C

Partitioning Circuits for Improved Testability

Sandeep N. Bhatt!, Fan R. K. Chung? and Arnold L. Rosenberg®

1Dept. of Computer Science, Yale University, New Haven CT 06520.
2Bell Communications Research, Morristown NJ 07960.

3Dept. of Computer Science, Duke University, Durtham NC 27706.

Ezhaustive self-testing of combinationel circuttry within the frame-
work of the LSSD design discipline requires that every output node depend
on o small number of input nodes. We present efficient algorithms that
take an arbitrary block of combinational logic and add to it the small-
est number of bits of new LSSD registers necesaary to: (1) partition the
logic 80 that no output depends on more than k inputs, and (2) main-
tain timing within the block (so that all input-to-output paths encounter
the same number of register bits). Our partitioning algorithme conform
to two different design constraints. We also show that the unconstrained
partitioning problem is NP-complete.

1 Introduction

Integrated circuit technology, most particularly VLSI, has rendered
the problem of circuit testing more difficult in at least three re-

" spects:

l e Scale: VLS! circuits have tens or even hundreds of thousands

of devices, compared to the few hundreds of devices of earlier
technologies.

o Access: Components on a chip can generally be probed only
from a small number of pins along the peripheries, so that
most devices cannot be directly accessed.

o Fault Models: Perhaps worst of all, the “old reliable” single
. stuck-at fault model is of limited validity, in terms of both
single faults (fault numbers increase with area and densities)

92

and stuck-at faults (VLSI devices have many nasty ways of
failing).))

Somevg};a& moderating these ways in which testing has become
harder azesewo-new avenuey for solving the problem) First, certain
VLSI design styles, such as LSSD [5] obviate testing sequential
circuits; their register-to-register design discipline allows all logic
to be tested as combinational logic (after the registers have been
tested). Seeend Fhe vastly increased densities of devices on chips

allows one to contemplate the use of self-testing circustry (STC),(£57)

extra circnitry whose role is to test the other circuitry)'fl‘he STC
must be very small compared to the working circuitry, and so can
comfortably be tested via external probes. In order for self testing
to become a viable approach to the testing problem, it must be
achieved within the following constraints:

¢ The STC must occupy a very small fraction of the chip area;

é ¢ the STC must not appreciably degrade the performance of
i the circuit;
|

\1 o the process of testing must not be excessively time-consuming;

¢ the STC must give good fault coverage.

The LSSD design discipline yields an approach to self testing
that satisfies these criteria in many situations. Specifically, at the
cost of very little additional circuitry, one can add linear feedback
[13] to the LSSD registers, thereby converting them in test mode
to test generators [2, 10-12] which create the test inputs for each
combinational logic block and to signature accumulators (1, 3, 4, 7]
which collect the output results for subsequent analysis. The choice
of appropriate linear feedback is crucial if one wants to be assured
of good fault coverage. Indeed, in the absence of generally accepted
fault models for VLSI circuits, the authors of [2, 10-12] have pro-
posed to add linear feedback that will test the combinational logic
blocks ezhaustively.

The major shortcoming of this suggestion, as noted in [2, 10],
is that exhaustive testing presupposes small “cones of influence” in
the logic block to be tested; i.e., no output node of the circuit can
depend on more than some small number (call it k, suggested to
be about 20 in [2]) input nodes, since 2* cycles would be required
to test such an output node. The authors of [2, 10] suggest that

?ﬁ

" tircuits that violate this s:

the addition of new LSSI
any offending cone. It is «
algorithms for performing
way, i.e., by adding the m

One overall constraint
they not impair the correc
ing of the circuit. Cur spe
change the lengths of onl;

- shall interpret the mand:

that all input-to-output p
new register.

In summary, this pape
rithms that take an arbitr
to it the smallest number

e partition the logic s
k inputs (k being ar

¢ maintain timing wit.
paths encounter the

We present efficient 1
two different design cons
discussed in Section 3, an
cussed is Section 4. Final
strained partitioning prot

2 LSSD partit

Level Sensitive Scan Desi
reduces the impossibly ha
to the very hard problerr
essence of the approach |
register format, with bloc
and with all feedback loc
tionally, each register is ¢
ter for purposes of scanni
operation mode the regist
blocks of combinational I
in an input vector and t1

-4

have many nasty ways of

which testing has become
:he problem) First, certain
obviate testing sequential
discipline allows all logic
er the registers have been
nsities of devices on chips

if-testing circuitry (STC),{£571)

other circuitry}{{The STC
*king circuitry, and so can
5. In order for self testing
iting problem, it must be
3!

1 fraction of the chip area;

grade the performance of

:cessively time-consuming;

rage.

1 approach to self testing
wtions. Specifically, at the
ie can add lsnear feedback
erting them in test mode
e the test inputs for each
e accumulators (1, 3, 4, 7]
(uent analysis. The choice
f one wants to be assured
ance of generally accepted
irs of [2, 10-12] have pro-
it the combinational logic

stion, as noted in (2, 10],
all “cones of influence” in
1t node of the circuit can
T (call it k, suggested to
cycles would be required
18 of [2, 10| suggest that

circuits that violate this small-cone requirement be partitioned by
the addition of new LSSD registers, so as to reduce the size of
any offending cone. It is our goal in this paper to devise efficient
algorithms for performing this circuit partitioning in an optimal
way, i.e., by adding the minimum number of bits of new register.

One overall constraint on our partitioning algorithms is that
they not impair the correctness of the circuit by upsetting the tim-
ing of the circuit. Our specific concern is that added registers not
change the lengths of only some input-to-output paths. Thus we
shall interpret the mandate to partition the circuit as requiring
that all input-to-output paths receive the same number of bits of
new register.

In summary, this paper is devoted to presenting efficient algo-
rithms that take an arbitrary block of combinational logic and add
to it the smallest number of bits of new LSSD register that will:

e partition the logic so that no output depends on more than
k inputs (k being an input to the algorithm), and

¢ maintain timing within the block (so that all input-to-output
paths encounter the same number of bits of register).

We present efficient partitioning algorithms that conform to
two different design constraints: the edge partitioning constraint
discussed in Section 3, and the levelled partitioning constraint dis-
cussed is Section 4. Finally, in Section 5, we show that the uncon-
strained partitioning problem is NP-complete.

2 LSSD partitioning

Level Sensitive Scan Design (LSSD) [5] is a design discipline that
reduces the impossibly hard problem of testing sequential circuitry
to the very hard problem of testing combinational circuitry. The
essence of the approach is to design all circuitry in a register-to-
register format, with blocks of combinational circuitry intervening,
and with all feedback loops also being register-to-register. Addi-
tionally, each register is designed to be convertible to a shift regis-
ter for purposes of scanning test inputs in and test results out. In
operation mode the registers merely latch the signal lines between
blocks of combinational logic; in ¢est mode each input register scans
in an input vector and transmits the vectar to the combinational

93

logic, while each output register collects the output of the logic
block and scans that vector out.

This section investigates ways to partition a large combinational
circuit by inserting extra LSSD registers. We illustrate some of the
main concerns with an example. Figure 1a shows the skeleton of
a combinational circuit; the nodes denote boolean gates, and an
edge from one node to another signifies that the output of the first
node is an input to the second. In general, the value computed at a
node is determined by each input from which the node is reachable
by a directed path. Thus, in Figure la, the output depends on the
values in 8 input registers. Suppose that for purposes of testability
we require that no node be affected by more than four registers in
one clock cycle. By placing additional registers as in Figure 1b, the
output (and in fact every node) is affected by at most four registers
in one clock cycle; since every path from inputs 1, 2, 3, and 4 is
blocked by a new register, these registers can affect the value of the
output only at the next clock cycle. The modified circuit therefore
meets our requirement for testability.

Unfortunately, the modified circuit is not functionally equiv-
alent .to the original one. This inequivalence stems from timing
considerations: in test mode, the values computed at nodes A and
B will arrive as inputs to node C at different clock cycles. As a
consequence, the output of the modified circuit is affected by the
initial values in the new registers, and will differ from the output
of the circuit of Figure la.

Since we are only inserting new registers without structurally
modifying the circuit, the modified circuit will be equivalent if and
only if each node receives all values computed by its predecessors
in the same clock cycle. At any given node this condition is met if
every path from any input to the node contains an equal number of
registers; since every input encounters an equal number of registers
to a node, and every register contributes a delay of one clock cycle,
every input to a node arrives at the same clock cycle. Figure lc
shows a circuit that is equivalent to the circuit of Figure la, in
which every node depends on at most four registers. Although this
solution uses more registers than our original attempt at a solution,
one can verify that it cannot be improved on.

It is important to mention here that under normal operation
the registers inserted for testing may be bypassed using simple
circuitry. In this case one may ask whether it is at all necessary to
add extra registers simply to preserve timing equivalence: why is it

5
4
a7

Xl Xz X3)([4)(5

{1la) An untestable circ

A
A
IN/

L
(W

(le) An equivalent test

Figure 1: Registers must be

s the output of the logic

tion a large combinational

We illustrate some of the
+ 1a shows the skeleton of
ste boolean gates, and an
hat the output of the first
1, the value computed at a
‘hich the node is reachable
ihe output depends on the
for purposes of testability
jore than four registers in
gisters as in Figure 1b, the
1 by at most four registers
ninputs 1, 2, 3, and 4 is
can affect the value of the
modified circuit therefore

is not functionally equiv-
alence stems from timing
computed at nodes A and
fferent clock cycles. As a
circuit is affected by the
7ill differ from the output

sters without structurally
it will be equivalent if and
puted by its predecessors
de this condition is met if
ntains an equal number of
equal number of registers
a delay of one clock cycle,
ae clock cycle. Figure lc
3 circuit of Figure 1a, in
r registers. Although this
inal attempt at a solution,
d on.

under normal operation

2 bypassed using simple

xr it is at all necessary to

ing equivalence: why is it

S

«_ affected by

' b
N Fl 4]

. Xl %, X3 X, Xg X6 Xy Xg

(1a) An untestable circuit. .

\Rs
Ry Ryeaffected by
T {Rl,Rz,xpr}
A R
-

pal

(1b) An inequivalent testable circuit.

(le) An equivalent testable circuit

Figure 1: Registers must be placed in a way to preserve circuit timing.

critical that the circuit compute the same function under both test
and normal modes? To counter this argument, observe that the
bypass circuitry will upset the timing of the circuit during normal
operation; consequently, we need to insert equal delays {which may
be introduced by means other than extra register bits) along every
input-output path. Our intent is to focus on both the added delay
and the extra hardware, hence our simplifying assumption that the
delays are added by extra register bits.

In the example above, we placed registers on the nodes and
not on the edges of the input circuit. When each node denotes a
boolean gate which computes a single value that is sent to other
nodes, this is only reasonable, since there is no need to store the
same value more than once. A node may, however, also be used
to represent a combinational circuit module, an adder for exam-
ple, whose output values are not all the same. In this case one
register cell must be placed on each outgoing edge of a node, be-
cause each edge carries a different computed value, We distinguish
between these two models: in the node partitioning model regis-
ters are placed on nodes, whereas in the edge partitioning model
registers are placed on edges.

In practice, many circuits are designed so that nodes fall into
distinct levels, with edges directed only between consecutive lev-
els. The FFT network is an important example of such a levelled
circuit. In partitioning levelled circuits, a designer might require
(for instance, to preserve synchronization) that for any given level,
registers be placed either on every node on that level or on none
of them. We call such a node partition a levelled partition. When
a levelled circuit is symmetric in the way that the FFT circuit is,
optimal node partitions are automatically levelled partitions. As a
final note, observe that levelled partitions automatically maintain
timing equivalence,

In summary, the two quantities that we wish to minimize are:

o the total number of bits of register added to the circuit, and

e the delay introduced, as measured by the number of registers
along any path from an input to an output (any input and any
output will do, since the modified circuit maintains timing
equivalence).

3 Computing «

This section presents an ej
edge partitions for circuits
at each node is no greate;
not obey this fan-in/fan-o
result of one computation
one would expect the fan
since it is costly to drive :
partitioning model, a nod¢
many common circuit moc
example, meet this fan-iny
systems whose input and «

A combinational circui
Nodes of indegree 0 are 1
outdegree 0 are the output:
reside in registers, and it
node is loaded into a reg
edges of a directed acyclic
number of registers along «
¢(G) is the same. The de
the number of registers ali

We say that (the comg
u if there is a directed pa
well-timed assignment of
which there is a directed §
any intermediate registers.
same clock cycle. The reg
timed circuit is the numb:
a clock cycle.

The optimal edge par
follows:

Input: A directed acyclic
The indegree of each nod

than the outdegree of v, a1
node,

Output: A well-timed a
uses the minimum numb¢
delay, and for which ever
no greater than k.

ne function under both test
wgument, observe that the
f the circuit during normal
rt equal delays {which may
‘a register bits) along every
us on both the added delay
lifying assumption that the

egisters on the nodes and
When each node denotes a
value that is sent to other
ere is no need to store the
1ay, however, also be used
odule, an adder for exam-
1e same. In this case one
tgoing edge of a node, be-
uted value. We distinguish
: partitioning model regis-
1e edge partitioning model

1ed so that nodes fall into
* between consecutive lev-
example of such a levelled
, a designer might require
n) that for any given level,
: on that level or on none
a levelled partition. When
iy that the FFT circuit is,
ly levelled partitions. As a
ns automatically maintain

we wish to minimize are:
* added to the circuit, and
by the number of registers

output (any input and any
1 circuit maintains timing

97

3 Computing optimal edge ‘partitions

This section presents an efficient algorithm for computing optimal
edge partitions for circuits satisfying the property that the fan-out
at each node is no greater than the fan-in. Certain circnits may
not obey this fan-in/fan-out constraint, as, for instance, when the
result of one computation is used repeatedly. In general, however,
one would expect the fan-out of a node to be reasonably small,
since it is costly to drive a signal across many wires. In the edge
partitioning model, a node is used to denote a circuit module and
many common circuit modules, such as adders and multipliers for
example, meet this fan-in/fan-out restriction, as do clocked closed
systems whose input and output ports are the same.

A combinational circuit is modeled as a directed acyclic graph.
Nodes of indegree O are the inputs to the circuit, and nodes of
outdegree O are the outputs. We assume that circuit inputs initially
reside in registers, and that the value computed at each output
node is loaded into a register. An assignment ¢ of registers to
edges of a directed acyclic graph G is said to be well-timed if the
number of registers along every path from an input to an output of
#(G) is the same. The delay of a well-timed assignment ¢ equals
the number of registers along any input-output path of ¢(G).

We say that (the computation of) a node v dependson a node
u if there is a directed path from u to v in the circuit. If ¢ is a
well-timed assignment of registers to G, and R is a register from
which there is a directed path to a node v which does not contain
any intermediate registers, then v depends on register R within the
same clock cycle. The register dependency of a node v in a well-
timed circuit is the number of registers that v depends on within
a clock cycle.

The optimal edge partitioning problem is precisely stated as
follows:

Input: A directed acyclic graph G and an integer k.
The indegree of each node v in G (except inputs) is no smaller

than the outdegree of v, and k is greater than the indegree of every
node.

Output: A well-timed assignment ¢ of registers to edges which
uses the minimum number of registers and introduces minimum
delay, and for which every node in ¢(G) has register-dependency
no greater than k.

98

Figure 2: The retiming operation.

Two simple observations underlie the algorithm. The first is
the use of the retiming operation to maintain timing equivalence
while moving registers around in the circuit. Suppose that every
outgoing (incoming) edge incident to a node has a register on it.
By removing these registers and placing one on every incoming
(outgoing) edge incident to that node as in Figure 2, the resulting
circuit remains well-timed although the retimed node computes its
result one clock cycle later (earlier). Retiming has been extensively
used earlier in optimizing synchronous circuitry [8, 9]. Retiming is
a general operation in the following sense.

Proposition 1. Suppose that ¢, and ¢; are two well-timed as-
signments of registers to a graph G such that ¢,(G) and ¢3(G) have
equal delay. Starting with the assignment ¢, it i3 possible to obtain
the assignment ¢g using o sequence of retiming operations.

The second observation exploits the fan-in/fan-out restriction,
which guarantees that each application of the retiming rule which
pushes registers forward (from incoming to outgoing edges) cannot
increase the total number of registers in the circuit.

Proposition 2. Suppose that a well-timed assignment ¢,(G) s
obtasned from ¢,(G) by a sequence of retiming operations, in each
of which registers are pushed from sncoming edges to outgoing edges.
Then if G satisfies the fan-in/fan-out restriction (the fan-out at
cvery node 13 no bigger than the fan-in), the circust ¢,(G) contains
no more registers than does ¢2(G).

Proposition 2 gives a s
tition for graphs with the
consider a directed acyclic
in that its register-depends
are good, i.e., have register
ing a register on every inc
the output node becomes
edges (and hence its regist
propositions 1 and 2, this
minimizing the delay and
if a node is good, there is

Algorithm I generalize
bad nodes and having mn
in stages. In each stage,
each node, to determine w
adding unit-delay we retin
be delayed by one cycle are
to the next stage using t
stage as the new inputs
terminates when each out;
node in the circuit is gooc

To see that the algorit!
observe that in the origix
bad node each of whose ¢
perform its computation
every node that is minim
must be retimed so that
this were not the case, the
at the start of the second
that every node that is m
stage must be retimed to |
delay must be at least as
stage adds unit delay, the

Next we argue that the
partition. Consider the m
inputs and the minimally
registers only as far back
the number of registers 1
the minimum required.
of the circuit that lie bet
nodes, we can prove that

v
)
1k

‘ration.

e algorithm. The first is
intain timing equivalence
rcuit. Suppose that every
node has a register on it.
£ one on every incoming
in Figure 2, the resulting
:etimed node computes its
ming has been extensively
ircuitry [8, 9]. Retiming is
e.

b2 are two well-timed as-
hat $1(G) and ¢4(G) have
&1 st 18 posstble to obtain
timing operations.

fan-in/fan-out restriction,
of the retiming rule which
to outgoing edges) cannot
the circuit.

med assignment ¢,(G) s
iming operations, in each
g edges to outgoing edges.
wstriction (the fan-out at
he circuit ¢1(G) contains

Proposition 2 gives a strategy to compute an optimal edge par-
tition for graphs with the fan-in/fan-out property. For example,
consider a directed acyclic graph whose single output node is bad,
in that its register-dependency is greater than k, but all other nodes
are good, i.e., have register-dependency no greater than k. By plac-
ing a register on every incoming edge incident to the output node,
the output node becomes good because the number of incoming
edges (and hence its register dependency) is no greater than k. By
propositions 1 and 2, this assignment of registers is optimal both in
minimizing the delay and the total number of registers. In general,
if a node is good, there is no advantage in retiming it.

Algorithm I generalizes this simple idea to graphs with many
bad nodes and having multiple outputs. The algorithm proceeds
in stages. In each stage, we compute the register-dependency of
each node, to determine whether the node is good or bad; next, by
adding unit-delay we retime the circuit so that nodes which should
be delayed by one cycle are converted to good nodes. Then, proceed
to the next stage using the registers introduced in the previous
stage as the new inputs to a truncated circuit. The algorithm
terminates when each output is good, which also means that every
node in the circuit is good.

To see that the algorithm computes a minimum-delay partition,
observe that in the original circuit every minimally bad node (a
bad node each of whose predecessors is good) must be retimed to
perform its computation at least one clock cycle later. Similarly,
every node that is minimally bad at the start of the second stage
must be retimed so that it lags by at least two clock cycles — if
this were not the case, then the node would not be minimally bad
at the start of the second stage. By induction, it may be proved
that every node that is minimally bad at the beginning of the ith.
astage must be retimed to lag by at least ¢. In other words, the total
delay must be at least as large as the number of stages; since each
stage adds unit delay, the total added delay is minimum.

Next we argue that the algorithm computes a minimum-register
partition. Consider the nodes between (and including) the original
inputs and the minimally bad nodes. Since the algorithm pushes
registers only as far back as necessary, Proposition 2 implies that
the number of registers used within this portion of the circuit is
the minimum required. By extending the argument to portions
of the circuit that lie between successive stages of minimally bad
nodes, we can prove that the total aumber of registers used is the

————————

100

1

2.

END

ALGORITHM I

Input: The adjacency list of a directed acyclic graph G = (V, E) and an
integer k. The indegree of each node v in G (except inputs) is no smaller
than the outdegree of v, and is greater than the indegree of every node.

Output: A minimum-delay well-timed assignment of registers to edges
which uses the minimum number of registers, and for which every node
has register-dependency no greater than k.

BEGIN

Initialize # := V.
Compute the transitive closure T of the adjacency matrix of G.

Compute the register-dependency R(v) of each node v.
I I'is the set of inputs, R(v) := T ;¢; T(i,v).

. Compute the set V; of good nodes, and the set M of minimally

bad nodes. For each node w € M, if (v,w) € E and u €V, then
place a register on the edge (u,w). For each node w € M, compute
the number D(w) of registers placed on edges coming into w. If
an output node is good but there are bad nodes remaining, place
a register on the outgoing edges of the good output.

. Remove the set of good nodes from G, (set H:= H-V,). K H is

empty then halt.

- Recompute the register dependency R(v) of each vertex v in the

new graph as follows:

6.1. initialize R(v) := 0

6.2. for each w € M, if T(w,v) = 1 then update R(v) := R(v) +
D(w).

Go to step 4.

minimum required.
Finally, for circuits wit
mal partitioning in O(dN*
delay required to make ez
sitive closure in step 2 tal
edges is O(N). Once the t1
register-dependencies and
computed in time O(N?)
d, the overall running tim
may be as high as O(IN?%)
delay d will be small, and
O(N?). We leave open the
be improved to always rur

Lgs
Lyt /
L3r O (5'
L2:
Lyt

Pigure 3

4 Optimal lev

In a levelled circuit, the r
are directed from nodes i1
not “jump” levels or re:
is not required to satisy

vl

yclic graph G = (V, E) and an
? (except inputs) is no smaller
i the indegree of every node.

signment of registers to edges
xrs, and for which every node

the adjacency matrix of G.

v) of each node v.
I T(ii ‘I)).

and the set M of minimally
(v,w) € F and v €V, then
T each node w € M, compute
on edges coming into w. If
? bad nodes remaining, place
e good output.

Lt H:=H-V,). KHis

R(v) of each vertex v in the

then update R(v) := R(v) +

101

minimum required.

Finally, for circuits with N nodes, the algorithm finds an opti-
mal partitioning in O(dN?) time, where d is the minimum overall
delay required to make each output good. Computing the tran-
sitive closure in step 2 takes O(N?) time because the number of
edges is O{IV). Once the transitive closure has been computed, the
register-dependencies and the minimal bad nodes in each stage are
computed in time O(N?) as well. Since the number of stages is
d, the overall running time is O(dN?). While the worst-case time
may be as high as O(N?), we believe that in practice the added
delay d will be small, and that the running time will be closer to
O(N?). We leave open the question of whether the algorithm may
be improved to always run in time O(N?).

AN
LB

o iDL

Pigure 3. A levelled cincuit

4 Optimal levelled partitions

In a levelled circuit, the nodes are divided into levels, and all edges
are directed from nodes in one level to nodes in the next; edges may
not “jump” levels or remain within the same level. The circuit
is not required to satisy any other constraint, such as the fan-

102

in/fan-out property. Figure 3 shows a levelled circuit. In a levelled
partition we are required to either place registers on every node
at a level or on none at all. We wish to find an optimal subset of
levels on which to place registers, so that every node is good. In
contrast to the previous section, this section will be concerned only
with minimizing the total number of registers, not the added delay.
In general there is a tradeoff between the number of registers and
the added delay so that both quantities cannot be simultaneously
minimized.

The simple strategy of “working forward” from minimally bad
nodes will not work for levelled circuits; pushing registers further
back could result in fewer registers overall. For example, consid-
ering only the first four levels of the circuit in Figure 3, although
the lowest bad node is at the fourth level (assuming & = 4), it is
better to place registers at the second level rather than the third.
But when we add the fifth level, we find that it is better to place
registers on the third level instead of the second and fourth levels.
In short, higher levels determine which lower levels should contain
registers.

Algorithm IT computes an optimal partition using the standard
dynamic programming technique. Suppose that we are given opti-
mal levelled partitions for the subcircuits induced by the first level,
by the first two levels, ---, and by the first | — 1 levels. The al-
gorithm uses these partitions to compute an optimal partition for
the circuit induced by the first ! levels.

We can prove by induction on the number of levels that algo-
rithm IT always gives an optimal levelled partition. For the circuit
induced by levels L; and L; no registers are required; since the
indegree of every node at level L; is no greater than k, every node
at level L; is good. For the inductive step, suppose that the algo-
rithm yields optimal solutions for circuits with { — 1 or fewer levels.
Consider any solution for a circuit with / levels. If any node at level
L; is bad, then the solution must place registers at level ¢, (i <)
such that ay; < k, otherwise there will still be bad nodes at level
l. Since the algorithm considers all such levels ¢, and combines
them with an optimal solution for the first ¢ levels, the algorithm
is guaranteed to find an optimal solution for the first { levels.

The running time of the algorithm is dominated by the time to
compute the transitive closure of the adjacency matrix. If the graph
has N nodes, then it has O(V) edges, so the transitive closure can
be computed in time O(N?). Given the transitive closure, the

Al

Input: The adjacency list of
and an integer k which is no
vertices in V' are divided int
and output set = L,,.

Output: An assignment of
number of registers, and fo1
no greater than k.

BEGIN

L
2.

END

Compute the transitiv

For each level ¢ comf
node on nodes at leve.
1< j << m,compu

Qij =

. For the circuit induce

contains no registers.

. For! > 2, compute an

induced by levels L, .

o for each level 1 |
which combines

e choose a solutioz
and call this soh

. output the solution S,

:velled circuit. In a levelled
ce registers on every node
> find an optimal subset of
1at every node is good. In
tion will be concerned only
isters, not the added delay.
e number of registers and
: cannot be simultaneocusly

ward” from minimally bad
; pushing registers further
rall. For example, consid-
cuit in Figure 3, although
rel (assuming k = 4), it is
svel rather than the third.
1 that it is better to place
2 second and fourth levels.
.ower levels should contain

wtition using the standard
sse that we are given opti-
1 induced by the first level,
first I — 1 levels. The al-

¢ an optimal partition for

amber of levels that algo-
partition. For the circuit
rs are required; since the
reater than &, every node
‘P, suppose that the algo-
1 with { — 1 or fewer levels.
levels. If any node at level
egisters at level 4, (¢ < {)
till be bad nodes at level
‘h levels i, and combines
'8t 1 levels, the algorithm
for the first { levels.
dominated by the time to
rency matrix. If the graph
the transitive closure can
e transitive closure, the

103

ALGORITHM 11

Input: The adjacency list of a levelled directed acyclic graph G = (V, E)
and an integer & which is no less than the maximum indegree in G. The
vertices in V' are divided into levels L;, 1 < 1 < m, with input set = I
and output set = Ly,.

Output: An assignment of registers to levels which uses the minimum
number of registers, and for which every node has register-dependency
no greater than k.

BEGIN

1.
2.

END

Compute the transitive closure T of the adjacency matrix of G.

For each level { compute the maximum dependency of a levgl z
node on nodes at level j, j < . More precisely, for each pair ¢, j,

1< j <i £ m, compute
a;; = MaXeeL; z T(u’")}
u€L;

. For the circuit induced by levels L; and L, the optimal solution

contains no registers.

. Forl > 2, compute and store an optimal solution S; for the circuit

induced by levels L,... ,L; as follows:
o for each level i (i < !) if ay; < k, consider the solution S;;
which combines the solution S; with registers at level 1.

o choose a solution from above which uses the fewest registers,
and call this solution S;.

. output the solution Sp,.

104

a’s can be computed in time O(N?) in a straightforward manner.
Computing an optimal solution at level [requires comparing at
most [—1 solutions each of which is obtained by a simple calculation
and a lookup, so that step 4 can be done in O(V?) time as well.

5 Untimed node partitions

In this section we show that the problem of optimally partitioning
a circuit by placing registers on nodes, and without maintaining
any timing equivalence is NP-complete. In other words, comput-
ing optimal partitions in untimed circuit models is intractable in
general. More precisely, we consider the following problem.

Untimed Node Partition: Given a directed acyclic graph G
with maximum indegree k (and a register on every input), and an
integer b, is there an assignment of b or fewer additional registers
to nodes of G so that every node has register-dependency at most
k? '

Theorem. The Untimed Node Partition problem is NP-complete.

Proof. The problem is trivially in NP. We reduce the 3CNF-SAT

problem [6] to Untimed Node Partition. Suppose that we are given
a formula ¢ over n variables z,...,z,, that contains m clauses
C;, 1 < 1 < m, where C; = (zi, V =i, V zi,). Construct the graph
G = (V, E) defined as follows.

The set V of vertices is:

{zl'sfl'sciadhtl'ad:':d:" i 1555", ISJ‘vaOSlS4n_1}'

The d;’s are the inputs of G. The set of edges is:
{(dsi-1, %), (dsi-2, %i), (dui=3, %), (dai-a, %) | 1 S¢S n}
U{(Z.’,C,’) | z; is in C},1 <i1<n,1 S]Sm}
U{(%.C;) | TisinCj,1<$<n, 1< <m}
U{(=i,), (i, i), (s 1), (dF,85) | 1 <9< n}.

Finally, to complete the reduction, set k = 5 and b = n. Figure
4 illustrates the reduction with an example. We claim that ¢ is
satisfiable if and only if G can be partitioned with n registers so
that each output node C;,t; depends on at most 5 registers. To see
this; first suppose that ¢ is satisfiable. Pick a satisfying assignment,

and for each ¢, place a regi
F; if x; is false. Since at .
clause node has one or n
Similarly, each ¢; has a
then the register-depender
is an instance of our prob]

Next, suppose that G i
tition problem with k = §
three variable nodes as pr¢
must be the case that one |
on it. Furthermore, each ¢,
way to obtain this is by pl
F;. But this gives us a sa
QED.

Figure 4, Reduction f:

AL

a straightforward manner.
2l { requires comparing at
mned by a simple calculation
e in O(N?) time as well.

ions

n of optimally partitioning
and without maintaining
In other words, comput-

it models is intractable in

: following problem.

directed acyclic graph G
er on every input}, and an
- fewer additional registers
gister-dependency at most

i problem is NP-complete.

We reduce the 3CNF-SAT

Suppose that we are given
, that contains m clauses
zi,). Construct the graph

i<mo<i<4n—1}.

edges is:

i) | 1<i<n}
i <m}

7 <m}

< n}.

k =5 and b = n. Figure
ple. We claim that ¢ is
ioned with n registers so
t most 5 registers. To see
k a satisfying assignment,

105

and for each ¢, place a register on node z; if z; is true and on node
%; if x; is false. Since at least one literal per clause is true, each
clause node has one or more predecessors with a register on it.
Similarly, each t; has a register on one of its predecessors. But
then the register-dependency of each output is at most 5 and so G
is an instance of our problem.

Next, suppose that G is an instance of the Untimed Node Par-
tition problem with k = 5 and b = n. Since each clause node has
three variable nodes as predecessors, each in turn with 2 inputs, it
must be the case that one predecessor per clause node has a register
on it. Furthermore, each ¢; has register-dependency 5, and the only
way to obtain this is by placing exactly one register on either z; or
%;. But this gives us a satisfying assignment. The result follows.

QED.

i

@ @, O) Q,
#%%%%%%%%%%%ﬁodd@%ﬁﬁﬁﬁ%

Figure 4. Reduction fon (x) v x5 vx5) (%) V%, vX,)

106

Acknowledgements

Thanks to Michael Saks of Bell Communications Research, and to Neil
Immerman and Dan Gusfield of Yale University for helpful discussions.
A portion of the research of the first author (SNB) and the third author
(ALR) was done while visiting Bell Communications Research. A portion

of the research of the third author (ALR) was supported in part by NSF
Grant MCS-81-01213.

References

[1] Z. Barzilai, J.L. Carter, A.K. Chandra, and B.X. Rosen, “Diagnosis
based on signature testing,” IBM Report RC-9682 (1983).

{2] Z. Barzilai, D. Coppersmith, and A.L. Rosenberg, “Exhaustive bit-
pattern generation, with applications to VLSI self-testing,” IEEE
Irans. Comp., C-32, 190-194 (1983),

[3] J.L. Carter, “The theory of signature testing for VLSI,” 14th ACM
Symp. on Theory of Computing, 66-76 (1982).

{4] R. David, “Testing by feedback shift register,” IEEE Trans. Comp.,
C-29, 668-673 (1980).

[5] E.B. Eichelberger and T.W. Williams, “A logic design structure for
LSI testability,” Proc. 14th Design Automation Conf. (1977).

[6] M.R. Garey and D.S. Johnson, Computers and Intractability: A
guide to the theory of NP-completeness, Freeman (1979).

(7] B. Konemann, J. Mucha, and G. Zwiehoff, “Built-in test for complex
t(iiglstg; integrated circuits,” IEEE J. Solid-State and Circusts, SC-15

[8] C. E. Leiserson, F. Rose, and J. B. Saxe, “Optimizing synchronous
circuitry by retiming,” 3rd CalTech Conf. on VLSI (1983).

[9] C. E. Leiserson and J. B. Saxe, “Optimizing synchronous systems,”
J. VLSI and Computer Systems, 1 (1984).

(10] E. J. McCluskey and S. Bozorgui-Nesbat, “Design for autonomous
test,” IEEE Trans. Comp., C-30, 866-874 (1081).

[t1] D.T. Tang and C. L. Chen, “Efficient exhaustive pattern generation
for logic testing,” IBM Report RC-10064 (1983).

[12] D. T. Tang and L. S. Woo, “Exhaustive test pattern generation
Yith tionstant weight vectors,” IEEE Trans. Comp., C-32, 1145-1150
1983).

[13] W.W. Peterson, Error Correcting Codes, MIT Press, Cambridge,
MA. (1961).

Provably Good Patterr

T}
Compui
Renssela
Tro

This paper describes &
random pattern test of co
tion p of the possible pat
tor generates L patterns
that the generator generat
pL — (pL)? /2. The only a
the generator are equally
gle pattern. The generato:
feedback shift register. Th

1. Introduction.

Chip testing is becom
of total chip costs. As ci
ponents, more patterns ar
testing strategy is to calct
each possible fault there is
correct circuit from the cir
the time required to fetch
to the circuit, severly limit
plied. Random pattern te:
this limit {1}, In a random
generates the input vecto:
ates the input vectors, it ¢
machine cycle.

The input vectors thi
should be random. Thus

