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ABSTRACT

We prove that in every connected graph the independence number is at
least as large as the average distance between vertices.

1. INTRODUCTION

In a graph G with vertex set V(G) and edge set E(G), we denote by a(G) the
independence number of G (which is the maximum number of vertices in G
that are pairwise nonadjacent). The distance between two vertices u and v in G,
denoted by dg(u,v) [ or d(u, v) for short] is the length of a shortest path joining
u and v in G. The average distance of G, denoted by D(G), is the average
value of the distances between all pairs of vettices in G, i.e., (2, ,d(u,v))/(3).
The diameter D(G) of G is the maximum distance d(u, v) over all pairs of ver-
tices u and v.

Although D and D are interesting graph-theoretical invariants in their own
right, they play significant roles in analyzing communication networks. In a
network model, the time delay or signal disgradation for sending a message
from one point to another is often proportional to the number of edges a mes-
sage must travel. The average distance D(G) can be used to indicate the aver-
age performance of a network whereas the diameter D(G) is related to the
worst-case performance.

The independence number of a(G) is a much-studied graph-invariant (see
[2-4]). We will establish a new inequality involving «(G) and the average
distance D(G). This inequality was first conjectured by a computer program
called GRAFFITI (see [5]). A weaker inequality, namely, a(G) = D(G) — 1,
was proved by Fajtlowicz and Waller [5].

Theorem. For every connected graph G, we have a(G) = D(G), with equal-
ity if and only if G is a complete graph.
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In the next section, we will give the proof of the theorem. In section 3, sev-
eral related extremal and algorithmic problems will be discussed.

2. THE PROOF OF THE THEOREM

We will prove the inequality in the theorem by induction on the number of ver-
tices in a connected graph vertices of G. It is easy to see that ¢(G) = D(G) for
a connected graph G with two vertices. Suppose for n = 3 the inequality holds
for all connected graphs G’ with fewer than n vertices. Let G be a graph on n

vertices. Then
- (3

:%z—;n—il(E d(u,v)).
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For a vertex v, we define the average distance from v to be
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and therefore
— 1
D(G) =— 2 fw).

Let w denote a vertex with f(w) =< D(G). We will prove a sequence of claims
from which the theorem follows:

Claim 1. If G — {w} is connected, then ®(G) = D(G).
Proof. Set G' = G — {w}. It is easy to see that

a(G) = a(G")
= D(G')  (by induction)
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We can therefore assume that every vertex w for which f(w) = D(G) is a cut
vertex.

Claim 2. If, for some w, f(w) = D(G) — 1, then «(G) > D(G).

Proof. For any neighbor w' of w, f(w') < f(w) + 1 = D(w), so w' must
. also be a cut vertex. For w,, . . ., w, denote the neighbors of w in G and let C,
be the connected component of G — {w} containing w;. Also, let ¢; denote the

order of C,. We consider the following two cases:

Case 1. k = 2.

Let G, be the graph obtained from G’ by adding the edge {w,, w,} and joining
each of w, and w, to all neighbors of the other. Namely, E(G,) = {u,v} €
EG):u,v € V(G)} U {{u,v}:u = w, for some i and v is adjacent to w; in G
for some j} U {{w,, w,}}. It is easy to see that dg(u,v) = dg,(u,v) + 2 for
u € C,and v € C,, and d(u,v) = dg(u,v) if u,v € C, for some i

We note that a(G) = a(G,) + 1 since any independent set of G, can be
extended to an independent set of G by adding one more vertex. On the other

‘ hand, we have

<n>5(G) = (n— Dfw) + > do(u,v)

2 U, vEW

< (n—DMDG) - D+ X dg(u,v) + 2.

u, vEW

This implies
- N\= - 1\ - 1)
(" ) )D(G) < (" ) )D(Gl) — -1+ (ﬁ—z—)—
D(G)<DG) + 1
= aG) + 1
= a(G).

Case 2. k= 3.

Let N(w) denote the set of neighbors of w in G and let N %(w) denote the set
of vertices in G — {w} that are adjacent to some vertex in N(w).

We now construct a graph G, with V(G,) = V(G) — {w} and E(G,) =
{{u, v} € E(G):{u,v} C V(G)} U {{u, v}:u € N(w),v € N(w) U N¥w)} U
{u,v}:u € N(w),v € N(w) and i # j}}.
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It is easily checked that dg(u,v) = dg,(u,v) +3foru € C,,vE€E C;, and
i # j, and dg(u,v) = dg,(u,v) for u,v € C.

We have a(G) = a(G,) + k — 1 since any independent set of G, can be
extended to an independent set of G by adding one vertex from each of the
other k — 1 components of G'. On the other hand, we have

(;)B(G) =(n— Dfw) + > dg(u,v)

< (n=DOG) — D+ X dofuv)+33 ¢

U, vEW i#*

Since

(k — l) 2 (k - l) 5
Zj(’,cj— ) Z(, = 2k (n - ) ,

then

n— 1\— n— 1\— o 3k — Dn — 1)
< 5 >D(G)<< 5 )D(Gz) (n 1)+T

D(G) < D(G,) + 3(kk— D, <3(k —D_ 2) 1

k (n—2)

=D(Gy) + k-1 fork =3

=aG,) + k-1

=aG). |
Claim 3. If D(G) = 2|D| — 1, then a(G) > D(G).

Proof. Let s denote | D]. Suppose for some vertices # and v we have

d(u,v) = 2s — 1. Let L, consist of all vertices x with d(u,x) = i. Clearly,
L, # @ for 0 = i < d(u,v). Let I(L;) denote a maximum independent set in L.

We now consider two independent sets in G, namely,

I, = {x:x € I(L) for some i even}

L, = {x:x € I(L,) for some i odd}

Clearly,

I+ 6 = S = 1+ duv).

()
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If d(u,v) = 25, one of I, and /, has at least s + 1 vertices and therefore
alG)=zs+ 1> D(G). Suppose d(u,v) = 2s — 1 and a(G) = s. We have
2s = 2,»|I(Li)| =1 + d(u,v) = 2s. This implies, for all i, the induced sub-
graph on L, is complete. We can easily estimate D(G). Among all such G, D

(G) is maximized when L, has exactly one element except fori = Oor2s — 1.
It can be easily calculated that D(G) < R = a(G). This completes the proof of
Claim 3.

From Claim 3, we may assume d(u,v) = 2D — 2 for all 4 and v. From

Claim 2, we may assume f(v) > D(G) — 1 for all v. We are now ready to
check the last case.

Claim 4. If f(w) > D(G) — 1, then &(G) > D(G).

Proof. Without loss of generality, we may assume that w is chosen so that
¢t = max{d(w,v):v € G} is minimized among all w with f(w) = D(G) and the
number of v with d(w, v) = ¢ is as small as possible. Since w is a cut-vertex, let
A denote a connected component in G — {w} containing a vertex u with
du,w)y=t=s= |D|. Let B denote the union of the remaining connected
components. Thatis, B =G — A — {w}. From Claim 3, it follows that d(w,x) =

s —2 —d(u,w) =s — 2 forany x in B.

Choose a vertex z on the shortest path p(u, w) joining u and w such that

d(z,u) = s — 1. We consider the following two subcases:

Subcase (a). Suppose there is a vertex v for which d(z,u) = s + 1.
Clearly, v is not in B, since otherwise

du,v) = du,z) + diz,w) + d(w,v)

=@ -+ @+,

which contradicts the assumption that d(u,v) = 2s — 2. Let M, denote the
vertices x in A with d(x,w) = i. Suppose z is in M,. We say M, is complete
if the induced subgraph on M, is complete. Let a denote the least number such
that M,,, is complete. Clearly, v is not inM; withj=r+a since for any y
in such M,-,d(z,y) < 1 + d(z,u) = s. So v is in some M; with j < r + a. Let
b denote the least number such that M,_, is complete. If v is in M; with
j=r— b, we have dz,u)<b+1+ @+t b — 1). We consider two inde-
pendent sets /| and I3 where

Il = {x:x € I(M,) for some even i}

1} = {x:x € I(M)) for some odd iy UIB).
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Then

0+ sl = 1+ S

=1l+2(a+b-1)+s—a+1l
=Zs+2a+b=2s+1.

Therefore a(G) = 5 + 1 > D(G). We may assume v is in M, with j < r — b.
Then

d(u,v) = d(u,z) + d(z,v) — 1

=2s— 1,
since p(u, v) contains a vertex in M,_,. From Claim 3, we get a(G) = D(G).

Subcase (b). For any vertex v, d(z,v) < s.

Since f(z) < s < D(G), we have t = s and z is adjacent to w. From Claim 2,
we may assume f(z) > D(G) — 1. Let v denote a vertex with d(z,v) = s.
d(v,w) is either s — 1 or 5. If d(v,w) = s — 1, we can consider M, as in
Case (a). Each M;, i # 0 or s, contains at least two independent vertices one of
which is in a shortest path joining w and u and the other in a shortest path join-
ing w and v. In particular |I(M,)| = 3. Therefore |I]| + |[I}| = 25 + 1 which
implies a(G) = s + 1 > D(G). We may assume d(v, w) = s. This implies the
set of all v with d(z,v) = s has fewer elements than that of w that is a contra-
diction. This completes the proof of Claim 4.

We remark that &(G) = D(G) can only occur when G — {w} is connected
for every w with f(w) < D(G). In fact, in the proof of Claim 1, a(G) = D(G)
only if a(G) = a(G — {w}) = D(G{w}). By the induction assumption,
G — {w} is a complete graph. Therefore ®(G) = 1 and G is a complete graph.
This completes the proof of the theorem.

3. CONCLUDING REMARKS

The study of the average distance has recently attracted the attention of many
researchers. In particular, Winkler (7] proposed the following conjecture:

For any given graph with average distance D, there exists a vertex whose
deletion results in a graph with the average distance no more than 4/3D.

It is not difficult to prove the existence of a vertex whose removal results a
graph with the average distance 2D. On the other hand, for a cycle C,, the
deletion of any vertex increases the average distance by a factor of 4/3. Re-
cently Bienstock and Gyéri [1] proved that, for n = |V(G)| sufficiently large,

)

N
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there is a vertex in G whose removal results in a graph with average distance
G + o(1)D(G).

Another interesting direction is the algorithmic complexity of determining
the average distance of a graph. Of course, the average distance can be calcu-
lated by first finding the distances of all pairs of vertices. The best known al-
gorithm for finding all distances requires time O(n* + ne), or for dense graphs,
O(n’(log log n/log n)"?), due to M. L. Fredman [6] (also see [7]). Is the prob-
lem of determining the average distance easier than or just as hard as the all
distances problem? The best known algorithm for determining the diameter of a
graph requires time O(ne) or O(log nf(n)) where f(n) is the complexity for
matrix multiplication (the current champion for matrix multiplication [D. Copper-
smith, private communication] has complexity O(n**). The problem of deter-
mining the diameter and all distances as well as the problem of determining the
average distance remain an open-ended challenge in this area.
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