage. By induction, it may be proved
that every node that is minimally bad at the beginning of the ith.
astage must be retimed to lag by at least ¢. In other words, the total
delay must be at least as large as the number of stages; since each
stage adds unit delay, the total added delay is minimum.

Next we argue that the algorithm computes a minimum-register
partition. Consider the nodes between (and including) the original
inputs and the minimally bad nodes. Since the algorithm pushes
registers only as far back as necessary, Proposition 2 implies that
the number of registers used within this portion of the circuit is
the minimum required. By extending the argument to portions
of the circuit that lie between successive stages of minimally bad
nodes, we can prove that the total aumber of registers used is the

————————
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1

2.

END

ALGORITHM I

Input: The adjacency list of a directed acyclic graph G = (V, E) and an
integer k. The indegree of each node v in G (except inputs) is no smaller
than the outdegree of v, and  is greater than the indegree of every node.

Output: A minimum-delay well-timed assignment of registers to edges
which uses the minimum number of registers, and for which every node
has register-dependency no greater than k.

BEGIN

Initialize # := V.
Compute the transitive closure T of the adjacency matrix of G.

Compute the register-dependency R(v) of each node v.
I I'is the set of inputs, R(v) := T ;¢; T(i,v).

. Compute the set V; of good nodes, and the set M of minimally

bad nodes. For each node w € M, if (v,w) € E and u €V, then
place a register on the edge (u,w). For each node w € M, compute
the number D(w) of registers placed on edges coming into w. If
an output node is good but there are bad nodes remaining, place
a register on the outgoing edges of the good output.

. Remove the set of good nodes from G, (set H:= H-V,). K H is

empty then halt.

- Recompute the register dependency R(v) of each vertex v in the

new graph as follows:

6.1. initialize R(v) := 0

6.2. for each w € M, if T(w,v) = 1 then update R(v) := R(v) +
D(w).

Go to step 4.
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minimum required.

Finally, for circuits with N nodes, the algorithm finds an opti-
mal partitioning in O(dN?) time, where d is the minimum overall
delay required to make each output good. Computing the tran-
sitive closure in step 2 takes O(N?) time because the number of
edges is O{IV). Once the transitive closure has been computed, the
register-dependencies and the minimal bad nodes in each stage are
computed in time O(N?) as well. Since the number of stages is
d, the overall running time is O(dN?). While the worst-case time
may be as high as O(N?), we believe that in practice the added
delay d will be small, and that the running time will be closer to
O(N?). We leave open the question of whether the algorithm may
be improved to always run in time O(N?).

AN
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Pigure 3. A levelled cincuit

4 Optimal levelled partitions

In a levelled circuit, the nodes are divided into levels, and all edges
are directed from nodes in one level to nodes in the next; edges may
not “jump” levels or remain within the same level. The circuit
is not required to satisy any other constraint, such as the fan-
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in/fan-out property. Figure 3 shows a levelled circuit. In a levelled
partition we are required to either place registers on every node
at a level or on none at all. We wish to find an optimal subset of
levels on which to place registers, so that every node is good. In
contrast to the previous section, this section will be concerned only
with minimizing the total number of registers, not the added delay.
In general there is a tradeoff between the number of registers and
the added delay so that both quantities cannot be simultaneously
minimized.

The simple strategy of “working forward” from minimally bad
nodes will not work for levelled circuits; pushing registers further
back could result in fewer registers overall. For example, consid-
ering only the first four levels of the circuit in Figure 3, although
the lowest bad node is at the fourth level (assuming & = 4), it is
better to place registers at the second level rather than the third.
But when we add the fifth level, we find that it is better to place
registers on the third level instead of the second and fourth levels.
In short, higher levels determine which lower levels should contain
registers.

Algorithm IT computes an optimal partition using the standard
dynamic programming technique. Suppose that we are given opti-
mal levelled partitions for the subcircuits induced by the first level,
by the first two levels, ---, and by the first | — 1 levels. The al-
gorithm uses these partitions to compute an optimal partition for
the circuit induced by the first ! levels.

We can prove by induction on the number of levels that algo-
rithm IT always gives an optimal levelled partition. For the circuit
induced by levels L; and L; no registers are required; since the
indegree of every node at level L; is no greater than k, every node
at level L; is good. For the inductive step, suppose that the algo-
rithm yields optimal solutions for circuits with { — 1 or fewer levels.
Consider any solution for a circuit with / levels. If any node at level
L; is bad, then the solution must place registers at level ¢, (i < )
such that ay; < k, otherwise there will still be bad nodes at level
l. Since the algorithm considers all such levels ¢, and combines
them with an optimal solution for the first ¢ levels, the algorithm
is guaranteed to find an optimal solution for the first { levels.

The running time of the algorithm is dominated by the time to
compute the transitive closure of the adjacency matrix. If the graph
has N nodes, then it has O(V) edges, so the transitive closure can
be computed in time O(N?). Given the transitive closure, the
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ALGORITHM 11

Input: The adjacency list of a levelled directed acyclic graph G = (V, E)
and an integer & which is no less than the maximum indegree in G. The
vertices in V' are divided into levels L;, 1 < 1 < m, with input set = I
and output set = Ly,.

Output: An assignment of registers to levels which uses the minimum
number of registers, and for which every node has register-dependency
no greater than k.

BEGIN

1.
2.

END

Compute the transitive closure T of the adjacency matrix of G.

For each level { compute the maximum dependency of a levgl z
node on nodes at level j, j < . More precisely, for each pair ¢, j,

1< j <i £ m, compute
a;; = MaXeeL; z T(u’")}
u€L;

. For the circuit induced by levels L; and L, the optimal solution

contains no registers.

. Forl > 2, compute and store an optimal solution S; for the circuit

induced by levels L,... ,L; as follows:
o for each level i (i < !) if ay; < k, consider the solution S;;
which combines the solution S; with registers at level 1.

o choose a solution from above which uses the fewest registers,
and call this solution S;.

. output the solution Sp,.
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a’s can be computed in time O(N?) in a straightforward manner.
Computing an optimal solution at level [ requires comparing at
most [—1 solutions each of which is obtained by a simple calculation
and a lookup, so that step 4 can be done in O(V?) time as well.

5 Untimed node partitions

In this section we show that the problem of optimally partitioning
a circuit by placing registers on nodes, and without maintaining
any timing equivalence is NP-complete. In other words, comput-
ing optimal partitions in untimed circuit models is intractable in
general. More precisely, we consider the following problem.

Untimed Node Partition: Given a directed acyclic graph G
with maximum indegree k (and a register on every input), and an
integer b, is there an assignment of b or fewer additional registers
to nodes of G so that every node has register-dependency at most
k? '

Theorem. The Untimed Node Partition problem is NP-complete.

Proof. The problem is trivially in NP. We reduce the 3CNF-SAT

problem [6] to Untimed Node Partition. Suppose that we are given
a formula ¢ over n variables z,...,z,, that contains m clauses
C;, 1 < 1 < m, where C; = (zi, V =i, V zi,). Construct the graph
G = (V, E) defined as follows.

The set V of vertices is:

{zl'sfl'sciadhtl'ad:':d:" i 1555", ISJ‘vaOSlS4n_1}'

The d;’s are the inputs of G. The set of edges is:
{(dsi-1, %), (dsi-2, %i), (dui=3, %), (dai-a, %) | 1 S¢S n}
U{(Z.’,C,’) | z; is in C},1 <i1<n,1 S]Sm}
U{(%.C;) | TisinCj,1<$<n, 1< <m}
U{(=i, ), (i, i), (s 1), (dF,85) | 1 <9< n}.

Finally, to complete the reduction, set k = 5 and b = n. Figure
4 illustrates the reduction with an example. We claim that ¢ is
satisfiable if and only if G can be partitioned with n registers so
that each output node C;,t; depends on at most 5 registers. To see
this; first suppose that ¢ is satisfiable. Pick a satisfying assignment,
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and for each ¢, place a register on node z; if z; is true and on node
%; if x; is false. Since at least one literal per clause is true, each
clause node has one or more predecessors with a register on it.
Similarly, each t; has a register on one of its predecessors. But
then the register-dependency of each output is at most 5 and so G
is an instance of our problem.

Next, suppose that G is an instance of the Untimed Node Par-
tition problem with k = 5 and b = n. Since each clause node has
three variable nodes as predecessors, each in turn with 2 inputs, it
must be the case that one predecessor per clause node has a register
on it. Furthermore, each ¢; has register-dependency 5, and the only
way to obtain this is by placing exactly one register on either z; or
%;. But this gives us a satisfying assignment. The result follows.

QED.

i

@ @, O ) Q,
#%%%%%%%%%%%ﬁodd@%ﬁﬁﬁﬁ%

Figure 4. Reduction fon (x) v x5 vx5) (%) V%, vX,)
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