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Absirgel—

Universal networks offer the advantage that they can
execute programs written for simpler architectures with-
out significant run-time overhead. In this paper we inves-
tigate simulations of tree machines; the fact that divide-

and-conquer algorithms are programmed naturally on

trees motivates our investigation.

Among various proposals for parallel computing the
boolean hyvpercube has emerged as a particularly versa-
tile network. It is well known that programs for multi-
dimensional grid machines, for example, can be executed
on a hypercube with no communications overhead by
embedding the grid as a subgraph of the hypercube. Our
first resuit is that a program for any tree machine can
be executed on the hypercube with constant overhead.
More precisely, every cycle of a synchronous binary tree
can be simulated in O(1) cycles on a hypercube, inde-
pendent of the shape of the tree. The algorithm to em-
bed the tree within the hypercube runs in polynomial
time. e also give efficient simulations of arbitrary bi-
nary trees on the complete binary tree, the FFT and
shuffle~exchange networks.

It is natural to ask if any sparse network can simu-
late every binary tree efficiently. Somewhat surprisingly,
we construct a universal bounded—degree network on .V
nodes for which every N node binary tree is a spanning
tree. In other words, every binary tree can be simulated
on our universal network with no overhead. This im-
proves previous bounds on the sizes of universal graphs
for trees.

1 Introduction

A number of supercomputer architectures interconnect-
ing hundreds or thousands of processors have been pro-
posed in recent years. Prominent is the boolean hyper-
cube, different versions of which have been built at Intel,
N-cube, BBN, and Thinking Machines. The hypercube
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offers a rich interconnection topolegy with high commu-
nication bandwidth, low diameter, and a recursive struc-
ture naturally suited to divide-and-conquer applications.
More importantly, the hypercube supports efficient rout-
ing algorithms and can therefore simulate any realistic
paralle! machine efficiently. Using Batcher’s determinis-
tic sorting scheme or Valiant’s randomized message rout-
ing algorithm for instance, the hypercube can simulate
a PRAM, and hence any realistic parallel machine with
only a small polylogarithmic multiplicative increase in
This universality property makes the hypercube
extremely attractive for parallel computing,

Many parallel architectures can be simulated on the
hypercube without the logarithmic increase in time. For
example, every 2% x ... x 29+ grid is a subgraph of the
2% node hypercube. Such multi-dimensional grids can
therefore be simulated on a hypercube with no commu-
nications overhead. The importance of grid algorithms
to scientific applications coupled with the capability of a
hypercube to simulate grids of different aspect ratios has
often been cited as an important consideration in build-
ing hypercubes. Johnsson [12] gives a survey of various
efficient matrix algorithms on the hypercube.

What other networks can be simulated on a hyper-

cube with little or no communications overhead? This

question remains largely unexplored. In this paper we
take the first step to investigate simulations of binary
trees within the hypercube. Highly parallel divide-and-
conquer algorithms can be conveniently programmed on
an abstract binary tree machine, as can concutrent data
structures [1, 9. While the complete binary tree is suit-
able for a number of applications, there are instances
when the divide-and-conquer tree is not complete, For
example, in finite-element computations the tree gener-
ated by recursively decomposing a region into smaller
subregions is, in general, neither complete nor binary.
This paper considers “static” simulations only; we as-
sume that the binary tree is fixed in size and shape and



does not evolve in time. We also assume that all nodes
of the tree (and not just the leaves) are active simulta-
neously, as is the case when different computations are
pipelined through a single fixed tree. Our main result
is that the hypercube can simulate every binary tree
with only a small constant factor overhead in commu-
nications cost. This improves results of Bhatt and Ipsen
[4] who give a simulation with communications overhead
loglog N + O(1).

For many years graph theorists have been interested in
constructions of universal graphs for important families
of graphs. Chung and Graham |5] briefly describe some
of the early work in this area. The archetypical problem
is: given a class ¥ of graphs on N nodes, construct a
universal graph H on N nodes with the fewest edges
necessary so that every graph @ in ¥ is a subgraph of
H. The subgraph property is attractive in the context of
parallel computing because it implies no communication
overhead in simulating any graph in ¥,

The case when ¥ is the set of V node trees has re-
ceived considerable attention. Following [6, 7|, Chung
and Graham [8] constructed a universal graph for trees
with O(Nlog N} edges. which is optimal up to constant
factors for trees with unbounded degree [3]. For the case
when W is the class of trees of bounded degree, we give
a bounded-degree universal graph. Since our graph has
bounded-degree, it has a linear number of edges, thus
improving the previous bound for arbitrary trees. Fried-
man and Pippenger [10] have recently shown that an
expanding graph with N nodes and O(N) edges is uni-
versal for binary trees with aN nodes (0 < o < 1).

The remainder of this paper is organized as follows.
Section 2 gives definitions and illustrates simple embed-
dings of binary trees within the hypercube. Section 3
sketches the combinatorial argument basic to our em-
bedding technique of Section 4 in which we describe how
to simulate any binary tree on the hypercube with con-
stant commaunication overhead. Section 5 describes the
new construction of a bounded-degree universal graph
for trees, Section 6 conciudes with a number of exten-
sions and open questions.

2 Definitions

The problem of simulating one network by another is
modeled as a graph embedding problem. An embedding
< ¢,p > of a graph G = (Vg, Eg) into a graph H =
(Vy, Ex) is defined by an injective mapping from Vg to
Vi, together with a mapping p that maps (u,v) € Eg
onto a path p(¢(u), é(v}) in H that connects ¢{u) and
#{v). The dilation of the edge {u,v) under < ¢,p >
equals the length of the path p(¢{u),d(v)) in H. The

diation of an embedding < ¢, p > is the maximum dila-
tion, over all edges in G, under < ¢,p >,

We measure the quality of an embedding with three
cost functions — ezpansion, dilation, and load-factor.
Following Rosenberg [13], define the ezpansion of an
embedding < ¢,p > of G into H to be the ratio of
the size of Vi to the size of V. [ntuitively, expan-
sion measures processor utilization. The load-factor
A{e) of an edge e in H is the number of paths that
pass through e which are images of edges in G, i.e.,
AMeg) = |{e € Eg : p(e} contains ey }|, and the load-
factor X of an embedding is defined to be the maximum
load-factor over all edges in Hf.

Our model of synchronous parallel networks assumes
that a processor (node of G or H) can communicate
with each of its neighbors in one clock cycle, so that
edges serve as bidirectional links. We restrict attention
to simulations in which each cycle of G is simulated by
a series of cycles of H, before the simulation of the next
clock cycle of G is begun. For an embedding < ¢.p >
of (7, each communication across an edge in ¢ € E¢ is
effected by transmitting the message along the path p(e)
in If. .

Suppose we are given an embedding of G in I/ with
dilation d and load-factor A. It should be clear that the
time to simulate one cycle of G on H can be no less
than the dilation d. Furthermore, if every node in G
communicates with each of its neighbors in one cycle,
then as many as A messages will pass across some edge
in H in the same direction, so that the simulation must
take at least A cycles. Similarly, each message can be
delayed at most A cycles in a single queue so that if d is

_ the dilation then dA cycles are sufficient to simulate one

cycle of G. Summarizing, we have:

Lemma 1. Let A be the load-factor, and d the dilation
of an embedding of G in H. If T cycles of H suffice
to simulate any cycle of G using this embedding, then
max{d,A} £ T < dX.

To illustrate our definitions with an example, consider
the embedding of Figure 1 of a complete binary tree
within the hypercube. The nodes of the tree are num-
bered inorder — each node of the tree is mapped to the
node in the hypercube with the corresponding address.
Each edge from a node to its left child is mapped to the
corresponding hypercube edge between the images of the
two nodes, while the edge between a node and its right
child is mapped to the path from the right child to the
left child, and from the left child to the parent. The éx-
pansion, N/{N — 1), is the minimum possible while the
dilation equals 2, The load factor also equals 2, but there
are no queueing delays and two cycles of the hypercube
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Figure 1: The dilation 2 tnorder embedding.

suffice 1o simulate one cycle of the complete binary tree,

Since an N - 1 node complete binary tree is never
a subgraph of the N node hypercube for N > 8 [14],
any embedding of a large complete binary tree in the
hypercube with expansion 1 must have dilation at least
2. In this sense, the inorder embedding of Figure 1 is
optimal. There is, however, a much more efficient em-
bedding. Bhatt and Ipsen [4] show that the N node tree
Siog & of Figure 2 is a spanning tree of the N node hy-
percube. As a corollary, the N’ — 1 node complete binary
tree can be embedded in an A node hypercube with only
one edge of dilation 2, and the with unit load-factor ev-
erywhere. In fact, this embedding is unique. Observe

also that with expansion 2, the tree can be embedded

with dilation 1.

Unfortunately, we do not know if arbitrarily struc-
tured binary trees can be efficiently embedded in such
an elegant manner. We can use the well-known prop-
erty that removing a single edge can separate a binary
tree into two components each containing at least |n/3]
nodes. By recursively embedding the split components
within smaller hypercubes and translating one cube so
that the nodes of the cut edge are adjacent in the new
dimension, we obtain the following result,

Theorem 2. FEvery N node binary lree can be em-
bedded with unit-dilation in g Agpercube with O(N'71)
nodes.

Although Theorem 2 gives a unit-dilation embedding,
the expansion (= N'"1) is too large for the embedding
to be useful in practice. In the next two sections we re-
lax the unit-dilation requirement slightly, and show that
every binary tree can be embedded with O(1} dilation,
expansion and load-factor.

3 The decomposition lemma

To embed an arbitrary N node binary tree T within the
hypercube we proceed in two steps. In the first step

~

Figure 2: A sparning tree S; of the hypercube.

T is decomposed and efficiently embedded within an N
node thistle tree; an efficient embedding of the thistle
tree within the hypercube in the second step induces an
efficient embedding for T. This strategy is similar in
spirit to the VLSI layout techniques of [2], with the this-
tle tree playing the role of the tree-of-meshes network.
Combinatorial techniques developed previously for VLSI
layout [2] apply in a straightforward way to the results in
this section. and we will only sketch some of the proofs
in this abstract. This section gives the combinatorial
lemmas basic to our result; thistle trees and their em-
beddings are discussed in the next two sections.

Lemma 3. ~Let T be any N node binary trec each of
whose nodes iy calored with one of & colirs. Let n; be the
number of nodes of color i, 1 <1<k, Y n,=N. By
removing klog N or fewer edges, T can be bisected tnio
two components of sizes |N/2|,[N/2] auch that, for cach
1, 1 <1 <k, cach component has at least |n;/2]| nodes
of calor v,

Lemma 4. Every N node binary tree T can be mapped
onto an N node complete binary tree C 30 that at most
6log ‘2—~"r+18 nodes of T are mapped onto any one node of
C al distance t from the root, and so that any two nodes
adjacent in T are mapped lo nodes at most distance 8
apart in C.

Proof. The idea is to recursively bisect T, placing the
successive sets of bisector nodes within successively lower
levels of C, until T is decomposed into single nodes. For
example, the nodes placed at the root of C bisect T into
two subgraphs T; and T3. Similarly, nodes mapped to
the left child of the root bisect 7 and nodes mapped
onto the right child bisect T3. In addition, at level &
of C we map nodes of T (that have not already been
mapped within levels § — 1, — 2) that are adjacent to
nodes mapped at level ¥ — 3 of C. This ensures that
nodes adjacent in T will be mapped to nodes of C at
most distance 3 apart.

To keep the number of nodes of T mapped to a level



f node in C within the required bounds, we use Lemma
with 3 colors. The following procedure describes how
wails is done,

1. Step 1. Initialize every node of T to coler A, bisect
T, and place the bisector nodes at the root (level

1).

2. Step 2. For each subgraph created in the previous
step, recolor every node adjacent to the bisector in
the previous step with color 0, and place a 2-color
bisector for the subgraph at the corresponding level
2 node.

3. Step 8. For each subgraph created in the previ-
ous step, recolor every node of color A adjacent to
the bisector in the previous step with color 1, and
place a 3-color bisector for the subgraph at the cor-
responding level 3 node.

4. Step t. (log|T| = t 2 4). For each subgraph cre-
ated in the previous step, place every node of color
t (mod 2) at the corresponding level £ node. recolor
every node of color A that is adjacent to one of
color ¢t — 1 {mod 2) with color ¢ (mod 2), and place
a 3-color bisector for the remaining subgraph at the
corresponding level ¢ node.

If n, is the maximum number of nodes mapped to a
~evel i node of C, then we have ny = log N, ny = 2log & T
ng = 3log X +» and because we use a 3-color bisector at
each step, in general we have:

n, <3log % + %n.—..a,
from which the result follows. [ ]

The decomposition is obtained in time polynomial in
the size of T because, for fixed &, a k—color bisector for
a tree can be found in polynemial time.

4 Embeddings in the hypercube

The decomposition obtained in the previous section meo-
tivates the definition of thistle trees. The thistle tree
T, of height A is obtained by starting with a compiete
binary tree of height A and, te each node at height 1
(leaves are at height 1), 1 € ¢ < h, attaching i — 1 ad-
ditional leaves. The thistle tree T; is shown in Figure 3.
A simple calculation shows that the thistle tree Tj,¢ v of
height log N has 2V — log N — 2 nodes.

The decomposition of Lemma 4 is invoked to embed
an arbitrary N node binary tree within the thistle tree.
Ry mapping the nodes of " that are mapped to the same

internal node in Lemma 4 onto the corresponding thistle
in the thistle tree (with at most O{1) nodes of T at a
single thistle) we can obtain an embedding with expan-
sion 1 and dilation no greater than 5. In this embedding
the thistles at the top levels may have multiple nodes of
T embedded within them, but there is a corresponding
deficit at thistles at the bottom of the thistle tree. By
“pushing” the excess levei-by-level down the tree, we can
establish the following resuit.

Lemma 8. Every N node binary tree T can be mapped
onto a thistle tree with erpansion ! and O(1) diletion,

It remains to embed the /V node thistle tree within the
bypercube in an efficient manner. To this end. consider
the inorder numbering of an V/2 node complete binary
tree, as shown in Figure 4. It is not hard to see that each
node u is within distance 1 (in the N/2 node hypercube)
of every node along the rightmost path in the left sub-
tree of u. Embed the thistle tree so that the centre of
each thistle maps Lo the corresponding node in the com-

" plete binary tree. and each leaf maps to a distinct node

in the rightmost path of the left subtree of the central
node. Notice that the lengih of this path always equals
the number of leaves hanging ofl the central node in the
thistle. At this point each node of the hypercube has at
most two thistle tree nodes mapped oato it. Now add

-another N/Z subcube and project each leaf of a thistle

onto this “shadow™ tree — this gives us an embedding
of the thistle tree with expansion 1 and dilation 2. To-
gether with Lemma 3, this guaraniees an embedding of
arbitrary T with expansion 1 and O(1) dilation.

A more careful analysis in Lemma 5 shows that nodes -
u. v adjacent in T are mapped to thistles at most 6 levels
apart. An interesting property of the inorder numbering
is that the set of nodes obtained by picking a node and
tinduce a f + 1
dimensional subcube (with one node missing), so that
any two nodes at most t — 1 levels apart are within dis-
tance ¢t + | in the hypercube. Therefore, by our earlier
remark, the distance between the central nodes of the
thistles for u and v are distance 8 apart in the hyper-
cube. Since every central node is within distance 2 of its

Figure 3: The thistle tree Tj.



leaves, the dilation of the overall embedding is at most
10. Tt is now straightforward to find paths in the hyper-
cibe between adjacent nodes of T so that the load factor
is small. Summarizing, we have our main result of this
section.

Theorem 6. Every N node binary tree can be embedded
in a hypercube with expansion 1, dilation 10 and O(1)
load-factor.

vy

Cuip

Figure 4: Embedding the thistle tree within the
complefe binary tree.

Together with Lemma 1, we have thus shown that
every binary tree machine can be simulated with O(1)
communication overhead on a hypercube. The embed-
ding can be computed in polynomial time because the
bisection in Lemma 3, and consequently all other com-
putations, can be computed in polynomial time.

5 An optimal universal graph

A graph H is said to be universal for a family of N node
graphs if every graph in the family is a subgraph of I].
The subgraph property is extremely strong {and attrac-
tive in applications) since it is equivalent to embeddings
with unit dilation and load factor,

The problem of constructing N node universal graphs
with fewest number of edges for all N node trees has
received considerable attention. Following the work of
[6, 7] Chung and Graham [8] constructed a universal
graph for trees with O(Nlog N) edges. This bound is
optimal, to within constant factors [5).

For binary trees, however, smaller universal graphs ex-
ist. Any NV node binary tree can be embedded within an
N node thistle tree with dilation 5. By connecting every
pair of nodes that are at most distance 5 apart in the
thitle tree, we obtain an N node graph with O(N) edges
that contains every N node binary tree as a spanning
tree. However, the degree of the root is O(log N') so that
although this universal graph is sparse, its nodes have
unbounded degree.

There do however exist graphs with bounded—degree
that are universal for all binary trees. This section gives
the construction. First we need a few definitions.

Definition. A graph G{V, E) is said to be full if for every
V' cV, [V'| £ |V1/2, the number of edges between V
and V' is at least | V' {.

We observe in passing that there is a constant 4 such
that for every m. there is an rn node full graph with
maximum degree d. In fact, any expander can be used
for constructing full graphs.

The universal graph I' on ¥ nodes is obtained as fol-
lows, For simplicity, we will assume that ¥ = 27 — |,
Start the construction with a complete binary tree on N
nodes. Then add edges so that the nodes at level k (a
constant specified later) form a full graph on k nodes.
Repeat this for nodes at levels 2k.3k.... . Call the re-
sulting graph ['y.

Next, add extra edges so that the nodes at levels
k,2k,... Jog N — s (k divides fog N — s and s is a con-
stant specified later) collectively form a full graph. Call
the resuiting graph ;. Finally, insert an edge hetween
any pair of nodes within distance ¢ of each other, where
! 15 a constant specified later. The resulting graph, de-
noted I', is our universal graph. Observe that the maxi-
mum degree of any node in T is no greater than (24 +3)*
which, of course, is a constant because d and ¢ are.

Of course, the construction given is primarily of the-
oretical interest because of the large constants. In the
following subsections we establish the main result helow,

Theorem 8. Ewvery N node binary tree 15 a spanning
tree of .

5.1 Flow lemmas

The proof of Theorem 8 is somewhat involved. and re-
quires a few combinatorial lemmas concerning full graphs
and trees. The intuition captured in the following lem-
mas may be understood as follows. Suppose that we
have mapped a subset of the nodes of a tree T within a
graph &, and we next wish to map a node v of T onto
a node of G in such a way that it remains “close to”
its neighbors that have already been embedded. If there
is no place readily available, we can still find a suitabie
place for v by “perturbing” the existing mapping slightly
to make room for v. The “flow lemmas” establish con-
ditions under which this can be done without dilating
edges significantly.

Lemma 9. Let G be a full graph with mezimum degree
d, and consider any assignment of packets to nodes of
G such that every node of G 18 assigned at least [df2]



packets. Then for any disjoint subsets S and T of nodes
weh that | S |=| T |, it 18 possible to redistribute the
packets so that:

e cvery packel either stays stalionary or moves to a
neighbor in G,

o the number of packets 1n cach node in S decreases
by 1,

o the number of packels in each node tn T increases
by 1, and

s the number of packets 1n each node in V — (T U S)
remaina the same.

Proof sketch: The lemma is proved with a simple max-
flow/min-cut argument. Set up a flow problem with a
supersource connected to each node in .5 and a super-
sink connected to each node in 7. Assign unit capacity
to each edge. Because G is full. there is a 0~ 1 flow with
value | S | between the source and sink. The flow de-
termines a 1-1 correspondence (along with edge-disjoint
paths) from the nodes in 5 to the nodesin T. By moving
one packet forward along each edge that has unit flow
we can effect a reassignment of packets that satisfies the
last three conditions of the lemma.

Since every node in the flow graph (with the super-
source and supersink) has degree at most d + 1. at most
(@ + 1)/2] = [d/2] packets will be removed from any
node of & during the reassignment process. Since every
node of G initially has [d/2] packets, no packet need
ever move more than one step. Hence the reassignment
also satisfies the first condition.

Lemma 10. Let G b¢e an m node full graph with mazx-
tmum degree d, and consider any assignment of pack-
ets to nodes of G so that node v, has a; packets. where
a; 2 [d/2] for 1 £i £ m. Then, for any set of numbers
{al | 1 < ¢ £ m} for which a] 2 [df2] for 1 < i< m. it
33 possible to redisiribute the packets so that

e cvery packet 18 reassigned to a node which ts at dis-
tance at most maxy<.<m |a; — a;| from its original
location 1n G, and

e the number of packets assigned to v, changes from
a; toal, forall 1 <i<m.

Proof sketch: Apply Lemma 9 max;<,<m | a: — af |
times, each time decreasing the maximum value of
maXi<i<m | 6 — a, | by one, but octherwise preserving
the hypothesis of the lemma.

5.2 Decompositons revisited

To establish Theorem 8 we use a decomposition strategy
different from that in section 3. The following lemma is
a simple extension of the 1/3 : 2/3 separator theorem for
binary trees and was observed previously in [3].

Lemma 11. For cvery conslant p < 1/2, there erists
a constant q such that any m node two-colored binary
Joreat with w nodes of color A can be partitioned into
two sets by the removal of q edges so that each set has
at least |pm| nodes and at least |pw) nodes of color A,

\We also require an additional, final lernma below.

Lemma 12. Every N node binary tree T can be embed-
ded within [y so that:

e cvery node i levels 0,k,2k,... ,logN — s of [g ts
assigned at least {d/2] and at most ¢y nodes of T,
where ¢y i3 some constant,

o nodes of T are only assigned to nodes in levels
0 k.2k,... logN =29 0fly, and

¢ nodes adjacent in T are assigned o nodes in Ty sep-
arated by distance at most ¢4, for some constant c;.

Once Lemina 12 is established, it is easy to compiete
the proof of Theorem 8.

Proof of Theorem 8. First obtain the embedding of
Lemma 12. Next, by Lemma 10 we can use the edges of
I'y = g to reassign the nodes of T within I'y so that:

* every node in levels 0, k,2k,... ,JogN—s—k of T}
is assigned 2 — 1 nodes of T,

e every node in level log N — s of I'y is assigned 2* -1
nodes of T', and

e nodes adjacent in T are assigned to nodes in I
separated by distance at most €3, where ¢3 < ¢3 +
2max(}2° -1~ [d/2]1 || 2 -1~ |).

At this point, we need only require that s > &k and
that 25 — 1 > [d/2] so that the conditions of Lemma 10
are satisfied. Since k, 9, d, ¢y, and ¢; are all constants., we
know that ¢a also is constant. We now reassign nodes one
more time so that the mapping from T to I' is 1-1 and
onto. This is done by arbitrarily assigning the nodes of T
on levels 0,4.2k,... ,log N — 2 of I'; to their immediate
descendants. Once this is done, the maximum distance
in I’y between any two nodes adjacent in T will be at
most ¢a +2s, which is constant. By setting ¢t = ¢g+2sin



the construction of T, this will mean that T is a subgraph
of T', thereby completing the proof, -

Proof of Lemma 12. We follow an approach similar to
that in section 3. However, since we are allowed to place
only O(1) nodes of T at any one node of 'y, we cannot
afford to bisect the tree at each step because that may
require placing placing B(log V) nodes of T at the root
of I'p. Therefore, instead of bisecting the tree at each
step, we separate it into proportional size components
using Lemma 11, and continually balance the sizes of
components as the embedding proceeds towards lower
levels of Ty.

Start by picking any [d/2] nodes of T and mapping
them to the root {level 0} of I's. Color red those nodes of
T that are adjacent to one or more of the nodes placed
at the root of I'y (all nodes are initially colored white].
Next. fix p to any constant greater than 1/3 and use
Lemma 11 to partition the {as vet unmapped) nodes of
T into Lwo sets, each with at least a fraction p of the
total number of unmapped nodes, and each with at jeast
a fraction p of the total number of red nodes (always
rounded to the nearest integer, of course). One of the
sets is distributed to the left subtree of the root of Ty
and the other set to the right subtree. By Lemma 11,
no more than q edges connect nodes in the two sets,

No nodes of T will be assigned to the next &k — 1 levels
of Ty, but we continue to partition T into smaller and
smaller sets. In particular, we first color nodes in the
“left set™ of T (those unmapped nodes of T distributed
to the left subtree of [y which are adjacent to nodes in
the right set. We then use Lemma 11 to partition the
left and right sets each into two smaller subsets. one for
each grandchild of the root. Continue in this fashion,
coloring nodes red as they become adjacent to nodes
in the opposite set and splitting the forests (sets) into
smaller forests until we have distributed a forest to each
node on the kth level of [g.

Although the nodes are split into roughly equal frac-
tions (p : 1 — p) at each level, the sizes of forests at
the kth level could vary substantially (in fact, anywhere
between p* and (1 — p)*¥). Therefore, at this stage we
balance the sizes of the forests assigned to each node
by redistributing forests among nodes at level k. To
achieve this balance, first use Lemma 11 to partition
each forest into [d/2] subforests (but do not distribute
the subforests further down the tree}. Next, partition
each subforest whose size is greater than 1/p times the
size of the smallest subforest. Observe that this does not
affect the size of the smallest subforest.

We are now ready to apply Lemma 10, with each sub-
forest represented as a packet. In particular, we use
Lemma 10 to redistribute subforests on the level so that

every node ends up with an equal number of subforests
(to within one). We then map all the red nodes of T
(i.e., those adjacent to nodes in different subforests) to
the corresponding node of Ty where the enclosing sub-
forest is currently located, making sure to map at least
[d/2] nodes of T to each node on level k in [y (if there
are not enough red nodes, then use up some of the white
nodes within the same subforest to make up the total.
We will show later that there are always enough nodes
overall so that this is.possible).

After the mapping is compieted for level k. recolor
red all white nodes of T that are adjacent to nodes al-
ready mapped and henceforth regard the collection of
subforests assembled at a single node of I'g as a single
forest. Next, repeat the process used on levels 1,2,... .k
for levels k+1,k+2,... ,2k,... ,logN —s where sisa
constant still to be specified. At every kth level we rebal-
ance and coalesce forests as on leveil k, and map all red
nodes of T to the corresponding nodes of I'g. At Jevel
log N — s all the unmapped nodes of T (both red and
white) are directly mapped to the corresponding node of
I'g. Several details remain to be ironed out; however, it
should be clear that nodes adjacent in T are mapped to
nodes which are at most k levels apart in ['.

The analysis needed to complete the proof is tedious,
but not difficult. We start by letting r;; be the maximum
number of red nodes in any {orest after all partitioning,
balancing, coalescing, mapping and recoloring is done at
level ik of 'y. Similarly, let z,; be the maximum number
of nodes (both red and white) in the smallest forest at
level ik.

We will prove by induction that, for ik < log N — s,
7k 2 27*N/6,and
rox < ' = 96(1 + r)2-kp(k+{los[d/211+1)

Observing that r' > [d/2], we note that both state-
ments are trivially true for t = 0 and .V sufficiently large.
We next calculate bounds for rix4x and 24 44 to proceed
with the inductive step.

By Lemma 11, we know that

riks1 S{1=plric+1+4¢

and therefore, each forest at level tk + k of [y has at
most (1-p)*r;x + (14 ¢)/p red nodes initially. The pro-
cess of partitioning forests into subforests at level ik + k&
cannot increase this value, but redistributing, coalescing
and recoloring certainly can. To measure their eflect, we
need to bound the number of subforests that are located
at any node following redistribution. This of course de-
pends on the overall number of subforests, which in turn
depends on the size of the smallest subforest.

The size of the smallest subforest at level tk is zx.
Hence, the size of the smallest forest at level ik + 1 is



at least pz,; — 1. Applying the argument recursively, we
find that the size of the smallest subforest at level ik + &
(after all the subdividing at this level is complete} is, for
r < 1/2, at least

z'_kpki'[lo([d[!]] -(1- p)-l > pk+[logfd/2]]2—ik}\r/6 -9

For sufficiently large s (i.e., small enough i}, this is
at least pttliosid/2llg=sk /12, Hence, the number
of subforests at this level is no greater than 12 x
otk p=(k+[log[d/21]) The maximum number of subforests
located at any node after balancing is therefore no
greater than

I+12x 2-kp-ik+flosfd/2ﬂl < 24 x 2—kp—(k+{|o¢[d/21])_

Consequently, the maximum number of red nodes in any
forest after rebalancing and coalescing is at most

({1 = pYerax + (L + ¢)/p) 24 x 2~k p~(k+Tlog[¢/21),

Since mapping and recoloring can increase this at most
by a factor of two, we have:

< 48(1 — p)krl.kz—kp—(k+f1°s'rd/2]], +
48(1 + q)z—"p‘(k'i'“ol“/ﬂ”

Tik+k

By choosing p > 1/3 so that (1 —p}/2p < 1. we have
that for & sufficiently large {in terms of p and d}:

riesek < 2ric+48(1 + g)2~kpth+1+Tlox[d/21])
and thus,
Fikek < 96(1 + q)2 Fp~ (k+1+Tlos[d/201) o

as claimed.

We next complete the inductive step for z444. Since
the largest and smallest subforests differ in size by
at most a factor of 1/p, the size of the smallest for-
est after balancing and coalescing is at least E(N —
p!Q15+K)9-sk+k)  the one-half in front accounting for
the fact that every node has the same number of packets
to within one. After mapping and recoloring, the size of
the smalest forest is

Zik+k 2 g(-v - r12ik+k)2—(l'k+k) _ T’.

With some additional calculations it can be checked that
this is at least 27 U¥**)N'/G for p > 1/3 and sufficiently
large (but constant) s. thereby completing the proof of
the claim.

By choosing s sufficiently large, we have shown that
every node at levels 0.k,... ,Jog N — 3 —k of Iy is as-
signed at least [d/2] and at most r' nodes of T, Since sis

constant, every node at level log N — s of ['p is aassigned
between [d/2] and ¢; nodes, where ¢, is some constant
bigger than r/. Moreover, nodes of T are only assigned to
nodes in Jevels 0, k, ... ,log N—» of ['y. Hence it remains
only to show that nodes adjacent in T are assigned to
nodes in I'p separated by distance at most cg, for some
constant cg. We already know that ¢g is at most k plus
the distance subforests are allowed to move during the
rebalancing step at every kth level. By Lemma 10, this
distance is at most the largest number of subforests at
any node before rebalancing. By the construction, this
is at most some constant determined by p,d.k and 5. ®

6 Extensions and conclusions

This paper gives the first non-trivial simulations of struc-
tures other than grids in the hypercube. The decomposi-
tion lemma (Lemma 4) for binary trees also provides op-
timal embeddings of binary trees within other networks,
For example, we can show that every N node binary tree
can be embedded within an ¥ node complete binary tree
with expansion 1 and dilation O(loglog N}. This settles
a conjecture of Ifong, Mehlhorn and Rosenberg {11 who
showed a jower bound of (}(loglog N) for this problem.
By embedding a complete binary tree within the shuffle—
exchange graph with expansion 1 and dilation 2, we ob-
tain O(loglog N) dilation for arbitrary trees embedded
within the shuffle—exchange graph. Similarly, we have
recently shown that an N node complete binary tree
can be embedded with constant expansion and dilation
within the FFT network; once again, it follows that any
N node binary tree can be embedded with constant ex-
pansion and O(log log V) dilation within the FFT graph.
\Ve leave open the question whether these bounds are
optimal to within constant factors.

All our results on embeddings within the hypercube
extend to bounded degree graphs with O(1) separators,
and are not restricted to binary trees. While our sim-
ulations are optimal to within constant factors, there is
much room for reducing the overhead in expansion and
dilation further. It would be satisfying to discover sim-
pler ways to embed binary trees in the hypercube. For
example, we do not know of any binary tree that cannot
be embedded in the hypercube either with expansion 1
and dilation 2 or with expansion 2 and dilation 1.

The construction of (unbounded degree) universal
graphs with few edges for binary trees based on the de-
composition lemma also extend to bounded—degree trees.
We can also construct graphs with O(Nlog N) edges
that are universal for bounded-degree planar graphs
with N nodes. We leave open the question whether this
bound is optimal to within constant factors.



An important problem concerns efficient simulations
of planar graphs on the hypercube. To our knowledge,
only the problem of embedding grids has been studied
previously. Planar graphs arise in many scientific appli-
cations involving two-dimensional finite-element analy-
sis. Similarly, little is known regarding lower bounds on
embeddings. For example, we can prove that every N
node graph with minimum bisection QU(N) requires di-
lation Q{log ), the maximum possible. To our knowi-
edge, no other lower bounds on embeddings in the hy-
percube are known.

In this paper we have only considered injective map-
pings of static structures. Depending upon the applica-
tion, there are many interesting models. For example,
if the leaves of a binary tree represent active processes
and internal nodes are waiting processes, then only the
leaves need be mapped to distinct nodes. In other appli-
cations, the tree may be much larger than the underlying
network in which case we need to minimize dilation as
well as maintain load balance. Embedding dynamically
changing structures within the hypercube is important
in many applications, and little is known in this area.
Also interesting is the problem of on-line embeddings,
in which the tree to be emhedded grows one node at a
time. We can show that any N node network for which
every .,V node binary tree can be embedded on-line as
a spanning tree must contain (J(N?) edges. In contrast,
Friedman and Pippenger {10] show that if the size of the
tree is small (a constant fraction of N} then O{N) edges
suffice.
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