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ABSTRACT

In telephone switching networks, a crossbhar switch
functions by allowing all permutations between its input
lines and its output lines. Such a network can therefore
be studled from an algebraic point of view. For example,
Beneé picneered the use of group theory to establish the
rearrangeability of certailn classes of switching networks.

In this paper we introduce an alternative algebraic model
for swltehing networks which has certain advantages over the
earlier model of Bened%. 1In particular, the usual problems of

realizatlon and control for the network can be phrased as

natural algebraic questions in the new model,
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I. TINTRODUCTION

In telephone switching networks, a crossbar switch
functions by allowing all permutations between its input
lines and its cutput lines. Such a network can therefore
be studied from an algebraic polnt of view. For example,
Benes f1] E3} (4] ploneered the use of group theory to
establish the rearrangeability of certain classes of switching
networks. In this paper we introduce an alternative algebraic
model for switchlng networks which has certain advantages
over the earllier model of Benes. In particular, the usual
problems of realization and control for the network can be
phrased as natural algebraic questions in the new model.

A switching network N can be specified by a set of
switches, a set of links which connect switches, and two
sets of inlet and outlet terminals, denoted by I and @
respectively. A request 1s a palr consisting of an inlet
terminal and an outlet terminal for which a connection is

desired. An assignment is a set of requests in which each

inlet or outlet oceurs at most once. A path is a sequence
of links such that any two consecutive links are an input and
an output of some switch., Let P denote the set of all

possible paths connecting inlet terminals to ocutlet terminals




in N. A state is a set of link-disjoint paths in N. An

assipnment A is realizvable in N i1f there exists a state 38

such that Cor each request in A there is a path in 8
connecting the inlet terminal of the request to the outlet
terminal of the request. In thils case we say A is realized

1

by 5. Finally, a network N is said to be rearrangeable if any

assignment 1s realizable.

Most existing switching networks corisist of several
stages of switches. We say the switehing network N is a
k-stage network 1f the set of switches of N can be partitioned
into a seqguence of k subsets, called stages, such that links
exist only between two swlitches in consecutive stages.

In this paper, we restrict ourselves to multi-
stage networks with the property that the set of inlet
terminals and the set of ocutlet terminals are disjoint and
of the same size, say, |1| = |?] = n. Moreover, we shall
assume all switches are square switches, i.e., the number cf
inputs of a switch 1s the same as the number of outputs of
the switch. Since every assignment is a subset of a maximal
assignment (l.e., one consisting of n requests), all
assignments will hereafter be assumed to be maximal. An
assignment can then be 1nterpreted as a permutation of
{1,2,...,n}. Thus, a rearrangeable network can realize any
permutation of {1,2,...,n}. Let A(N) denote the set of
permutations realizable in N, For example, N i1s rearrangeable
if and only if A(N) = Sn’ where Sn denotes the symmetric

group on n elements (see [7] for fterminology).




Ti. An Algebraic Model for a k-Stage Switching Network
of 2x2 Switches

In this section, we assume all switches are of sigze
2x2, (l.e., each switch has two input lines and two cutput
lines). These simplified networks still contain much of the
complexity of the general case (which will be treated in
Section IV). Furthermore, we assume the number n = |I| = Q]
is a power of 2.

In a given state, there are at most two paths
passing through a 2x2 switch. Also, there are just two
different ways for connections uging a 2x2 switeh (shown in

Wloure ).
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FIGURE 1




In Figure 1(a), the switch provides a "through"
connection and in Figure 1(b), the switch provides a
"orons" connection. The throush connection corresponds
to the identity permutation. The crogss connectlon functions
as 2 transposition (ab), (i.e., a cyclic permutation of
length 2). Two transpositions (ab), (cd) are sald to be
disjoint if {a,b} N {c,d} = #. We note that (ab) is the
same as (ba).

An algebraic model of a k-stage network N can
be described as follows (see Figure 2).

(1) The inlet terminals are labeled by 1,2,...,n.
(2) The set of n/2 switches of size 2x2 in the first stage

can be described by 2-element subsets of {1,2,. nt

The switch s(ab) 1s connected to the inlet terminals

a and b.
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(3) The set of links between the i-th and (i+l)~th stage
willl be labeled as follows: Two links which go out
of the switech s{ab) will be labeled by a and b,
respectively, so that the input links and output
links of the switch s(ab) are labeled in the same

order (see Figure 3).

a — ——q
s{ab)
b— —b
FIGURE 3

(4) The switch s in the i-th stage will be labeled by
s(ab) if links a and b come into s. Thus, the
swiltches in the i-th stage are labeled by a set
of n/2 mutually disjoint 2-element subsets.
(5) The outlet terminals connected to the switch s(ab)
are labeled by a and b, respectively, as in (2).
By combining (1), (2}, (3) and (4), all links,
inlet and outlet terminals are labeled by elements of {1,...,n}
and all switches are labeled by 2—elemént subsets of {1,2,...,n}.
This gives an algebralc model of the network N which has many

interesting properties.

Theorem 1: In the preceding model of g k-stage switching

network N of 2x2 switches, let Gi denote the group generated



by all the transpositions {(ab):s(ab) is a switch in the i-th

stage}l. Then the set of assignments which can be realized in
N is exactly the product GlGE"'Gk' In other words,

e - T .
A(N) = G1G2"‘Gk 1g1g2...gk.gieGi}.

(where the product of twe permutations is defined by

(fg) (1)=g(f(i)).)

Proof. Let p denote a permutation which is realizable in N.
Thus, there exists a state S such that there are n link-
disjoint paths, Pl’PE""’Pn’ connecting inlet terminal i to
outlet terminal p(i) in 8, 1 < 1 < n. For any switch s(ab),
there are two paths passing through it, say Pi and Pj' (See

Figure 4{a), (b)).
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FIGURE 4




If the 1link of P, which comes into s(ab) is
labeled Lhe same as the 1link of Pi which poes out of s(ab),
the switeh s(ab) provides a "Lhrough' conncetion in the
state 3, (see Figure 3(a)). If the link of P, which comes
into s(ab) is labeled differently from the link of Pi which
goes out of s{ab), then s(ab) provides a "cross" connection
in state S, (see Figure 3(b)). Let gy be the element of G,
which is the product of the transpositions (ab) for all
switches s(ab) which provide "ecross"™ connections in the i-th
stage. We note that Pi consists of links labeled by
gl(i), gz(gl(i)),..., ete., and P; passes through switches
5(ab) in the j-th stage such that (glga...gj) (i) ¢ {a,bl}.
Thus, p(i) = glgg...gk(i) for all i. We have p = 8185« - 8-

Therefore,

A(N) DGy Gy vvw @

1

On the other hand, let p = B1850 - 8- It suffices
to show there is a state S which realizes the assignment p.
We let the switch s(ab) in i-th stage provide a "through"
connection if and only if gi(a) = a and gi(b) = b. This
ylelds a state of n link-disJoint paths, connecting input
fterminals to output ferminals. It is easily verified that 8

realizes A in N. Thus we have

G1 G2 .o Gk = A(N)

and Theorem 1 is proved.
Let us define a basic subgroup of the symmetric

group Sn, n even, to be a subgroup which 1s generated by



n/2 mutually disjoint transpositions. It is easy to see

that a basic subgroup is abelian. Alsc, any element a in a

baslic subgroup is of order 2, i.e., a2 = 1. In our algebraic model
of' the switching network N, stage 1 correspond to a basic sub-

group which is generated by all the transpositions

{(ab): s(ab) is a switch in the i-th stagel.

The following corollary follows immediately from

the proofl of Theorem 1.

Corollary 1: Let S be a state which realizes an assignment

g. Then There are unique elements in basic subgroups

corresponding to stages, say By € Gi’ 1 <1 < k, such that

the following hold:

(1) g = B8, By,

(11) A1l the paths in 3 can be specified by 2
1 <1< k. In other words, if Pi denotes the
path in S connecting i and g(i), then Pi

consists of links labeled by gl(i),gg(gl(i)),...,
etc..

We remark that Corollary 1 suggests a short
expression for describing a state. A state can be viewed in
form of a product of elements in basiec subgroups. For
example, the state 1llustrated in Pigure 5 realizes the
permutation g = (157)(683)(24). The state can be specified

by writing g into a product as follows:



where g, = (12),
g, = (37)(4€),
gy = (13)(57)(68),
gy = (26),
g = (34)(56)

U

FIGURE 5

We note that for a glven assignment A, there
might exist more than one state which realizes A. Therefore
a permutation can sometimes be written in the form

gl...gk, 2

i € Gi in more than one way.



ITT. Rearrangeable Networks

Our algebraic model iz useful for studying
rearrangeable switcehing networks, 1.e., networks whose set
of assignments is the full symmetric group Sn' We can study
the structure of a multi-stage rearrangezble network of 2x2

awltches by studying factorizations of Sn into a product of

basic subgroups. Trom Theorem 1, we have the following.

Corollary 2: Let N denote a rearrangeable k-stage network of

2x2 swltches with |I] = |Q] = n, n even. Then

where Gi 1s the basic subgroup which corresponds to the i-th
stage in N.

In order to minimize the number of crosspoints in
a multi-stage rearrangeable network of 2x2 switches, we
must minimize the number of stages. This can be phrased
into the following problem:

What is the minimum number T(n) of basic subgroups
inte which the symmetric group Srl can be factorized?

Based on the well-~known Sleplian-Duguid
Rearrangeability Theorem [5] [8], the switching network which
is bullt recursively from three-stage Clos networks 1is
rearrangeable and has 2t-1 stages where n = Et (see Figure 6).
Thus t{n) is bounded above by 2Flog2 nl - 1 where [x1 denotes

the least integer greater than or equal to x.
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FIGURE ©

The basic subgroups which correspond to stages in

the network N t {shown in Fipure 6) can be described as

2

follows:

G1 or G2t-l is the subgroup generated by transposi-

tions (21+1, 21+2), 0 < i < 2°71 and we write

Gp = Gy

In general, we have

Gm 2t -m

< (awg -2,

where 2 <m < t.

R  (2i+1,

21+2): 0 < 1 < 2771 >
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Yor example, the basic subgroups for the

rearrangeable network N8 shown 1n Figure 2 are the following:

H

< (12), (34), (56), (78) >,

o)
02
il

G

[
]

Gy = <(15), (26), (37), (48) >,

Gy = (13), (57), (24), (68)>.

The wroof that Gl G2 e th_l = 3 & 18 established

P
by using the fact that every permutation has a "Hall
decomposition™ (this is implied by Hall's Theorem on systems
of distinct representatives; see [4], [6] for references).

A lower bound for t(n) can be established by the

following.

Corollary 3: In a k-stage rearrangeable network of 2x2
switches with |T[ = |Q| = n, n even, we have
k > 2 loggn - 2 logze

Proocf: Let Gi be the basic subgroup corresponding to the
i-th stage, 1 < i < k. We have
Gl G2 . Gk = Sn'

Now, Gi is generated by n/2 generators and we have

lay] =22, 1 <1 < k.




Therefore,

2nk/2 > !

By using Stirling's approximation, we have
k > 2 (n log.n - n log.e)
~n 2 2

= 2 loggn - 2 logge

= 2 log,n - 2.8653... §

We note that Corcllary 3 can also be obtalned by
information-theoretic arguments. When n is a power 2, we

have the following.

Corollary 4: If n = 2t, we have

2t~1 > 1(n) > 2t-2.

It doesn't seen unreasonable to coniecture that
t(n) = 2[log nl-=1. Bened [4] suggests that there is a
strong relation between the number d of links one must use to
go from any fixed input terminal to¢ reach all switches of
a stage and the number R of stages needed to guarantee that
the network is rearrangeable. In particular Bened conjectures
that R = 2d+1 if the cross-field connection 1s fixed.

IV. An Algebraic Model for a k~Stage Switching Network of
mxm Switches.

We now assume all switches in N are of size mxm where

|I] = |®} = n = mr. An algebraic model of a k-stage network
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N c¢an be descrilbed as follows.

(1)
(2)

(3)

The inlet terminals are labeled by 1,2,...,n.
The set of mxm switches in the first stage will be
labeled by m-element subsets of {1,2,...,n}. Tet Q be

the set of inlet terminals which are connected to s.
Then s 1s labeled by s(Q). We note that if two
switches in the first stage are labeled by S(Ql),
s(Qz), respectively, then we have QfﬁQg = g. In a
given state the switch s(Q) functions by allowing
all m! permutations on elements of Q.

The set of 1inks between the i-th and (1+1)-st stage
will be labeled as fo'llows: The links whieh g0

out of the switch s(Q) will be labeled by elements
in Q such that the input links and output links cf
the switch s(Q) are labeled in the same order.

The switch s in the i-th stage will be labeled by a
set Q@ such that i e Q ihplies link 1 comes into Q.
The outlet terminals connected to the switch s(Q)
are labeled by m-element subsets in Q as in (2).

As before, we have the following theorem.

Theorem 3: In the algebraic model of the k-stapge switching

hetwork N of mxm switches, let Gi denote the group generated

by @il permutations {q:q is a permutaticn on elements of

Q where s{Q) 1is one of the switches in the 1-th stage}. Then

the set of all assignments whieh can be realized in N is

exactly the product Gl G, ... G

2 k*
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The proof is similar to the proof of Theorem 1.

The Gi's are basic subgroups correspondling to stages in this

network.

V. Concluding Remarks

The algebrale model for switching networks we have
proﬁoéed is a little different from the model of Bene$.
For example, Bene#' model for the rearrangeable networks in

Figure 2 will be factorized as follows:

sg = (50" oy (5,07 0y 50" 0,71 (st 87t (s,
where ¢1, ¢2 denote the permutations for the cross-field
connections. In our model, the structure of the cross-fleld
connections is implicit in the factorization of basic subgroups.
Moreover, any state can be explicitly specified by an element
of Sn.written in a certain form (see Corollary 1). This allows
us to gain certain insights of the structure of these networks.

The problems of realization and control will be

solved if we can understand more about the factorization of the
corresponding groups. For example, for a given k-stage
switching network N with basic subgroups G

G + 4G, which

12722 k
correspond to stages in N, we can phrase the problems of realiza-

tion and control for N as follows.
(1) The realizatlon problem for a given assignment p is
equivalent to the problem of determining if

pe Gy G ... G

1 72 k*




D
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The control problem for a given realizable assignment
p 1s equivalent to the problem of finding an expres-

sion [or p in the form

Of course, much more work will be required in order
to fully develop this algebraic approach to the
analysis of swiltching networks. What we have tried
to do is to point the way to what seems to the

author to be an attractive and useful direction.
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