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ABSTRACT

A switching network can be viewed as a collection of interconnected
.crosspoints which provides connections between input terminals and
output terminals. The linking pattern of a swltching network refers
to the scheme by which the crosspoints are interconnected. Two
switching networks having the same number of crosspoints but with
different linking patterns can in general perform quite differently.
In this note, we briefly introduce some measurements of the blocking
performance of switching networks.

results in this area and glve a new

We also summarize some of the main
technique for the construction of

large classes of interesting switching networks. The construetion
will depend on the use of certain combinational structures, called
block designs, for determining the linking patterns of the networks.

1. INTRODUCTION

We consider a multi-stage network com-
posed of rectangular switches, a set of
1links interconnecting the switches, and
two sets of terminals, namely, the set of
input terminals I and the set of output
terminals Q. Por an input terminal u and
an output terminal v, the linear graph for

u and v, denoted by G(u,v), is defined to
be the union of all paths that ean be
used to connect u and v (see Fig. 1). A
network 1s sald to be balanced if all the
linear graphs G{u,v), uel, ue®, are iso-
morphicl’7.
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Figure 1. A multi-stage network snd its
linear graph. Note that the
switches in the network in (a)
become nodes of the linear
graph in (b).
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and it is symmetric wlth respect to the
two middle stages.

{a) SERIES COMBINATION

(b) PARALLEL COMBINATION

Figure 3. The structure of a series-

parallel linear graph.

Comparisons in the literature have been
made involving the following classes of
linear graphs:

(1) The class of series-parallel linear
graphs with the same transparency.
Roughly speaking, the more regular
a linear graph is, the better it is.

{11) The class of symmetric regular
series-parallel linear graphs. A
graph with degree sequence
(AI’AE""’ALtfzj) is better than
another graph with degree sequence

(Ai,ké,...,l{t/gj) 1f and only if

i i,
n 11 > I 11 for any J,
i=1 i=1

1 <J <Lt/2). Roughly speaking,

the more "spread-out" & linear graph
is, the better 1t 1s.

For detalls and proofs, the reader is
referred to Chung and Hwan32’3 (this
includes other results of this type, &s
well).

3. BLOCK DESIGNS

Before we give construction for zone-
palanced networks, we will first introduce
the idea of a block deslgn.

A (b,v,r,k,X)=block design 1s a family of

subsets xl,xz,...,xb of a v-element set X,
satlsfying the following conditions:

(1) Each Xi has k elements, 1 <1 <b.

(2) Each 2-element subset of X is a subset

of exactly A > 0 of the sets Xl,...,
Axb.
Properties (3) and (4) follow immediately
from (1) and (2}.

(3) Each element of X is in exactly r of
the sets Xl,...,Xb.

(4) r{k-1) = A(v-1) and bk = vr.

For example, the following 1& &
(7,7,3,3,1)=-block design.

x; = {0,1,3)

X, = {1,1+1,1431} tmed 7}
for 1 = 1,...,6,
The reader 1is referred to Hall6 or
Collensu
tions of varicus classes cof block designs.
Hagelbarger5 first proposed in 1973 the

use of bleck designs for constructing

for the existence and constrne-

switching networks. In the next section
we will see that block designs are very
useful for designing zone balanced net-

works.
4. THE DESIGN OF ZONE-BALANCED NETWORKS

We will restrict ourselves for the
remainder of the paper to serles-parallel
linear graphs which are both regular and



Many switching networks also have the performance can be evaluated.
property that the set of input terminals 2. PRELIMINARIES
and the set of output terminals can be
partitioned into a number of zones such
that requests for calls connecting two
terminals in the Bame gone are more like-
ly than those connecting terminals in
different zones. A network 1s said to be
zone-balsnced if 1t has two nonilsomorphic
linear graphs, say Gl and G2, 8o that the
linear graph G(u,v) is isomorphic to @
if u and v are in the same gzone and
G(u,v) 1s isomorphic to G, 1f u and v are
in different zones (see Fig. 2).

To determine the exact blocking perfor-
mance of a switching network is in

general a very complex and difficult
problem. One of the most popular methods

of dolng this (called Lee's modelg) is

to calculate the blocking probabilities

of the underlying linear graphs under certs!:
independence assumptions. There is also

1 another measure of blocking in switching

networks, called transparency, which is

defined to be the average number of non-
blocking paths between an input terminal
and an output terminallo. Both of these

measures are reasonably correlated to

ZONE 1’
the actual blocking performance of a
swltching network. While transparency
is much more easily calculated than the
Lee blocking probabllity, it is in gen-
eral a much coarser measure., In a
balanced network, transparency 1s propor-
tional to the number of distinet paths
(a) in the linear graph (for a fixed traffic
load). With these two measures we can

then compare linear graphs and consequen-
tly, the corresponding switching

networks. Before we summarize some of
the maln results in comparing linear
graphs, we will first define the following
types of linear graphs.

o] A linear graph is sald to be series-
parallel 1f it is elther a series
combination or a parallel combination of
two smaller linear graphs (see Fig., 3).
A linear graph 1s saild to be regular if
any two nodes in the same stage have the

Ce)
Figure 2. A zone-balanced network and same indegree and outdegree (i.e. the
its linear graphs. numbers of links coming into a node and

golng out of a node, respectively). A

One reason why balanced and zone-~ linear graph is said to be gymmetric if
balanced networks are of interest in the number of stages 1s odd and 1t is
switching theory 1s because of the rela- symmetric with respect to the middle
tive ease with which their theoretical stage, or, the number of stages is even
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aymmetric. Since the sets of input ter-
minals and output terminals under
consideration are of the same size, the
zone-balanced network will &lsc be
symmetric with respect to the center

stage.

Let the sets of input terminals I and
output terminals @ be partitioned into v
zones, l.e., I = IlLllzu...lJIv,

Q= $7lu ﬂz Usee Uﬁv where each Ii and r&
has t elements. Thus, I and Q each have
tv elements. Ii and 55 will be consid-
ered to be in the same zone 1f and only
if 1 = J. The linear graph G, = G{u,v),
where ucIi, vef&, is ealled the internal
linear graph of the network and the graph
G, = G(u',v'), where u'el,, v'e:ﬁ, 1+,
15 celled the external linear graph of
the network. Later in this sectlon we
wlll construct & zone-balanced network
which has i1ts internal linear graph with
t distinct paths and its external linear
graph with Aw distinct paths where

t = ry, provided a (v,b,r,k,A)-block
design exlsts.,

" The zone-balanced networks we construct

can be divided into three parts. The
primary part consists of a few stages
where traffic distribution takes place
within each zone so that each input ter-
minal has sufflclent access tc the central
stage. The Becondary par$ is the central
stage which provides interconnections
between different zones. The tertlary
part plays the same role for the output
terminals as the primary part does for
the input terminals.

The primary part of the network can be
viewed as v coples of a network MB, which
is an s-stage network with switches 1in
stage 1 having slze n, xm, for 1 <1 <=8
(see Fig. 4).

s

Mg

n t'COPIES
Y OF
COPIES
OF M.—-l . ns x ms
. SWITCHES

Figure 4. The distribution network MS

We note that we can vary the number s of
stages 1in Ms depending upon the sizes of
I and Q and the zone sizes 1n order to
reduce the cost (the number of croas-

points) of the networklo.

Here 1s an explicit methed for the
interconnections in each copy cof MS.
While the notation may appear at first to
be somewhat complicated, 1n fact, it will
turn out to be extremely useful in
specifying the linking pattern of the
network.

Let £3(1,,1,,...,1,_;;v") denote the

* -
(11+12ml+...+1s_1m1...ms;2+v ml"'ms-l)
th switch in stage J where 0 < 1G < mq,
1 <q <8, 0 <v' <V, '

Let fJ(i I DR | ;v') denote the g-th
q-Ti'-2 s=-1 3

outlet line of the switch [ (11,...,13_1;

v') where 0 < g < my Then we have:

fé(il"“’is-l;v') 15 connected to

+
SR IC PRI JURTY. IS SYPPRPRN WL

for any 1 < J§ <=,

In Figure 5, we glve an example with

m, = m, = m3 = 2,

1 2



£1(0,0,0) *(0,0,0)
r11,0,0) 0r%(1,0,0)
r(0,1,0) o t%(0,1,0)
rla,1,0) £a,1,0)
£1(0,0,1) ¢ £"(a,0,1)
£1(1,0,1) b £¥1,0,1)
r10,1,1) ¢ b (0,1,1)
£1¢1,1,1) £4(1,1,1)

Figure 5. Labellng an example of a primary

part.
The internal linear graph has M. ..My
distinct paths as shown in Flgure 6(a). The
external linear graph depends on w. Based

on the discussions in Section 2, the more
"spread-out® the linear graph.is; the better
it 1s. PFirst we will consider the most
"spread-out" case when y = my...m, od where
a4 < s and d 18 equal to m, . In the other
cases, the zone-balanced network can be con-
structed similarly. The external linear
graph 1s shown in Figure 6(b).

(a)
The internal linear graph
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(v)
The external linear graph

P 6. Linea h 2 =bal
igure %e?wo£k§?3p 8 of zone-balanced

The central stage of the zone-balanced

-
L]
.

network consists of bw switches of size
kxk. We define

fc(il,...,ia b') to be the
+1i m +..

(1 41,m)
~th switch

+b'm. .

1 )

.+1am1...ma“1 L)

where 0 <1

q
0<1,<dand 0 <b' <b.
Let xl’xz""'xb dencte the gets of a
(v,b,r,k,2)-block design. For any element
yeX = Y Xi, we 8ay the 1-th y-set is XJ ir
IJ ig the 1-th set containing_y, t.e.,
|{Xq:yexq,l <q<J} = 1. Now, we are
ready to describe the interconnectiaons
between the primary part and the central
part of the zone-balanced network.

< mq’ l<g<«a,

<

First, we consider the special case when

dc- m, . f;(il""’ianl5v') 1s connected to

b 4 Cil,...,ia;b’) ir v'e'xb. and the

(st igeomaprte - Lo Mgy -+ omg_pbam, o
...ms_l}—th v'-get 1s Xb,.

Finally we connect the central part and the
tertiary part in the same way (symmetrically)
that the primary and central parts were con-
nected. It 1s now easy to check (using the .
definition of a block design and the distributic
properties of Ms) that the internal linear
graph and the external linear graph of our
network are as shown in Figure 6.

Now, if 4 is a proper divisor of My s the
above scheme has to be modified slightly.



Note that ;a can be written as 1; + 1;d
where 0 < 1; < d. Then we have:

r:(il""'ia—l;v') 15 connected to {c})
]
rcfil,...,ia_l,ia;b') Figure 7. The zone-balanced network construc-
ted by using the (7,7,3,3,1)=block
ir v'cxb, and the design. _
' We note that by modlfying the construction
(;a+ia+ld+"'+is—1dma+1'"ms-2+qdma+1

mentioned above, we could easily obtaln zone-
" balanced networks with varlous external lilnear
1s X, ,. graphs (see Figure 2). However, the linking

b patterns we give above result 1n a switching

network with the best linear graphs among the
class of all internal and external graphs with
the given number of distinct paths. For
example, using the (3,3,2,2,1)-block design

...ms_l)-th v'-get

The switching network illustrated in
Flgure 7 is constructed from the
(v,b,r,k,A)=block design given in Section
3, 1.e., X, = {1,1+1,143} (mod 7) for
i=0,1,...,6. |

Xl "{1;3}, XZ = {1,2}, x3 = {2:3}:

we obtain the network
shown in Figure B.
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Figure 8. A zone-balanced network construc-
ted by our scheme.
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We also note that networks in Flgure 2
and FPigure 8 have the same number of
erosspoints but the llnear graph in
Figure 8(c) 1s better than the linear
graph in Figure 2(c}.

5. REMARKS

The construction scheme for zone-balanced
networks we presented in Section 4 can be
easlily extended to multi-zone-balanced
networks as follows:

Suppose the set of input terminals and
the set of output terminal can be parti-
tioned into & number of zones which can
then themselves be partitioned into
several areas such that the requests for
calls connecting two terminals in the
pame zone (area) are more likely than
those connecting terminals in different
zones (areas). A multil-zone-balanced
network can then be constructed by
replacing the distribution network Ms in
Section 4 by the right half of & smaller
zone-balanced network.

Chung and Hwangl first studied the block-

ing probability of zone-balanced networks.
Previously, several special cases of
designing zone-balanced networks have
been 1nvestigated1’8. In this paper we
construct & large class of zone-balanced
network whose linking pattern can be
explicitly specified 1n a surprisingly
simple manner.
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