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Optical Orthogonal Codes: Design,
Analysis, and Applications

FAN R. K. CHUNG, JAWAD A. SALEHI, MEMBER, IEEE, AND VICTOR K. WEI, MEMBER, IEEE

Abstract —An optical orthogonal code is a family of (0,1) sequences
with good auto- and cross-correlation properties, i.e., the autocorrelation of
each sequence exhibits the “thumbtack” shape and the cross correlation
between any two sequences remains low throughout. The study of optical
orthogonal codes has been motivated by an application in a code-division
multiple-access fiber optic channel. The use of optical orthogonal codes
enables a large number of asynchronous users to transmit information
efficiently and reliably. The thumbtack-shaped autocorrelation facilitates
the detection of the desired signal, and low-profiled crosscorrelation re-
duces interference from unwanted signals. In addition to the wide-band
multiple-access system, optical orthogonal codes also find applications in
mobile radio, spread-spectrum communications, and radar and sonar signal
design. Methodologies in the design and analysis of optical orthogonal
codes with tools from projective geometry, the greedy algorithm, iterative
constructions, algebraic coding theory, block design, and various other
combinatorial disciplines are discussed.

I. INTRODUCTION

N OPTICAL orthogonal code (OOC) is a family of

(0,1) sequences with good auto- and cross-correla-
tion properties, i.e., the autocorrelation of each sequence
exhibits the “thumbtack” shape and the cross correlation
between any two sequences remains low throughout. Its
study has been motivated by an application in a code-divi-
sion multiple-access fiber optical channel. The use of
0OOC’s enables a large number of asynchronous users to
transmit information efficiently and reliably. The lack of a
network synchronization requirement enhances the flexi-
bility of the system. The thumbtack shape of the autocor-
relation facilitates the detection of the desired signal, and
the low cross correlation reduces the interference from
unwanted signals in the network. In addition to the optical
multiple-access channel, optical orthogonal codes also find
applications in mobile radio, frequency-hopping spread-
spectrum communications, and radar and sonar signal
design. Many more potential applications are being ac-
tively explored.

Optical orthogonal codes are closely related to
constant-weight error-correcting codes and difference sets.
Several existing techniques are applied here to the con-
struction and analysis of OOC’s. However, the distinction
between the subjects allows us to derive new and interest-
ing results. Optical orthogonal codes are also related to
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well-correlated binary sequences in the literature. How-
ever, the codes considered here consist of truly (0,1) se-
quences and are intended for “unipolar” environments
that have no negative components, while most documented
correlation sequences are actually (+1, —1) sequences in-
tended for systems having both positive and negative com-
ponents. This important distinction produces quite differ-
ent results.

The rest of the paper is organized into four sections. The
definition and the fundamental properties of OOC’s are
presented in Section II. Several applications are outlined in
Section III. In Section IV, we derive theoretical upper and
lower bounds on the maximum possible size of OOC’s and
give several methods for constructing them. Section V
contains the concluding remarks of this paper. The perfor-
mance analysis of an optical multiple-access system em-
ploying optical orthogonal codes is presented in the Ap-
pendix.

II. FUNDAMENTAL PROPERTIES OF OPTICAL
ORTHOGONAL CODES

In this section, we give the definition and some funda-
mental properties of OOC’s. An (n,w, A, A,) optical or-
thogonal code C is a family of (0,1) sequences of length n
and weight w which satisfy the following two properties.

1) The Autocorrelation Property:

n—1

Z xt'xt+1 < >\a
t=0

for any x € C and any integer 7, 0 <7 <n.
2) The Cross-Correlation Property:

n—1
Z xtyt+'r SAC
t=0

for any x # y € C and any integer 7.

We focus on periodic correlations, i.e., the subscripts are
reduced modulo n whenever necessary. In short, the auto-
correlation of each sequence in the OOC exhibits the
thumbtack shape, and the cross correlation between any
two sequences remains low throughout. Since each se-
quence x has weight w, the autocorrelation equals w when
7=0. The numbers A, and A_ are called the auto- and
cross-correlation constraints. The (0,1) sequences of an
optical orthogonal code are called its codewords. The size
of an optical orthogonal code, denoted by |C|, is the
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number of codewords in it. Throughout this paper, we
require A, A < w to avoid triviality.

Cyclic shifts of codewords of an optical orthogonal code
do not affect its correlation properties. Let C be an
(n,w,A,,A,) code and let C’ be derived from C by
shifting an arbitrary subset of codewords by an arbitrary
amount (different codewords may be shifted by different
amounts). Then C’ is still an (n,w,A,,A.) code. We do
not make a distinction between codes that can be obtained
from each other by cyclic shifts.

It is desirable to have a large OOC. For a given set of
values of n, w, A, and A, the largest possible size of an
(n,w,A,, A, optical orthogonal code is denoted by
®(n,w,A,,A,). An optical orthogonal code having the
maximum size is said to be optimal. The determination of
the exact values of ®(n,w,A,, A.) and the specific con-
struction of optimal codes are of interest. In Section IV,
we present lower and upper bounds to ®(n, w, A, A.) and
give constructions for several classes of optimal or near-
optimal OOC’s.

We may also view optical orthogonal codes from a
set-theoretical perspective. An (n,w, A, A,) optical or-
thogonal code C can be alternatively considered as a
family of w-sets of integers modulo n, in which each w set
corresponds to a codeword and the integers within each w
set specify the nonzero bits of the codeword. Then the
correlation properties can be reformulated as follows.

1) The Autocorrelation Property:

[(a+X)N(b+ X)|<A,

for any X € C and any a # b(mod n).
2) The Cross-Correlation Property:

[(a+ X)n(b+Y)|<A,

forany X+ Y € C and any q, b. Note that a + X = {a + x:
x€ X} and all integers under consideration are taken
modulo n. The set-theoretical perspective offers a conve-
nient notation for OOC’s when w is much smaller than .

From now on, a code is an optical orthogonal code
unless otherwise specified, and we use the shorthand nota-
tion of an (n, w, A) code when A, =\ _=A.

Example: C = {1101000} is a (7,3,1) code with one
codeword. In set notation, C={{0,1,3}}
(mod 7).

Example: C = {1011000100000} is a (13,4,1) code with
one codeword. In set notation, C =
{{0,2,3,7}} (mod 3).

Example: C = {1100100000000, 1010000100000} is a

(13,3,1) code with two codewords. In set no-
tation, C = {{0,1,4},{0,2,7}} (mod 13).

The following facts on OOC’s are useful in later sections.

Fact 1: There is another interpretation of the correla-
tion properties. Condition 1’) is equivalent to the follow-
ing: for each X € C, any integer ¢ + 0 can be represented
as the difference x —x’, with x,x’€ X, in at most A,
ways. Similarly, 2') is equivalent to the following: for every
pair of w-sets X #Y € C, any integer ¢ # 0 can be repre-
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sented as the difference x — y, with x€ X, y €Y, in at
most A, ways. The proof is straightforward.

Fact 2: An upper bound on the maximum code size
®(n,w,1) can be derived from a distinct difference argu-
ment. Let C be an (n, w,1) code, and let A(X) = {x — x":
x,x"€ X and x # x’} (mod n) for X € C. Since an (n, w,1)
code has no repeated differences, 0 & A( X), |A(X)| = w(w
—1)forany X C, and A(X)NA(Y)=@ forany X#7Y
€ C. This immediately leads to the upper bound

n—1
w(w—1)"

Furthermore, when n is even, n /2 & A(X) for any X € C;
otherwise,| X N(n/2+ X)| =2 > A . Therefore, when n is
even, we have the slightly stronger bound

n—2
w(w—1)"

More bounds are presented in Section IV.

Fact 3: Optical orthogonal codes are related but differ-
ent from difference sets which are well studied in combina-
torics (see Hall [10] or Ryser [17]). An (n, w, A)-difference
set is a w-set of integers modulo »n such that every nonzero
integer modulo n can be written in exactly A ways as the
difference between two members of the w-set. It consists
of a single w-set. An (n,w,A) OOC is a family of w-sets
with additional constraints between the sets. However, the
two subjects are closely related. Any (n, w, A)-difference
set gives an (n,w, A)-O0C with a single codeword. The
reverse relation is not true in general.

Fact 4: Optical orthogonal codes are related to but
different from other orthogonal codes and well-correlated
sequences in the literature (e.g., Barker sequences). The
lack of “negative components” in current optical transmis-
sion technology dictates a different set of correlation prop-
erties. Most well-correlated binary sequences studied in the
literature are actually (+1, —1) sequences even if they use
the (0,1) notation; this is evidenced by the way of calculat-
ing their correlations. They are intended for application in
systems with both positive and negative numbers available.
The correlation constraint can be made zero. Our study
focuses on true (0,1) sequences intended for “unipolar”
environments which have no negative components, such as
a direction-detection optical system. The minimum feasible
correlation constraint is 1. Furthermore, a well-correlated
(+1, —1) sequence typically has about the same number
of +1’s and —1’s while a good optical orthogonal code
has many more 0’s than 1’s in each codeword. Each class
of sequences can be used in the opposite application but
only with inferior results. In the name optical orthogonal
codes, we wish to imply a unipolar system (optical) with
minimal correlation (orthogonal).

®(n,w,1) <

®(n,w,1) <

III. APPLICATIONS

The study of OOC’s has been motivated by an applica-
tion in optical code-division multiple access. As shown in
Fig. 1, many users are transmitting information over a
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Fig. 1. Code-division multiple-access optical system.

common wide-band optical channel. The objective is to
design an efficient system, with available implementa-
tion technology, to allow the users to share the common
channel. Traditional multiple-access approaches such as
frequency division, time division, collision detection, or
demand assignment require elaborate network synchro-
nization at high speed (often optical speed), and frequent
conversions between the optical domain and the electronic
domain. These requirements limit the efficiency of such an
optical multiple-access system. However, by employing a
code-division multiple-access system with optical orthogo-
nal codes, we are able to simplify greatly the complexity of
the system, to implement it with available technology, and
to achieve potentially higher transmission efficiency.

Let an (n,w,1) optical orthogonal code C with M
codewords (i.e., w sets) be used. The system can accommo-
date M transmitters simultaneously. Each transmitter is
assigned a w-set from C. (Here, we use the set-theoretical
notation of OOC’s.) At a transmitter, every information bit
is encoded into a frame of n optical chips in the following
way. (A chip is an optical time slot which can assume one
of two values: ON or OFF.) Let the assigned w-set for a
particular transmitter be S= {s,s,,---,s,}. Assume the
information bit is 1. In the corresponding frame, which
consists of n optical chips, photon pulses (i.e., ON signals)
are sent at exactly the sth, s,th,-- -, and s th chips. In the
other n — w chips, no photon pulses (i.e., OFF signals) are
sent. In other words, the codeword set is used as the
signature sequence of the transmitter. On the other hand,
if the information bit is 0, no photon pulses are sent in the
corresponding frame, i.e., all OFF signals are sent.

All M users are allowed to transmit at any time. There
is no network synchronization required. At the receiving
end, correlation-type decoders are used to separate the
transmitted signals. The decoder consists of a bank of M
tapped delay-lines, one for each codeword. The delay taps
on a particular line exactly match the signature sequence,
i.e., the delays between successive taps are equal to s, —
S1, §3 = S, 8, — 84, -+, optical chips, respectively. These
tapped delay-lines can be easily implemented with existing
optical technology.

Each tapped delay-line effectively calculates the correla-
tion of the received waveform with its signature sequence.
Because of the properties of optical orthogonal codes, the
correlation between different signature sequences is low.
Thus the delay-line output is high only when the intended
transmitter’s information bit is 1. The transmitted infor-
mation is extracted by thresholding the correlator output.

This optical code-division multiple-access system can be
easily implemented. The tapped delay-line correlator is
readily available. Little or no electronic—optical domain
conversion is required. There is no synchronization re-
quirement in the network. Although bandwidth expansion
is effected by the transmitter, the simplicity and flexibility
of the system concept enables us to pump optical pulses at
a much faster chip rate than otherwise possible. The over-
all system throughput efficiency can be much improved.

Although the motivating application is optical, the same
system can also be used in other wide-band code-division
multiple-access environments. For more detailed descrip-
tion of the system, see [2]. For other related ideas, see [11],
[12].

In this paper, we restrict our attention to periodic corre-
lations. Codes with aperiodic correlation properties are
also worth studying. Since periodic correlation is a stronger
property, OOC’s naturally satisfy aperiodic correlation
constraints. However, larger codes can be designed if only
aperiodic correlation properties are required. Some may
argue that aperiodic correlation sequences are more appro-
priate for the present application. We do not settle this
issue here.

There are several other potential applications of optical
orthogonal codes. In spread-spectrum communications,
frequency hopping patterns are required to have low corre-
lation. Optical orthogonal codes can be used to generate
good hopping patterns. However, there is one more impor-
tant factor for consideration. Frequency hopping patterns
can be depicted as dots in a rectangular checkerboard.
Typically, there is exactly one dot per column, represent-
ing that only one frequency component is used per time
slot. To obtain hopping patterns from OOC’s, we write
down a codeword into a rectangular box in either row-
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major or column-major form. The number of dots in a
column can vary from O or 1 to more than 1. This
represents a variable number of frequency components in
a time slot. However, the auto- and cross-correlation re-
quirements of frequency hopping patterns are preserved.
The removal of the one-dot-per-column restriction tends to
increase the number of available patterns. This increases
the diversity of spread-spectrum systems and is considered
desirable. However, the implementation calls for further
study.

The same methodology can be used to obtain patterns
useful in situations requiring good auto- and cross-correla-
tion properties, such as radar and sonar signal design,
Costas arrays, etc. In each situation, a unipolar application
environment (which lacks negative components because an
energy-type detection method is used) needs binary se-
quences with good correlation properties. To use an optical
orthogonal code, write out codewords into a matrix either
column by column or row by row. The resulting matrices
will have good correlation properties with respect to any
combination of horizontal and vertical shifts. (During the
preparation of this paper, another important application of
optical orthogonal codes has been exploited by Vecchi and
Salehi [23].)

IV. THE DESIGN AND ANALYSIS OF OPTICAL
ORTHOGONAL CODES

In this section, we derive general upper and lower bounds
on the maximum size of OOC’s and present several con-
struction methods. First, general upper bounds on the
maximum size of OOC’s are given. Next we present itera-
tive methods of constructing codes from existing codes. In
Section IV-C the “greedy” algorithm is used to construct
codes. The results in Sections IV-B and -C yield general
lower bounds for code sizes. In Section IV-D a large class
of codes is constructed from finite projective geometries,
and many of them are optimal. In Section IV-E more
optimal codes are constructed via combinatorial methods.
In Section IV-F we discuss the usage of block design and
algebraic coding theory for constructing OOC’s.

A. Upper Bounds

Upper bounds on the maximum size of an optical or-
thogonal code ®(n,w,A) can be obtained from related
results in algebraic coding theory. An error-correcting code
is a set of binary n-tuples with a certain structure. Each
n-tuple is a codeword, and the number of 1’s is its (Ham-
ming) weight. The (Hamming) distance between two n-
tuples is the number of bit positions in which they differ.
A fundamental problem in algebraic coding theory is to
find the largest error-correcting code with length # and
distance at least d between every pair of codewords. It is
also interesting to consider the same problem in the class
of error-correcting codes with constant codeword-weight.
Let A(n,d,w) denote the maximum size of an error-cor-
recting code with length n, constant codeword-weight w,
and distance d or more between every pair of codewords.
The determination of the precise values of A(n,d,w) for
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general parameters n, d, and w is a difficult problem.

Numerous references to results on this topic can be found

in Best ez al. [1], Golay [7], and MacWilliams and Sloane

[16]. In particular, the Johnson bound [13], [16] states that

n(n=1)---(n—w+38)
w(w—1):--8

A(n,28,w) <

We will use the Johnson bound and the relationship be-
tween ®(n, w,A) and A(n,d,w) to derive a general upper
bound for ®(n,w, A).

Theorem 1: ®(n,w,\) < (1/n)A(n,2w —2X),w) <
((n=T1)---(n=A)/w(w—=1)---(w=RQ)).

Proof: For any (n,w, A) optical orthogonal code C,
let C’ be the error-correcting code consisting of all cyclic
shifts of codewords of C. Since for every codeword of C,
its n cyclic shifts are all distinct, we have |C’| = n|C|. Every
n-tuple in C’ has Hamming weight w. Furthermore, for
any two members of C’, there are at most A bit positions
where they both have a 1. Therefore, C’ has minimum
distance at least 2w —2A, and we have

IC1< A(n,2w =2\, w).
Since |C’| = n|C], this implies the theorem.

When A, # A, we can set A =max{A,,A_} and apply
the above upper bound. The bound is particularly strong
for small values of A. For large values of A, other avail-
able upper bounds on the size of constant weight codes are
contained in MacWilliams and Sloane [16].

The problem of designing codes for the chip and frame
synchronous multiple-access optical system is equivalent to
the problem of designing constant-weight codes. In the
chip-synchronous optical system, we wish to design a large
set of (0,1) sequences with constant weight and minimum
overlap. It is equivalent to designing a large constant-weight
code. However, it may be interesting to design a large set
of (0,1) sequences with several (say, two or three) possible
weights and minimum overlap for use over the chip-syn-
chronous optical system. This does not correspond to any
well-known coding problem.

B. Iterative Construction

Given an (n,w, ]\, A,) code, we present several meth-
ods of constructing another code with different parame-
ters. The first method is trivial.

Method 1: Given an (n,w, A, A.) code C, we can use it
as an (n,w, X, X,) code with X', > A, and X, > A_.

Method 2: Given an (n,w, A, A,) code C with m code-
words, we construct an (7,2w —2X,2A,+2X_,w +3X)

code C’ with (’;) codewords as follows. For every pair of

codewords x and y of C, we construct a codeword z of C’
as follows. First, let z’=xV y, where Vv represents the
bit-wise OR operation. Since x and y both have weight w
and overlap at no more than A _ bit positions, the weight of
2, denoted by wt (z'), is at least 2w —2X . Then let z be
derived from z’ by changing any wt (z)—(2w —2AX,) bits
from 1 to 0. Every codeword z of C’ has weight precisely
2w —2A . The autocorrelation of z is at most equal to the
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autocorrelation of z’, which is
|(x v y)N(acyclic shift of x V y) |
<|x N (a cyclic shift of x) |
+ | x N (a cyclic shift of p)|
+| y N(a cyclic shift of x) |
+| y N (a cyclic shift of y)|
SAFA A A, =20, 427,

Therefore, C’ satisfies the autocorrelation property. Let z,
and z, be two codewords which are derived from z’, = x,
V y and z;=x,V y,, where x,, x,, y;, and y, are code-
words of C with {x, y,} # {x,, y,}. The cross correlation
between z; and z, is at most the cross correlation between
z{ and zj, which is

|(x, v ») N (a cyclic shift of x, V p,) |

4x,,
<
T lw43A,,

Since A, <w, C’ satisfies the cross-correlation constraint.

Method 3: Given an (n,w, A, A,) code C, we can con-
struct a (tn, tw, tw, tA ) code C’ with the same number of
codewords in the following way. For each codeword x of
C construct a codeword z of C’ by concatenating # copies
of x. (Here, the codeword x is considered as a binary
n-tuple.) Each codeword of C’ has length tn and weight
tw. The autocorrelation can be no larger than tw, and it is
easy to verify that codewords of C’ satisfy the cross-corre-
lation constraint tA .

if {xlvyl}m{xl’yZ} =0
otherwise )

C. The Greedy Algorithm and General Lower Bounds

The “greedy” algorithm is useful in many combinatorial
and computational problems. Here we use it to construct
optical orthogonal codes with general parameters. Two
lower bounds on the performance of the algorithm are
given. Each is sharper than the other in a particular range
of code parameters. In practice, the algorithm may yield
better codes than the lower bounds suggest. Furthermore,
there are potential methods to improve the basic algo-
rithm.

The Greedy Algorithm for Constructing (n,w,A,,\,_)
Codes: Originally, the code is empty. In (;’,) steps, the
algorithm examines all the binary n-tuples of weight w,
one at a time. If an n-tuple satisfies the autocorrelation
property and satisfies the cross-correlation property with
every codeword already included, it is added to the code;
otherwise, it is discarded.

The algorithm can be implemented in computation time
of order (;’,)|C|w2 and storage space of order |C|n. Two
lower bounds on the sizes of the OOC’s generated by the
greedy algorithm are given below.
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Theorem 2:

(5= "0 ) (=2 =1)

min{n—w.w}

R V0 1)

i=A +1

O(n,w,A,,A.) =

Proof: In the first part, we show that there are at most
n
1n-1 n-tuples violating the auto-
2(n )(Aa+1)(w—>\a—1) p g
correlation property. In the second part, we show that,
given any n-tuple, there are at most

min{n—w,w}

X (200

i=A 41

n-tuples (counting itself) which violate the cross-correla-
tion property with respect to it. These two facts imply the
theorem.

Part I: We overcount the conflicting n-tuples by the
following method. Let y be an n-tuple which has 1’s in bit
positions s, s,,* ", 5,,. By Fact 2 of Section II, if y vio-
lates the autocorrelation property, then there exists a num-
ber 8, 1<8 <(n—1)/2 (if 8 > (n—1)/2, take n— §) that
can be represented in A, +1 or more ways as the differ-
ence s, —s;. There are at most (n —1),/2 choices of 8, at

w .
most (}\ +1) ways to choose the pairs, and at most
a

n .. . ..
(W —A - 1) ways to choose the remaining bit positions.
a

The upper bound then follows easily.

Part II: Given an n-tuple x, there are
s VA W)( ':v—_vf ) ( »Iv) n-tuples which overlap more than

A, bit positions with it. Each such n-tuple has at most »
cyclic shifts, all of which violate the cross-correlation prop-
erty with respect to x. These are all the n-tuples which
violate the cross-correlation property with respect to x.
Combining the arguments of parts I and II, we complete
the proof.
When n > w and A,> w?/n, we have

nhe

@(n,w,A,,A.) =

et
(w=A, -1\ At
+ (lower order terms)

where the lower order terms are asymptotically negligible.

In situations where the greedy algorithm is considered
too slow, the following “accelerated greedy algorithm” can
be used. The code found is likely to be smaller, but the
speed is dramatically improved.

The Accelerated Greedy Algorithm: This algorithm is best
visualized via the set-theoretical perspective. It attempts to
include a new codeword as a w set by adding one element
at a time. The algorithm consists of two nested loops; the
outer loop attempts to include a new codeword at each
iteration, and the inner loop tries to add one element at a
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time to the codeword at hand. We begin with the empty
code and stop when the inner loop fails to find a suitable
element for inclusion.

Assume m — 1 w-sets have been included in the code and
w—1 elements have been included in the w-set under
consideration. For each number x, 0 <x <n, the algo-
rithm calculates the number of ways x can be expressed as
x=a+b—c, where a,b,c, a+ c, are elements in the in-
complete codeword-set at hand. If there are less than A,
ways, then x can be included without violating the auto-
correlation property. For each existing codeword S, (as a
w set), 1<i<m—1, and each x, 0 < x < n, the algorithm
also calculates the number of ways x can be expressed as
x=a+b—c, where a is in the incomplete w set at hand,
and b +# ¢ are elements in S,. If there are fewer than A,
ways, then x can be included without violating the cross-
correlation property with respect to S,. There are (w —
1)?(w —2) expressions a + b — ¢ with a,b,c,a# ¢ in the
codeword at hand; and there are (m — 1)w(w —1)2 expres-
sions with a in the current codeword and b#c¢ in an
existing codeword. Therefore, an element can always be
included to make the current codeword complete if

(m=-Dw(w-1)" (w-1)%(w=2)
y * A

c

+w-—-1<n.

From this, we have the following lower bound.
Theorem 3:
O(n,w,A,,A,)
Ac(n=w+1)=(A /A ) (w—-1)*(w-2)
> > :
w(w—1)

The accelerated greedy algorithm can be implemented in
computation time O(|C|*w*) and storage space O(n). It is
considerably faster than the basic greedy algorithm for a
wide range of parameter values. The accelerated algorithm
is expected to perform better than the bound in Theorem 3
because the worst case considerations in the derivation are
unlikely to occur in practice.

D. Projective Geometry

Here, we present a method of constructing optical or-
thogonal codes from finite projective geometries. First, we
demonstrate the method by constructing (n, w,1) codes.
The case A,, A >1 will be discussed later.

Projective geometry is an interesting subject in combina-
torics with a rich literature. Due to limited space, we
cannot hope to give an adequate account here. In the
following, we will only attempt a brief survey of the results
most closely related to our study. Researchers interested in
more details are encouraged to consult standard textbooks
such as Carmichael [4], Hall [10], or Ryser [17].

A finite vector space V(d +1,q) consists of (d+1)-
dimensional vectors with coordinates from the finite field
GF(q), where q is a prime power. Points in the projective
geometry PG(d, g) correspond to lines through the origin
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in V(d +1, g). s-spaces in PG(d, q) correspond to (s +1)-
dimensional subspaces through the origin in V(d +1, ¢).

In V(d +1, q) there are g vectors on a line, and hence
q — 1 nonzero vectors are on a line through the origin. Two
lines through the origin do not share any nonzero vectors.
There are g9*! —1 nonzero vectors in all. Therefore, there
are (¢**1—1)/(q —1) distinct lines through the origin in
V(d +1,q). Also, there are g2 —1 nonzero vectors on a
plane through the origin. They can be partitioned into
g +1 lines consisting of ¢ —1 vectors each. Thus there are
g +1 points on a line in PG(d, q). Similarly, we can show
that there are (¢*! —1)/(¢q —1) points in PG(d, q).

In the finite projective geometry PG(d, q), any two lines
intersect at no more than one point. We will use lines in
projective geometry as codewords in optical orthogonal
codes. Two codewords will intersect at no more than one
point, as desired. What remains is to implement a cyclic
shift on the points of the geometry which preserves lines.
This can be done by taking a discrete logarithm.

A vector B in the space ¥(d +1,q) has d+1 coordi-
nates with values from the finite field GF(q), or alterna-
tively, it can be regarded as an element 8 of the extension
field GF(¢?*'). Let a be a primitive element of GF(g9*!).
Then the nonzero elements of GF(g?*!) are the Oth
through the (¢?**—2)th power of a. If a®= B, then the
discrete logarithm log, 8 = e. Therefore, the discrete loga-
rithm establishes a one-to-one correspondence between the
nonzero vectors in V(d +1,q) and the integers
{0,1,---,4“*! —2}. The nonzero vectors on a line through
the origin are the ith, (i + n)th,- - -,(i + (g — 2)n)th powers
of the primitive element for some i, where n=(g%*! -
1)/(q —1) is the size of PG(d, ¢). For an arbitrary point p
in PG(d, g), let log p denote the discrete logarithm of any
vector on the line corresponding to p in ¥(d +1, ¢) mod-
ulo n. Then log(-) is a one-to-one mapping between the
points of the projective geometry PG(d, ¢) and the inte-
gers modulo n. Each line in the projective geometry corre-
sponds to a subset of integers modulo n.

Furthermore, let the cyclic shift of a line L in PG(d, g)
be the set of points { p: log p =1+ log p’(mod n) for some
point p” on L}. Then the cyclic shift of a line is still a line
in PG(d, g) (a well-known fact in projective geometry). An
orbit is a set of lines in PG(d, ¢) that are cyclic shifts of
each other. The number of lines in an orbit is its size,
which is necessarily a divisor of n. An orbit is full if its
size is n; otherwise, it is incomplete.

Now we are ready to construct (n, w,1) optical orthogo-
nal codes from the projective geometry PG(d,¢q), with
n=(g""'-1)/(g—1) and w = ¢ +1. Assume there are m
full orbits in PG(d, q). Take one representative line from
each full orbit and map each line into a set of integers
modulo n under log(-). The m resulting w sets form an
OOC with the described parameters and desired correla-
tion properties. Two lines intersect at no more than one
point, and therefore two different shifts of a codeword set
intersect at most once, and arbitrary shifts of two code-
word sets intersect at most once. Incomplete orbits are
discarded.
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Example: In GF(2%), we have

a®=(0,0,1)
o' =(0,1,0)
a’=(1,0,0)
«*=(0,1,1)
a*=(1,1,0)
= (1,1,1)
a®=1(1,0,1)

and 0 = (0,0,0). Therefore, the lines in PG(2,2) are mapped
to

a={0,1,3}
b={0,2,6)
c¢=1{0,5,4}
d={1,4,2)
e=1{1,5,6)
f-(2.5.3)
g=(3,6,4).

The vectors 0, &%, o, and o> form a 2-space in GF(2?).

They (except 0) contribute to the line a in PG(2,2). Other
lines are derived similarly. Note that the cyclic shift of any
line is also a line. There is only one orbit containing all
seven lines. Picking any line to be the representative, we
have a (7,3,1) code with only one codeword.

The parameters of some codes constructed in a similar
way are listed in Table I. The codewords (as w-sets) of a
(341,5,1) code with 17 codewords generated from PG(4,4)
are listed in Table II. By Theorem 1, this code is optimal.

TABLE I
(n, w,1)-CODES FROM PROJECTIVE GEOMETRY PG(d, q)
w n IC| d q
3 31 5 4 2
3 63 10 5 2
3 127 21 6 2
3 255 42 7 2
3 511 85 8 2
3 1023 170 9 2
3 2047 341 10 2
3 4095 682 11 2
4 40 3 3 3
4 121 10 4 3
4 364 30 5 3
4 1093 91 6 3
4 3280 273 7 3
5 85 4 3 4
5 341 17 4 4
5 1365 68 5 4
5 5461 273 6 4
6 156 5 3 5
6 631 21 4 5
6 3156 105 5 5
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TABLE II
CODEWORD SETS OF AN OPTIMAL (341,5,1)-COoDE
M 0 1 85 21 5
S, 0 2 170 10 42
S 0 3 111 104 53
M 0 6 222 106 208
Ss 0 9 268 151 105
Se 0 11 45 76 198
S, 0 12 103 75 212
S 0 13 305 227 43
So 0 15 107 146 164
Sio 0 17 264 203 165
Sh 0 19 88 267 220
Sis 0 22 90 55 152
Sia 0 23 293 252 118
Si4 0 24 206 83 150
Sis 0 25 54 169 221
Sie 0 26 269 86 113
Si7 0 37 147 217 81

The number of lines in the projective geometry PG(d, q)
is
(g9*1=1)(g%* 1= q)
(¢*-1)(¢*-q)

=(¢*=1)n/(q*-1)
=n(n—-1)/w(w-1).

When d is even, then ¢?—1 divides ¢?—1 without re-
mainder. Furthermore, all orbits are in fact full (shown in
Brickell and Wei [3]), and the resulting OOC’s are optimal
according to Theorem 1. When d is odd, g2 —1 does not
divide ¢?—1, and at least one incomplete orbit exists. It is
shown in Brickell and Wei [3] that there is precisely one
incomplete orbit; all other orbits are full. There are n /(g
+1) lines in the incomplete orbit, and one of them is
{0,n/(g+1),2n/(q+1),---,qn /(g +1)}. Only g possi-
ble differences exist between pairs of elements of the same
line in the incomplete orbit. The number of complete
orbits is (g9 — q)/(q% —1). Therefore, the resulting OOC is
also optimal because |[(n —1)/w(w —1)] = (¢ = q)/(q* —
1). This meets the upper bound in Theorem 1.

Theorem 4:

for n=(q°""-1)/(¢—1) and w=g+1, where g is a
prime power. Such optimal optical orthogonal codes can
be constructed by using a projective geometry.

d+1

So far, we have demonstrated how to construct optimal
(n,w, ) codes with A =1 from a projective geometry. We
have used certain lines in the projective geometry as code-
word w sets. Since any two lines intersect at no more than
one point in the projective geometry, the resulting codes
satisfy the autocorrelation constraint A,=1 and the
cross-correlation constraint A,=1. We can also use s
spaces in projective geometry, where s>1, to construct
codes with A >1.

An s space consists of (¢°*! —1) /(g — 1) points, and the
intersection of two s spaces is at most (s — 1) space, which
consists of (¢° —1)/(q —1) points. The cyclic shift of an s
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space is also an s space. We now generalize the definition
of an orbit to be a set of s spaces that are cyclic shifts of
each other. The size of an orbit necessarily divides n.
Construct an (n,w,A) code with n=(g%"1-1)/(q - 1),
w=(g""1=1)/(g—1), and A =(g*-1)/(g—1) from the
projective geometry PG(d, q) as follows. Take one repre-
sentative from each orbit with n» members. The discrete
logarithm of the points in each representative s space
forms a codeword. The codewords form an (n,w, ) code
with the prescribed parameters. That the codewords satisfy
the auto- and cross-correlation properties can be easily
verified.

E. Combinatorial Methods

Optical orthogonal codes can be constructed by various
combinatorial methods. For the case of A =1, the problem
of constructing OOC’s is equivalent to the problem of
packing difference sets as illustrated in Fact 3 of Section
I1. For the case of w=3 and A =1, we can obtain optimal
codes for all n # 2 (mod 6).

Theorem 5:
n—1
®(n,3,1)= o if n# 2 (mod 6).

We construct optimal (n,3,1) codes satisfying Theorem
5 with codeword sets of the form §;,={0,i,a,} mod n.
First, assuming n = 6¢ + 1, we construct ¢ codeword sets of
the form S;= {0, i, ¢+, x,}, where the x, are specified in
four cases, depending on the value ¢+ modulo 4. With few
exceptions, 0 <x,<2t—i, so that A(S,)=+i +(1+
x;), 2 (¢ + i + x;) has one member between zero and ¢ and
two members between ¢ and 3r. This regular structure
facilitates the construction and validation of the codes.

Case 1: t=4k, k> 2,

2k - j, i=2j, 1<j<2k-1
6k -1—j, i=2j+1, 1<j<k-2
X, = 6k — j, i=2j+1, k<j<2k-1
2k, i=4k
4k, i=2k—-1
Tk -1, i=1
Case 2: t=4k+1, k> 2,
2k+1-j, i=2], 1<j<2k
6k+1—j, i=2j+41, 1<j<k-2
o 6k+2—j, i=2j+1, k<j<2k-1
"o 2k +1, i=ak+1
4k +2, i=2k+1
Tk +1, i=1
Case 3: t=4k+2, k> 2,
2k +1—j, i=2}, <j<2k
6k+3—-j, i=2j+1, 1<j<k-1
o 6k+2—j, i=2j+1, k+l<,<2k
") 2k +1, i=4k+2
6k +4, i=2k+1
4k +2, i=1
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Case 4: t=4k +3, k> 2,

2k+2-j, i=2j, 1<j<k+1

6k+5—j, i=2j+1, 1<j<k-1
X, = 6k+4—j, i=2j+1, k+1</<2k

2k +2, i=4k+3

6k +6, i=2k+1

5k +4, i=1

For small values of ¢, some optimal (n,3,1) codes are
given in Table III.

TABLE III
SoME OPTIMAL (#,3,1)-CODES

n  Optimal (n,3,1)-codes

7 {0,1,3}

13 (0.1,4}, {0,2,7}

19 {0,1,5}, {0,2,8}, {0,3,10}

25 {0,1,6}, {0,2,9}, {0,3,11}, {0,4,13}

31 {0,1,7}, {0,2,11}, {0,3,15}, {0,4,14}, {0,5,13

37 {0,1,11}, {0,2,9}, ({0,3,17}, {0,4,12}, {0,5,18}, {0,6,12

43 {0,1,19}, {0,2,22}, {0,3,15}, {0.4,13}, {0,5,16}, {0,6,14}, {0,7,17)

To prove that these codes are optimal (n,3,1) codes, we
can verify that A(S,)NA(S;) =@ for every pair of code-
word sets S, and S;, i# j. Note A(S)={+i+(1+
x;), £(t+i+ x;)}. Since both x, and i + x; assume values
between 1 and 27 (with only one exception), it is straight-
forward to verify that A(S;)NA(S,)=2. By the same
technique, we can also show that the same sets form
optimal (n,3,1) codes even if n #1 (mod 6), provided that
n # 2 (mod 6). The details are omitted.

F. Block Designs and Algebraic Coding Theory

Another general approach to constructing optimal or-
thogonal codes is to use a ¢ —(v, b, A, k, A) block design.
A t—(v,b,r,k,N) design consists of v objects and b
blocks (sets) of these objects, with each object contained in
r blocks, each block containing k objects, and each pair of
objects contained in A blocks.

For any such block design, we can use some of the b
blocks as codeword sets, each of which has weight k.
However, the properties of block design do not immedi-
ately imply the intersection of two blocks is small in
general. It only guarantees each ¢ subset appears in exactly
A blocks. Due to the “balanced” structure of the design,
some block designs have good intersection properties. We
can select a collection of blocks from a design and test if
the autocorrelation property and cross-correlation prop-
erty are satisfied for prescribed constraints A, and A . If
they pass the test, then we have an optical orthogonal
code. For the case of A =1, the definition of block design
implies the intersection of two blocks is at most 1. The
codewords in the OOC’s will be chosen as the blocks
whose cyclic shifts are also blocks. Block designs that are
invariant under a cyclic shift are preferred but not re-
quired. The relation of block design to OOC’s will be
explored in an upcoming paper.

As illustrated in Section IV-A, OOC’s are equivalent to
a special kind of constant-weight codes. Given an (»n, w, A)
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optical orthogonal code with m codewords, we can derive
an error-correcting code with constant codeword-weight in
which each orbit formed by codewords that are cyclic
shifts of each other has size n. The sizes of optical orthogo-
nal codes and constant-weight codes are related by
n®(n,w,X) <A(n,2w -2\, w).

To construct an (n,w, A) optical orthogonal code, we
examine an (n,2w—2A,w) constant-weight code. Only
those codewords whose cyclic shift is also a codeword will
be selected. A good (n,2w —2A, w) constant-weight code
will then yield a good (n,w,A) optical orthogonal code.
Cyclic constant-weight codes are preferred but not re-
quired. The interplay between OOC’s and constant-weight
codes will also be studied in an upcoming paper.

V. SUMMARY

In this paper we introduced the notion of optical orthog-
onal codes and addressed their application to a variety of
areas in communications. Furthermore, we displayed the
rich and fruitful interconnection between optical orthogo-
nal codes and other research areas in combinatorics and
algebraic coding theory. This opens up many new and
interesting directions for future research.
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APPENDIX

In this Appendix, we give a brief analysis of the performance
of a code-division multiple-access optical system which uses
optical orthogonal codes. The results presented here are prelimi-
nary. They are included to enhance the reader’s understanding of
the setting of the optical multiple-access system and the advan-
tages of optical orthogonal codes. For a more detailed analysis,
the readers are referred to the papers by Salehi and Brackett [2],
[22], [23], [25].

Assume that m users are using codewords from an (n,w,1)
optical orthogonal code to transmit information over a code-divi-
sion multiple-access optical channel such as the one shown in
Fig. 1. There is no frame synchronization among the users. For
the first half of this Appendix, we assume chip synchronism. In
the second half, we deal with the chip asynchronous case. The
received signal is fed into a tapped delay line for the extraction of
information.
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We consider two types of detectors. Due to multiple overlap-
ping transmissions, a tap may sense more than one pulse. The
two types of detectors differ in their treatment of this situation.
In the soft-limiting detector, the contribution of a tap equals the
number of pulses it senses. If there are § or more pulses, it
outputs a 1. In the hard-limiting detector, the contribution of a
tap is one when it senses one or more pulses and zero otherwise.
The detector outputs a 1 when 6 or more taps contribute, and a 0
otherwise. The difference between the two types of detectors is
best illustrated when a small number of taps on a single delay
line are sensing a large number of pulses. The soft-limiting
detector will effect a 1 detection, while the hard-limiting type will
not. For both types of detectors the number # is called the
detection threshold, or just the threshold. In what follows, we
analyze the probability P, of falsely detecting a 0 as a 1 for both
types of detector. We assume that no random noise is present in
the system. Note that the false detection of a 1 as a 0 is not
possible because, when a 1 is transmitted, the threshold is neces-
sarily exceeded and a 1 detection is effected (provided 0 < w).

Soft-Limiting Detector, Chip Synchronous

If the information bit is 1, it can never be mistaken for a 0. If
the information bit is 0, it may be mistaken for a 1 if interfering
transmissions from other users are present in the system. We now
analyze the probability of this occurring.

Consider the detector for user 1. A pulse from another user
sensed by detector 1 is called a hit. A false detection occurs when
there are § or more hits while user 1 is sending 0. The cross-corre-
lation property ensures that each fortuitous user contributes at
most 1 hit, and it does so with probability w?/n independently.
Therefore,

m—1
P,= 3 Y Pr{i other users are sending 1}
i=9
-Pr {false detection|i other users are sending 1}

=’:§:2m(mfl).jgg(;)(%z)l(l—:vn—z)i“j‘

!

Algebraic manipulation gives the following alternative formula:
1ym-1 w2y’ w?
s [
2/, Ts i 2n 2n

Hard-Limiting Detector, Chip Synchronous

m—1—i

Assume that user 1 is sending 0, and exactly i other users are
sending 1; consider the detector for user 1. A false detection
occurs if and only if at least § active users are contributing hits
i
g
. . c s . w ..
tions of @ contributing “hitters,” there are 9 combinations of

6 taps to sense the hits, and there are ! pairings between the
hitters and the taps. Furthermore, the probability that an active
user contributes to a particular tap is w/n. Therefore, the false
detection probability is upper-bounded by

1

m—1
P, (5) Y Pr{i other users are sending 1}
i=0

to different taps on the same delay line. There are ( combina-

-Pr { false detection|i other users are sending 1}

m—

£ )

=0

A
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Remark on Chip Asynchronous Case

If there is no chip synchronization among the users, the error
probability is even lower because the taps are likely to sense only
partial pulses contributed by other users, and it becomes harder
to reach the detection threshold and to trigger a false detection.

For simplicity of analysis, we assume rectangular pulses that
are 50 percent as wide as the duration of a chip (i.e., a 50 percent
duty cycle). (A complete analysis is included in [2].) We also
assume the height of the pulses is two, so that each pulse has unit
area, which corresponds to one unit of energy. Each tap is a
device which integrates the photon energy present in a window
whose width is half a chip duration. In the soft-limiting detector,
the detection of a 1 is effected when the total photon energy
integrated by the w taps reaches . In the hard-limiting detector,
a 1 is detected when the energy integrated by 6 or more taps
reaches unity. Then the cross-correlation property of optical
orthogonal codes implies that, at any given time, a fortuitous user
can contribute at most one partial or complete pulse to detector
1. Let f(x) denote the probability density function for a fortu-
itous user to contribute a pulse intensity x to the detector. Then
f contains a delta function at x = 0, and for the remaining range:

f(x) = Pr {detector 1 sensing a pulse intensity x|fortuitous user }

The probability of a fortuitous user contributing 0 pulse intensity
is 1—w2/n (ie., f(0)=(1—w?/n)8(0)).

Soft-Limiting Detector, Chip Asynchronous

Assume user 1 is sending 0 and exactly i other users are
sending 1. Let x|, x,,- - -, x;, 0 < x; <1, denote the pulse intensity
contributed by the i active users. Then a false detection results if
and only if x; + x, + -+ - + x; > 0. Therefore, the false detection
probability in this situation is given by the integral

B o

x + -+ x; 20
X oo (1=x;) dx, - - - dx;.

Hard-Limiting Detector, Chip Asynchronous

For the hard-limiting detector, a 1 detection is effected when 6
or more taps sense >1 pulse intensity. Again, we assume pulses
have a 50-percent duty cycle. The correlation properties of OOC’s
dictate that each fortuitous user can contribute a partial or
complete pulse to at most one tap. Therefore, it takes at least two
users to trigger one tap, and at least 26 users to trigger a false
detection. Given that user 1 is sending 0 and that exactly i other

i
al
groups of & users each to cause a false detection. There are (

users are sending 1, there are 2:) combinations of two

w

i)
combinations of # taps to sense the fortuitous pulses, and there
are (81)? ways of matching two “culprit” users (one from each
group) to each tap. For any particular tap, the probability of a
user contributing a nonzero pulse intensity is w/n. So the proba-
bility of two fortuitous users triggering a particular tap is upper-
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bounded by (w/n)?. Combining all these arguments, error prob-
ability is upper-bounded by

S e R e

i=26
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