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ABSTRACT

Suppose G is a fixed finite connected graph and for any two vertices x and y in
G, dg(x,y) denotes the distance in G between x and ¥, ie., the munber of edges
in a shortest path connecting x and y. Given an infnite sequence @ = (g,,45,...)
of vertices in G, suppose we would like to find another sequence

P =Py =(py,p1.) of vertices so that the quantity
; 1 [X
v(P) = lim sup v | Z @inp) +d(p.g)))
e i=1

is as small as possible. This question represents a general formulation of a class of

problems arising in sclf-adjusting data structures.

In this paper we will investigate this and a number of related graph searching
problems, such as requiring p, to be chosen before Gn+i>{ = k, is known, and
show how a number of interesting structural and algorithmic concepts from graph
theory come together rather maturally, e.g., isometric embedding, Steiner points in
graphs, retracts, diameters and Linear programming.
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Introduction and Background

In a sequential search file, a sct of records is arranged in a lincar list
L = (£,,¢,,..). When a record p is requested, the list L is searchad from the first
entry ¢, of L and consecutive entries are prabed until the the requested record p is
found. If p occupies the i™® position in L, the cost of this access will be i. Such a
model of sequential search has long been in use and has an extensive literature (sce

[3132,42)).

1t is not difficult to show that if the access frequencies for the requests are
known then the best list Lopr, i£., one for which the average access cost is as
small as possible, is formed by arranging the records in arder of decreasing
frequency. However, it may happen that the access frequencies are not known a
priori, and that in gencral the average cost per access can be decreased by
rearranging the list from time to time. A number of different such self-adjusting
schemes have been investigated in the literature. These include “move-to-front”
[12,31,32], “transport” [42], “more-ahead-k” [9,10], “k-in-a-row” {21,29] and

“k.in-a-batch” [21]. Various analyses of these and other schemes, both
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mathematical and experimental, can be found in [8,9,10).

However, a fundamental question still remains unresolved, namely, whet is the
optimal sclf-adjusting algorithm, By this we mean an algorithm which results in
the least cost per access for any sequence of requests. In contrast to the earlicr
situation of a static list Lypr, we now allow dynamically changing lists. However
to change a list L to some other list L' entails a cost. The cost measure we will
use for our analysis is just the minimum number of transpositions needed to
transform L to L'. Thus, in our model, each probe costs 1 and each transpositian
costs 1. (We will discuss the possibility of different weightings at th= end of the
paper.) In order to fix ideas, let us examine a simple special case, narely, the case
in which we have just three records, say, a,b and ¢. We are given some arbitrary
sequence @ =1{g,,95,-} with ¢; € {a,b,c}. We are required to produce a
sequence of lists Lo,L;,L;, ..., each I, being some permutation of {a,b,c},
where we choose without loss of generality Ly = (a,b,c). Fori =1,2,3, ..., the
cost associated with the /™ request g; is the sum of the ccst of transforming list
L tolist L;, and the cost of finding record g, in list L; (ie., 1,2 or 3 depending

on whether g; is the first, second or third entry in L,).

We can model this process in terms of moving a pebble 7 on a graph G, in this
case consisting of a 6-cycle Cy, labelled as shown in Fig. 1.
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abe ach

Cs
Figure 1

In fact, this is just the graph formed by taking the set of six permutations of
{a,b,c} as its vertex sct, and placing an edge between two vertices if the
carresponding permutations differ by a single transposition.

Let d denote the usual (path-metric) distance on this graph, where if X,
Y CV ={a,b,c} then d(X,Y): =min{d(x,y): x € X,y € Y}. Any sequence of
lists Lg,Lq,L;,... can be regarded as successive positions occupied by the pebble ,
starting from the initial vertex Ly = (a,b,c) (which are identify with vertex abc,
etc.). Partition the vertex set V into threc sets: V, = {abc,ach}, V, = {bac, bed}
and V. = {cab,cba}. Thus, for the request sequence Q =(g;,9;,.) and the

“pebble sequence” P = (Ly,L1,L,,...), the cost of the i*™ access is jurt
¢} ci(2,P) =d(L;,L;) +d(Vq‘,L,-) +1,

where the term +1 comes from the fact that the cost of probing the list L; to find
the record g; is one more than the distance of (vertex) L; to the corresponding set

V,- One goal might be, given @, to determine P so that
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=1 13
c{0.P): _hﬂ.sgp N i§l (Q,P)

is minimized. Other possible objectives will be mentioned in subsequent sections,

It was shown by Tarjan and Wei [45] that the following algorithm achieves this
desired minimum value for this case. Suppose L, =abe (without loss of
generality) and Q; .1 = (g;41, ¢ 12 §i43-) is the current request Sequence seen
after i steps. To form the list L;,, move b in front of a only if two 78 occur in
Q; 11 before one a occurs. Similarly, move ¢ in front of anly if two ¢’s occur
befare one ¢ occurs, and do the same for b and c. Thus, the relative order of each

pair in {a b c} for L, is determined, which thereby determines L, ,,.

This same technique gives an algorithm for gencrating an optimal sequence of
lists in the case of two records, in which Z,,, can be determined by only knowing
the next two symbols g;,, and ¢;,,. This is in contrast to this algorithm for the
case of rhree records which may require unbounded look-ahcad. In fact, already
for the case of four or more records, the corresponding questions appear to be
substantially more difficult and optimal list selection algorithms are not currently
known. One problem with the preceding approach for the use of four records is
that the adjoining graph G,, of lists now has 24 vertices and has a certain amount

of structure (see Fig. 2).
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Our approach in this paper will be to focus on these generic questions with two
changes: (1) We will consider all connected graphs G rather than just those
arising from permutations of an n-set; (2) The requests will always consist of

single vertices of G rather than more general subsets of vertices.

It will be seen that for this problem we can say a fair amount, although we are
still far from having a complete understanding even here.

Moving pebbles on graphks. We now give a more precise formulation of our
problem. For a given connected graph G = (V,E), let d =d; denote the usual
(path-metric) distance on G, ie., for x,y € V, d(x,y) is equal to the minimum
number of edges in any path between x and y. For a reguest sequence
Q =(q1,92+) and a pebbling sequence P = (pg,p1,p;,.-), With ¢, p; €V,
define
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CN(Q!P) = gl (d(P:'—bpi) +d(p|' !qi)) ’

E(Q:P) =HAI}I_SBP _IN— CN(Q,P) ]
@
&) =int& (@,P),

MG) = sup (@),

We call M(G) the search value of G. We currently know of no polyncmial-time
algorithm for determining A{(G). Nete that we bave narmalized cy by emitting the
automatic +1 term occurring in (1).

Let us call the sequence P Q-optimal if

sup (cx (.P) = ey (Q.P))

is bounded for all pebbling sequences P. For any @, O-optimal sequences always
exist, as the following argument shows. Let , denote the finite requzst seguence
(91,92, ..,9;) and suppmse Py =(py0.Ps1s---,P) denotes an optimal

pebbling sequence for 0, . That is, P, minimizes
k
G (QesP) = 3 ey 2 ,) +d(pe s, )
i=l

over all possible pebbling sequences of length k+1. Definc an infinite pebbling
sequence P° = (pg, p),.) using the Kinig infinity lemma, so that any initial
scgment P, = (py, Py, .- ., P, OCCUrS as an initial scgment of infinitely many of
the P,. However, for any i = k, if P,(i) denotes the initial segment

(Peps Py ---.py ;) then
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3 c;(Q;, P (i)) — ¢;(Q; ,P;) = diam (G)

where diam (G) denotes the diameter of G. This follows from the chservation that

if (3) did not hold then the first i +1 terms of P, would be replaced by 7;, thereby
forming a pebbling sequence £, with
¢ (CxPe) < (O Py)
which contradicts the definition of P, .
For a finite request sequence C; = (g,,...,4x), we can characterize an

optimal pebbling sequence P, =(pg,p1,.--,p;) in other terms as follows.
Consider the tree § (0, P) shown in Fig. 3.

pO % P 2 P, 3 ‘.’t li
S(Q.F)

Figure 3

Such a graph is often called a caterpillar, with leaves py,q,,93,...,q; and
internal vertices p,,p,, - . ., py. Since P, is optimal for (0, then we must have for

all i,
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) d(p;_, p) +d(p,q) +d(p;, pi)

S d(p.1,x) +d(x,q;) +d(x,p4y)

for all vertices x € G (otherwise, replacing p; by x would decrease ¢, (Q, ,P;)).
Such a point p; is called a Steiner point for the set {p; _y, 4;, p; +1}- The set of all
such Steiner points will be denoted by S(p_j,q,p4). Thus,
P ¢ S(p_1sqi,piyy) forl =i < k. We will call the corresponding caterpillar a

Steiner minimal caterpillar for Q.

The windex of G. An algorithm A which produces a 0 -optimal pebbling sequence
A(Q) for each request sequence (2 will be said to be an optimal algorithm for G.
It can happen that an algorithm A can produce (2 -optimal alporithms even though

at any time only a finite portion of 2 can be seen by A.

Definition. A graph G is said to have windex k, written wx (G) = k, if there is an
optimal algorithm A for G with the property that A always determines p; with

only knowledge of g, for j < i + k.

If there is no such k¥ for G, we write wx(G) ==. The name windex, a
shortened form of window index, refers to the fact that one can think of A as

having a window through which exactly £ future request symbols of O can be seen.

In this section we discuss various elementary properties of the windex function.
In studying graphs with windex k it is useful to consider the process as a game
between two players, Red and Blue. At the {*® step of the game:

(@) Red selects the (i +k )™ request vertex q; ., ;
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(b)  Blue then selects the i pebble vertex p, and pays Red the amount

ds (P -1, pi) +dg(p.q;) .
The initial choices of p,and g, . . ., g, can be made arbitrarily.

Of course, the object of Blue is to minimize the amount paid to Red, whereas

Red would like to maximize this amount.
Lemma I. For any nontrivial graph G, ux (G) = 2.

Proof: Let {u,v} be some edge of G and suppose Blue has available only a window
of length 1, ie., at the i*® step Blue can only see g;,;. Suppose p, = u and Blue
sees ¢; . = v. If Blue elects to move the pebble 7w to v, ie., selects p, | = v, then
Blue pays 1 and Red can select g; ., = u, reversing the preceding situation. Blue
pays (possibly) even more if some p; £ {u,v} is selected. On the other hand, if
Blue choose p;,; = u then Blue pays 1 and Red can select g; ., = v, duplicating
the preceding situation. Thus, in any case, Red can choose the request sequence so
that Blue pays at least 1 unit per request. However, for any sequence

0 =1{91.92....,qy} with all g € {u,v}, Blue never has to pay mcxe than

—;—N + diam (G), by just going to and staying at the mare frequently occurring

symbol. Thus, we must have wx(G) = 2. =
Lemma 2. Ii T is any nontrivial tree then wx (T) = 2.

Proof: By Lemma 1, it suffices to show wx(T'} = 2. Suppose the pebble is at p;,
Blue sees qi+1 i and wants to dctcminﬁ Pi +1+ We knOW tmt P11 shmlld be a

Steiner point of {p,, q; +1, P42} (although p; ., is not yet determined). However,
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since T is a tree, S(p;, g; 11, #;+2) Will always consist of a unique vertex, which in
fact, is just the same as the Steiner point 3(p;,q; .1, 9i4p)- Thus, Blue can
construct a (-optimal sequence using a2 window of length 2, and the proof is
completed. ®

Lemma 3. For the complete graph X, on » vertices, wx(K,) = n.

Proof: We first show that ox(K,) > n-1. Let V ={v,,...,v,} and suppose
(without loss of generality) p, =v, and a length n-1 window shows
Gi41 =¥2, 842 =V3s -+ -2 Gitn=1 = Vy- If g5y =vy then = should stay at v,
(since otherwise Red is paying more than is necessary for this segment). On the
other hand, if g,,, = v, then 7 should move to v, (otherwise Red again pays too

much). Thus, wx(K,) > n-1.

In the other direction, it is not difficult to prove by induction that the following
algorithm with a window of length » is optimal: choose p;,, to be the first
repeated vertex in the scquence p;,g;11,qi42:---.8i+n- This shows that
wr(G)=n. W

For two graphs G and H, the product of G and H, denoted by GO H, is
defined to be the graph with vertex set {(u,v):v € V(G),v ¢ V(H)} and having
as edges all pairs {(u,v), (u',v)} where cither #« =u' and (v,v) € E(H) or

v =v'and (4,8 € E(G). It is casy to check that

dGBH((“:"): (“rivl)) =dG(“’u') +dH(V,V') .
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Lemma 4.

we(G O H) = max {x (G)), wx (H)}
Proof: Let (9:,9"),(42,9%) - be a request sequence in GO H. Suppose
Po,P1P2»- forms an optimal pebbling sequence for g¢,,q5,.. in G, and
P'osP'1sP " forms an optimal pebbling sequence for q'1q%,.- in H It is
straightforward to check that in fact (20,20). (P1.2 "), (P2,2%) .. forms an

optimal pebbling sequence for (71.¢"), (92,¢%) .- in G C H. Thus,
ax(G O H) < max {ax(G), wx(H)} .
The reverse inequality is immediate and the lemma is proved. B

By the ncubc Q, we mean the graph K, 0 X, 0 --- O K, (n factors). As

an immediate corollary of Lemma 4, we have
&) wr(@,) =2.

Suppose G and H arc graphs sharing exactly ome common vartex v. Let
GL‘JHdenotetheunionqt‘GandH.

Lemma 5.

wx (G U H) = max {wx (G), wx (H)}

Proof: 1et Q = (q4,43,) be a request sequence in G U H. We will canstruct an
optimal pebbling sequence P = (py,p,,p;,.) inductively. Let k denote the

maximum of wr(G) and wx(H). We will defise p, using only knowledge of
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O, =(g;41, - - - ,4;1). Without loss of generality we may assume p; _, € V(G).
Suppase either ¢; o ¢;., is in V(G). It then easily follows that S(p,_y, 4, p;+1)
must be contained in V(G). Farm Q, ' from @, by replacing each g; in V(H) by
v. Now use 0, ' to determine an optimal choice (in G) for p,. On the other hand,
if both ¢; and ¢, ., are in V(H) then form 0", from @, by replacing cach g; ia
V(G) by v, and use O, to determine an optimal chaice (in H) for p,. In either
case, we have managed to determine one more internal vertex in a Steiner minimal

caterpillar for O, using a window of length k. ®

Note that Lemma 2 is just a consequence of Lemmas 5 and 3 (with n =2).
Using the preceding results we can construct large families of graphs having
windex 2. These include not coly trees, n-cubes and grids but various types of

recursive combinations of these (using products and unions).

However, it turns out that induced or even isometric subgraphs of windex 2
graphs may not themselves have windex 2. A simple example is the 6cycle Cg, an

isometric subgraph of @5, which happens to hav= infinite windex.

We next recall a concept from topology which will be very relevant to our study
of the windex of a graph.

Definition. A subgraph H of G is called a retract of G if there is a mapping from
V(G) to V{H) which preserves edges, ie., which maps adjacent vertices in G to
adjacent vertices in H. Similarly, H is called a weak retract of G if there is a
mapping from V(G) to V(H) such that adjacent vertices in G are mapped to

either adjacent vertices or a single vertex in H .
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Lemma 6. If H is a weak retract of G then

wr(H) = wr(G) .

Proof: For a request sequence @ =(g,,93...-.4y) in H, let a carresponding
optimal pebbling sequence in G be denoted by P = (pg,p1,P2,....Py). Let
F:V(H) - V(G) be a mapping making H a weak retract of G, and consider the

pebbling sequence £(P) = (f(po), f(p1), f(p2). .. ..f(py)) in H.

Clearly,

cN(Q!f(P)) = CN(Q:P) -
Thus, we may restrict our scarch for a Q-optimal pebbling sequence to the

subgraph H. Thus, if wx(H) = k then {G) = k as well. This proves the

jemma. ®

We conclude this section with several examples of graphs having infinite
windex.
Lemma 7. Let K 5 denote the complete bipartite graph on vertex sets of sizes two

and three. Then

W(KZJ) =% .

Proof: Let the vertex sets of X 5 be denoted by {x,,x,} and {y,,y,,¥;}, where the
edges of K,, are exactly all the pairs {x,,y,}. Suppose wr(K;j) =k < =.
Consider a request sequence formed by repeating the sequence (y,y,y;)" z where

(y1y2y3)" means that the string y,;y,¥; is repeated so that it has length greater
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than k +10, and z is either x; or x;. When Blue secs the window with (just) an
initial segment of (y;y,ys)" visible, there are several options for the pebble 7. If
m is moved to x; then this is not optimal if z were to be x,. Similarly, if = is
moved to x, then this is not optimal if z were to be x;. On the other hand, to
move to (or stay at) any of the y; is also suboptimal since Blue pays at least 4 for
each occurrence of the three requests y,y,y, with this strategy, which costs more
than moving to some x; right away. We can repeat this process infinitely often in
a request sequence ¢, causing Blue to pay an unbounded amount more than N for
the first N requests. However, an Q-optimal pebbling sequence P* satisfies
ey(Q,P°) = N +2. Thus, wx(K,3) > k. Since & was arbitrary, the lemma is

proved. ®

Lemma 8. For the 5-cycle Cq, wx (C3) ==,

Proof: Let V(Cs) ={0,1,2,3,4} and suppose wx(Cs) =k < ®». Consider a
request sequence  formed by concatenmating subsequences of the form
§ =002414(24130)" z where z is cither 0 or 2. The block 24130 is repeated «
times where 5w > k. Let p,p),p;,.. denote the (purported) optimal pebbling
sequence. We may assume p, = p; =0 without increasing the cost. If ps + 0 or
4, z could be chosen to be 0. The total cost of aceessing S is at least 6(w+1), one
more than the optimal cost of 6{w+1} — 1 achieved by choosing ps =0 ar 4. On
the other hand, if ps; =0 or 4 then z could be chosen to be 2. In this case, the
total cost Blue pays is at least 6(w+1) + 1, again which is one more than the

optimal cost. Thus, as in the previous lemma, wx(Cs) > k for any k, and the
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proof is complete. ®

Graphs of windex 2. In this section we will characterize the class of graphs having
windex 2. A consequence of this characterization will be a polynamial-time
algorithm for deciding if wx(G) = 2.

Before we state the main theorem we need a definition. A graph G is called a
median graph if for any three distinct vertices a,b and ¢ of G, there is a unique
vertex of G whichli&esimultanemslymsln'tmtpathsjdninga and b,a and ¢,
and b and ¢. Median graphs arise naturally in the study of ordered sets and
discrete  distributive lattices, and have an extensive  literature  (cf.
[34,5628,33,34,3536]). We say that G has the unique Steiner point property if

§{a,b,c) contains exactly one element.

Theorem 1. Far a (nontrivial) connected graph G, the following four statements
are equivalent:

(@ «x(G)=2;

(b) G has the unique Steiner point property;

(c) G is a median graph;

(d) G isaretract of Q, for same n.

Proof: First, observe that the implication (d) = (a) is an immediate
consequence of Lemmas 1 and 6, and equation (5). We also point out that the

equivalence of (c) and (d) has been proved by H. J. Bandelt [7]. We will prove
(@) = (6) = (o).
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Before beginning, we need several definitions. For vertices u and v in G,a
shortest path joining » and v is called a (u,v)-path. Let SP(u,v) dencte the

union of all vertices on all (u,v)-paths.

Proof of (@) => (b): Suppose wx(G) =2. Let a,b and ¢ be three distinct
vertices in G having two distinct Steincr points, say s and s'. Furthermare, among
all such triples, choose a,b and ¢ so that ¢ =d(a,s) +d(b,s) +d(c,s) is as
small as possible. First, consider a request subsequence aabezz where z is either s
or s'. Let the corresponding pebbling sequence be denoted by pg.p,.p, ... Thus,
we must have p; =a = p, and the window shows b,c. Without loss of generality
we can assume p; # ¢'. Take z =s'. The Stciner minimal caterpillar for the
sequence b,c,s',s’ with p, =a has length r. Then d(p,,s) must be 0, ie.,
Ps =s', if x(G) is to be 2. Since we assumed p; # s', and since it must be
some Steiner point for {a,b,c} then we can assume without loss of generality that
p3 =s. Therefore,d(s,s) +d(s',c) =d(s,c),and so0, s'is on an (s,c)-path. By
the minimality assumption in chomsing {a,b,c} we must have ¢ =s’, since
otherwise would could have chosen the set {a,b,s%.

For this set, since

d{a,s) +d(b,s) +d(c,s) =t =d(a,s) +d(b,s) +d(c,s)

=d(a,s) +d(b,s) +d(s,5) +d{s',c)

d(a,s) +d(b,s) =d(a,s) +d(b,s) +d(s',s} =1'.
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But 5 is a Steiner point of {a,b,s?} which then implies that s’ also is a Steiner
point of {a,b,s}. Thus, we can conclude that ¢ = s’ must be a Steiner point of
{a,b,c}. By symmetry, a and b must also be Stciner poinis of {a,b,c).

Now, in the request subsequence aabczz, suppose z =a. Then it follows that
p1 =a = py,and also ps = py = a, and therefore p; = a. However, if z = b then
the same argument forces ps =p, =p; =b. Since a # b then we have a
contradiction. This shows {a¢) = (&).

Proof of (b) = (c): Suppose G has the unique Steiner point property. We will
show that for any three distinct vertices a, b and c, the unique Steiner peint s in

fact satisfies
s =SP(a,b) N SP(a,c) N SP(b,c)
By symmetry, it will be enough to show that
5 € SP(a,b) .

Suppose s ¢ SP{a,b). Lett € $P(a,b) so that d(s,t) =i > 0 is as small as

possible. Let 1 = up,u;,...,u; =3 bea {£,s)-path,
Claim I. d(a,u) =d(a,) +1.

Proof: Since [d(a,u;) —d(a,t)| = 1 then d(a,u,) is cither d(a,t) — 1, d(a,t)
or d(a,r) +1. However, if d(a,u,) =d(a,t) —1 then u; ¢ SP(a,b) which
implies d(s,SP(a,b)) < i, a contradiction. Also, if d(a,u) =d{a,t) then the
Steiner minimal tree for the three vertices a, ¢ and «, has length d(a,t} + 1, and

there are two possible Steiner points, ¢+ and u,, which achieve this minimum total
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length. This is also impossible, so the claim is proved.
Claim 2. d(a,u;) =d(a ) +jforj=i.

Proof: The claim holds for j =0 and j =1. Suppose that for some j with
2 < j < i the claim halds for all j' < j. Since M (a,u)) —d(a,u; ;)| < 1 then

d(a,u;) is either d(a,u; ) —1,d(a,u;_,) a d(a,u; ) +1.

Case 1. Suppose d(a,u;} =d(a,u;_)) — 1. Consider the set {a,u;5,u;}, and let

o denote the length of its Steincr minimal tree. Clearly
da,u; ) = ws d(a,u;;) +2.

f w=d(au;5) then »; i3 on a (a,u;,,)-path which implics
d(a,u;) =d(a,x; ) —1=d(a,u;_,;) by induction, which is impossible. On the
other hand, if » =d(a,u;;) +2 then there would have to be at least two Steiner

points, namely u; 5 and u;, which is a contradiction.

Thus, we must have w =d(a,u;.5) +1. Let s’ denote the (unique) Steiner
paint of the set {a,u; 5,u;}. It is easily checked that d(s Lup) =d(s'u; ) =1
and d(a,s) =d(a,u; ) —1 =d(as) +j-3. This implies
d(s',5P(a,b)) = j — 1 and that s'is on an (s,¢)-path. However, by induction we
have d(a,s) =d(a,t) +j — 1, which contradicts the preceding equation. Thus,

Case 1 cannot occur.

Case 2. Suppose d(a,uj) =d(a,u;_;). Therefore, the Steiner minimal tree for
the set {a,uy,u;_(} has length d(a,u;) + 1, and furthermore, there are two Steiner

points u;_; and u;, which is impossible. Thus, Case 2 cannot occur, and we are



370 F.R.K. Chung, R.L. Graham, and M.E. Saks
left with one possibility, namely
d(a,u;) =d(a,u; 1) +1 =d(a,t) +j
which proves Claim 2.
In the same way we can prove that
d(b,u) =d(b,t) +i
Therefore,

d(a,s) +d(b,s) =d(a,t) +d(b,t) +2i

=d(a) +d(b,t) +d{t,s) +i.

Since s is a Steiner point for {a,b,c} and therefore, also for {a,b,s}, then we have
i =0, ie., s € P(a,b), a contradiction. This complete the proof of the
theorem. ®

We next give an alternative characterization of graphs of windex 2. This will
lead to an efficient algorithm for determining if wr{G) =2. First, we need a
definition. For two (connected) graphs G and H, we say that G can be
isometrically embedded into H if there is a map ¢: V(G) = V(H ) such that for

all u,v € V(G),

dg (u,v) =dy (Hu), §v)).

Various aspects of isometric embeddings can be found in [12.14,15,17,18,19 20].
Suppose G is isometrically embeddable into the ncube Q,. Thus, each vertex v of

G is associated with a binary n-tuple &(v) = (v,,...,v,) ¢ V{Q,). For three
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vu'ticmE=(a,,...,a,,),l;=(b1,...,b,,) and ¢ =(¢y,....c,) of H, define
the majority vertex M(a,b,c) =(my,...,m,) of H by choosing for each i/,
m; = z; where at least two of the values a, b;, ¢; are equal to z,. Let us call a

subset X C V(H), majority-closed if for any x,y,z ¢ X, M(x,y,z) € X.

Theorem 2. A (nontrivial) graph G has windex 2 if and only if G can be
isometrically embedded into some Q,, say by the map &, and &V (G)) is

majority-closed.

Proof: Suppase ¢: V(G) - V(Q,) is an isometric embedding of G into Q,, and
&V (G)) is majority-closed. It is easy to see that for any three distinct vertices a,
b, ¢ of Q,, M(a@,b,5) is their unique Steiner point. Thus, since & preserves
distances then for any three distinct vertices 4,b,¢ o G,
& (M(Ha), &b), $(c))) is their unique Steiner point in G. Therefore, by
Theorem 1, wx (G) = 2.

In the other direction, suppose wx(G) =2. By Thearem 1, G is a retract of 0,
for some r. Thus, for vertices u,v of G, dg(u,v) =< dp (u,v). Since (by the
definition of retract) G is a subgraph of 0, then d; (u,v) = dg {u,v). Therefore,
dg(u,v) =dp (u,v), ie, G is isometrically embeddable in 0,. Also from
Theorem 1, we know that G is a median graph. For threc vertices g, b and ¢ of
Q,, the unique vertex in SP(a,b) N SP(a,c) N SP(b,c) is exactly M(a,b,c).

This implies that G is also closed under M. This proves Thearem 2. ®
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Theorem 3. If G has n vertices then “wx (G) = 2?” can be tested in O (n*) steps.

Proof: By a result in [20.5], any n-vertex subgraph of a @, can have at most
cnlogn edges (for a fixed small ¢). First, check to verify that this halds for G.
Next, compute a list of the distances between all pairs of vertices in G. This can
be done in O (ne) steps. Then use the decomposition algarithm given in [18] to
determine whether (and, if so, how) G can be isometrically embedded into some
Q,. This requires O(e?) steps. Finally, in O(n®) steps, determine if G is closed
under the majority function M. Since ¢ = O(nlogn) then this algorithm requires

at most O (n*) steps, as required. ®

We point out here that the following generalization for graphs of windex & has
been proved by F. R. K. Chung and M. E. Saks and will appear elsewhere.

Theorem A graph G has wx(G) = & if and only if G is a retract of

K, DK, 0O ---0K,, (n factors) for some n.

The search value of a graph. Recall that for request sequences @ = (g,,49,...)
and pebbling sequences P = (pg,p; p;,..) We have defined the search value MG)
of G to be:

NG) =sypiat msup - S (ar-1m) + (.0

In this section we will discuss several results relating to A(G). As we remarked
cariier, however, we do not currently know of a polynomial time algorithm for
determining A(G). It can be shown however ([43]) that MG) is always rational.
It is not difficult to show that
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NG U H) = maxi\(G), NH)},

MG O H) = MG) + MH)

For any graph G, if we choose Q =(u,v,u,v,u,v,.) whee
d(u,v) = diam(G) then we cbtain

AG) = %dia.m{G)
On the other hand, let rad(G) denote the radius of G, defined by
rad (G) =i1:fsep d(u,v) .
Let ¢ denote a vertex in the center of G, ie., such that

sup d(c,v) =rad (G).

By choosing P = (¢,c,¢,¢,...) then we have
MG) = rad (G)
This proves the following.
Lemma 9.
-;—diam(G) = MG) = rd(G) = dam(G) .
It turns out that for trees, the lower bound in Lemma 9 is tight.

Lemma 10, If T is a tree then

NT) = >-diam(T)
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Proof: Forany tree T,
2rad(T) —1 = diam(T) = 2:ad(T) .

If diam(7) =2rad(T) then the desired conclusion follows by Lemma 9. So,
suppose diam (7') = 2rad(7) — 1. Thus, T has two centers ¢, and c,, joined by
an edge. It is easy to sce that by moving the pebble on the set {c,,c,}
appropriately (and, of course, 2 window of length 2 is enough here) we can bound
the cost per request by %(Zmd(T) -1 = -;—diam(T) This proves the

lemma. ®

We next consider cycles C,. As is often the case in graph theory, even cycles

are somewhat easier to deal with than odd cycles.

Lemma 11.
() MCym) =55

(@) MCymy) = 2B

2m+1
Proof (i): By Lemra 9 we have
1.
MCan) = 5 diam(Cyp) = 7.

We will show the reverse inequality by using a pebbling strategy which does not
move the pebble! For any fnite request sequence Qy = (7,45, - - -, qy), let
Qx(v) denote the number of ¢; equal to v, where v is a vertex of C,,,. Thus,

30n(v) =N. The cost per request c(v) of staying at a vertex v, ic., sclecting
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P=(vwwv,...,v)is
ORS-DLNOHE
where u ranges over all vertices of C,,. The average of #(v) over all v is just
2m 270 ~ 5, S5 0n0M ()
"y SOV Td(w)
= ﬁ S d(wy) = >

Thus, for some vertex v*,e(v") = % Therefore, MC,,,) = _”é'_ as required.

(ii): An averaging argument similar to that used in the proof of (i) shows that

1 _m(m+l)
)‘(C2m+]) = 2m+1 ?d(u!v) - 2m+1 -

To prove the reverse inequality, we will use a request sequence of the form

¢ =0, m+l,m+2,2,m+3,..)
where we take for V(C,,.)) the set of integers modulo (2m+1). Thus,
consecutive requests g;, ¢, .; in ) always satisfy

d(g;,9; 1) = m =diam(C5,, ,))

A straightforward (but slightly messy) analysis of this choice shows that the cost
the pebbler must pay for any 2m+1 requests is always at least m(m+1), no

matter where the pebble happens to be at the start of the request sequence. This
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then shows that MC,, ) = m(m#) and the proof of the lemma is
2m+1
complete. &

We can apply the preceding avcraging argument to general graphs G and
cbtain a bound A »(G) on A(G), which we call the linear programming bound,
which is usually quite pood for small graphs. It is obtained as follows. As before,
for a finite request sequence @y = (g,.92. - - - . gy ), let @y () denote the number

of occurrences of v in ;. The cost per request of staying at v is just
- _ 1
E) = o Sov)d(uy)
W

=3 & Qx (")d(u,)

=3 a(v)d(u,v)

where o(v) = II’-QN(V). Suppose we now consider the linear program:
S x(W)d@uy) -z 20, v € V(G)
Sx(v) =1, x(v) =0,
maximize z .

Denote the maximum value of z by Ap(G). Thus, if A > A\ (G) and

x(v) = a(v) satisfy 3 x(v) =1 then for at least one vertex v,
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c(vo) = 3 alvg) d(u,vp)

u

=3 x(vg) d(u,vp) < M\p(G)

so that keeping the pebble 7 at v, results in a cost per request of less than A\, (G).
Therefore,

MG) = \p(G) .

Although as we have remarked earlier this bound is usually rather good for small
graphs, for “most” graphs it is off by a factor of 2! This follows from the following
observation of Joel Speneer. For a fixed p, 0 < p < 1, consider the random praph
G,(n) on n vertices formed by selecting each potential edge independently with
probability p. Thus, almest certainly, deg(v) ={1+0(1))pn and d(u,v) < 2 for

all vertices u,v of G(n). We can bound \;»(G,(n)) by choosing all x(v) = - in

1)
the linear program, giving
Ap(G(m) = (L+o(D)(p3-1+(1-p)n2) - =
=2 ~p+e(l)

However, for any fixed k, if n is sufficiently large then G,(n) almost certainly has
the property that for any & vertices q,,...,q,, there is some vertex p with
d(p,g;) =1far 1 =i = k. Thus, the pebbler can partition the request sequence
Q into consecutive blocks of length &, say By,B,,.. For cach B, the pebble  is

moved a distance of at most 2 to a vertex adjacent to afl vertices in B;, resulting in

a cost per request of at most %(2+k-1) =1 +-%-. Since k can be taken
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arbitrarily large then MG (1)) =1.

A specific example in which this behavior can be demonstrated can be
constructed as follows. Let § = PG(3,F) denote projective 3-space over the field
F = GF(5) (cf. [3], [5]). Thus, S has 156 points and 156 planes, with each plane
containing 31 points and each point lying in 13 planes. To each point s € § we
can gssociate a plane s, consisting of all 1 € 5§ orthogomal to s, ie., with
st =0. Our graph G* will have V(G") = § and edges {u,v} where u ¢ vt
(and loops {u,u} are deleted). Then G has maximum degree 13 ard diameter 2.
Thus,

. 1 _ 21
Mp(G') = o5 (B1+124:2) = 22

by choosing all x(v) = -1-13 On the other hand, since any three points lie in sorme
plane, we can always choose a pebbling sequence P (by partiticning @ into blocks
of length 3 as described earlier) which has cost per request of at mest 5/3. Since

5/3 < 279/156 then
MG") < Mp(G")
It would be interesting to find small graphs for which this holds.

The linear programming bound can be strengthened by allowing w to have more
mobility in the following way. For a fixed integer k, we will partition @ into
blocks of length k. The pebble will only be moved at the beginning of each block,
and will remain fixed for all requests from the block. The bound we get by this

strategy corresponds to the solution of the following integer programmirg problem:
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3 a(v)d(u,y) ~ 2, v € V(G),
P
¥ a(v) =k, a(v)-nonnegative integers,
maximize (z; +diam{G))/k
The maximum value of (2, +diamG)/k is denoted by A, (G). It is clear that
MG) = inf &, (G): =N(G) = Mp(G)
Obscrve that for the random graph G,(n),

MG ()~ 1 as n- =,

379

Concluding remarks. There arc numerous questions concerning dynamic search on

graphs which currently remain unanswered. We will close by discussing these and

some related issues.

(i)  Is there a polynomial-time algorithm for computing M(G)? The algorithm

of Saks [43] runs in time O(n") where G has n vertices.

{ii) We have aiready mentioned that it can be shown that A(G) is always

rational. What is

q(n) = max{g: M(G) = P/g, G has n vertices}?

It seems likely that g(n) can grow exponentially with n. If CJ denctes the

graph formed by adding one chord to a S-cycle then it is not hard to show

that M(C") = 7/6, thus giving an example showing ¢(5) > 5 (this can be

casily generalized to show that g(n) > n).
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(i) In all of the examples we have seen thus far, request sequences

Q = (91,92 ) which achieve £(Q) = MG) have had the property that
d(g;, ¢+ =diam(G},

i.e., consecutive requests are as far away from each other as possible. While

there is a certain intuitive justification for this property, it can sometimes

fail to produce the extremal @, as the following example shows. Let G,

denote the graph shown in Fig. 4.

Gy

Figure 4
It is easy to see that if Q has for all i
d(g;, q;+1)) =5 =diam(G,)

then ¢(@) =5/2 (since d(x,y) =5 = {x,y} ={a,b}). On the other
hand, it can be checked that AMG,;) =8/3 and this is achieved by
0 =(a,b,c,a,b,c,.). We remark that G,; also occurred as a

counterexample in [11].
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(v)

™

In this connection, the following question arises. For a {connected)
graph G, define A(G), the diameter graph o G, by defining
V(A(G)) =V(G) and {v,v} is an edge of A(G) provided
dg(v,v) =diam(G). Which graphs H occur as A(G) for some G? In
fact, it can be shown that all graphs H occur as (connected companents of)

diameter graphs. Typically, diam(G) contains many components.

The \-windex of G. We will define wx,(G), the A-windex of G, in the
same way that wx(G) was defined, except that only Q-optimal algorithms
with ¢(Q) = MG) must be produced (using a window of length ux,(G)).
All of the questions for wx(G) can also be asked for wx,(G). These are
not the same functions as shown, for example, by the graph K5, As we
have scen, wx(K;p3) ==. However, MK,3) =1 and it is not difficult to

show that mx)‘(xza) =2,

Another such example is given by the graph P,,, 3 path with 2a
vertices. Here, wx(Py,) =2 while wx,(P,,) =1. Is there a structural

characterization of graphs G with wx,(G) = k?
Of course, our choice to charge the same cost for moving the pebble across
onc edge as for having the pebble location p; “miss” the requested vertex g;

by a distance of 1, was arbitrary (it is in some sense the simplest choice).
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One could more generally define for some o > 0,

Ch(@.P) = S (@i 1) +ed(p2)) -

i=1

What are the analogues of the preceding results for a + 17
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