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ABSTRACT

pefine r(G;k) to be the smallest integer with the following property: For
any n > r(G;k), color the edges of K, in k colors, then there exists a mono-
chromatic graph isomorphic to G. In this paper, we discussed the bounds for

r(Ky;k) and r(C4sk). ,
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ON TRIANGULAR AND CYCLIC RAMSEY NUMBERS WITH k COLORS

Let G be a finite graph and k be a positive integer. Define r(G;k) to be
the smallest integer with the following property: For any n > r(G;k), color the
edges of Kn in k colors; then there exists a monochromatic graph isomorphic to G.
The existence of r(G;k) 1is assured by Ramsey's theorem [1,2].

In the case of G = K3 and k = 2, r(K3;2) = 6 . This is one of the most
interesting fundamental problems that appeared in Putnam Mathematics Competition
[3] in 1953. The problem can be stated as follows: Color the edges of K6 in red
or blue; then either a red triangle or a blue triangle exists.

In 1955 Greenwood and Gleagon [4] proved that r(l(3;3) = 17 and t(K3;4) > 41,
The value of r(K3;4) is still unknown. Whitehead and Taylor [5] proved that
r(K3;4) > 49 4n 1971. In 1972, G. J. Porter (unpublished) and the author [6] proved
independently that r(K3;lo) > 50 and a lower bound for r(K3;k) was obtained. A
simpler proof will now be presented,

Theorem 1. Let f(k) = r(l(3;k) = 1 and let t = 0.103 ... be the only positive root
of x3 4+ 6x2 + 9x - 1 =0 and C = 50t2 = 0.5454 .... Then £(k+1) > 3£(k) + f(k-2)
for k > 3 and £(k) > (3+t)k c.

We need the following lemma.
Lemma 1: The edges of K, can be colored in k colors without any monochromatic

triangle if and only if its adjacency matrix An 18 the sum of k symmetric binary

matrices Ml’ MZ,..., Mk where the componentwise product of Hi and Miz 18 zero

for i = 1,2,...,k, i.e., An - Hl + Mz + ... 4+ Hkand (Ml*Miz)jm- (Mi)jm(Miz)jm'o
for 41 = 1,2,...,k.

Proof: 1If the edges of l(n are colored in k colors without monochromatic triangles,
then define

1 4f the edge (Jm) has color i
M)y =

0 otherwise
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Obviously (“12):.. is the number of paths of length 2 joining points j and m.

But mi)jm should be zero when (Hiz) is non-zero. Hence A, = Hl + H2 L R H'k

and uimiz « 0 for all 1.

Conversely, given k symmetric binary matrices Hl,Mz,...,Mk with their sum

An and Hi*Hiz =0 fori=1,2,...,k, we have a k-coloring of Kn without any

monochromatic triangles.

Proof of theorem. The edges of Kf(k) can be colored in k colors withoug monochro-

matic triangles. By Lemma 1 there exist Hl,Mz,...,Hk and Nj,Nj,...,Ny_9 such that

2
Af(k)-nl+n2+"'+uk and Hi*Mi =0 for 1i=1,2,...,k

and N*‘*N2

+N - 44N

+ ... +N =0 for j§ =1,2,...,k-2

Ar-y "N N,

and let J be the f(k-2) x f(k) matrix with all entries 1.

Let Ll’LZ"°"Lk+1 be square matrices of order (3f(k) + f£(k-2)); then

symmetric matrices are defined as follows:

o N
L, |¥ %
1 M
1
J 0 o
\ s
7 N
4
L. Moo
2 1 ) M
6 J 0 o J
- N
M,
L, - oM
M
2
o0 o 31 o
”
M N
M, M
i i = .
Li - ¥ M M for 1 4,5,...,k+1
1 i
0o o0 0 N
~ 1-3/

2
- * =
It is clear that L1 + L2 + ... 4+ Lk+1 A3f(k) + f(k-2) and Li Li 0

for i =1,2,...,k+l .
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Since the complete graph xaf(k) + f(k-2) can be colored in k+l colors without

any monochromatic triangle,

£(k+1) > 3£(k) + £(k-2) for K >3.

From the above inequality we can get f(k) > (3+t)k C where t = 0.103... ig
the only positive root of x>+ 622+ gx - 1 u o and € = 50t w g, 5454,

The classical upper bound [4] for t(K3;k) 18 [kle] +1 , Whitehead [5]
proved r(K3;4) 265 [4le] +1 . Combining these, we get the next inequality.

Theorem 2. T(Kyik) < [k!(e-1/24)) + 1.

From Theorems 1 and 2, we know that the limit of k'th root of f(k) will be

between 3+t and » if 1t exists.

Lemma 2. f£(3k) > (£(k))d .
Proof. Let f(k) = n 80 that the edges of Kn can be k-colored without any mono-
chromatic triangles.

Define Knj with vertices the vectors (il,iz,...,ij), i, =1,2,...,n. Let
C.» 8 = 1,...,j,m-1,...,k, be the jk colors available,

The edge joining (il,iz.....ij) and (ii, ié, ceey 15 1s colored in the
color “im if and only if i, = ii. ceey ij-l - 15, iJ ¢ 15 and the edge joining
1j and ij has color m.

It is clear that this gives a coloring of edges of Knj without any monochromatic
triangle in kj colors.

Therefore £(3k) > (£(k))J.
Theorem 3. 1lim (f(k))l/k exists.
k<o

Proof: Let x = 1im sup (f(k))l/k
There exists an integer m such that f(m)llm > x-¢

For any n > m/e, £(my)l/n > f([n/n])1/"
> f(m)[n/m]/n

> (x-e)178)

Hence lim inf £(k)1/% = 14n gup £y /K > 3.103...
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Theorem 4. Let r(x-;k) be the classical Ramsey number N(m,m,...,m;2) . Then

1/k k “times
1im r(xn;k) exists for any m and is greater than m-1 .

Proof: By a similar method we can prove r(K, ;k.‘l)]'/kjlr(l(m;k)llkand the limit exists
Let &, = lim r(E ;00 /% Then €3 3.103... It is not known that f, is

finite or infinite. It was shown in [7] that £, 2 /17, &5 > /37, gg > /101,
€7 > /109, gg > V281, Eg > /373 and £y 1s strictly increasing.
Some upper and lower bounds for t(ct."‘) have been obtained.

Lemmz 3. The edges of Kn can be colored in k colors without any monochromatic
triangle 1f and only if the iatrix An is the sum of k symmetric binary matrices
“1’“2""’"1{ where (Miz)jm 21 for J¥édm {=1,2,...,k.

The proof of Lemma 3 is clear.

Lemma 4. Let M be an nxn symmetric binary matrix and (Mz)..jm <1 for j # m. Then
n
s= ] My < o/n=374 + n/2 .

Proof: < 1 (i7k)

Z MMy
Sum over k =1,...,n, k ¥ j , to get

Zuij kZM <n-1,

k40
n
or Zl M (e()-M) < o-1,
where r(i) is the i'th column sum or row sum.
n n
Then sum over j, to get ) r(i)2 - ) Mij < n(n-1) ,
=1 i,3=1
? 2
Z r(1)” < n(n-1) + s.
i=]

For any positive numbers r(1), r(2), ..., r(n),

n n
T rw?s (] ran?/e:
i=] i=]
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So Szln <n(n-1) +§
and S < n/2 + /=375 .

The equality holds when all the r(i) are equal.

Theorem 5. k2 + k + 12 r(C, k).

n
Proof. Let r(C‘.;k) -~ 1=n, By Lemma 3 we know that A, = 121 Mi and

mi).‘l 21 for j #m 1=1,2,..., k. There is some Mi with the property that
m

n
I ™). > n(-1)/k.

3,me1 m =

By Lemma 4, we have n/2+n/n-3/4 > n(n-1)/k .
Then k2+k+l_>_n.
The equality holds when the row sums of Mi are all equal to k+l1 . In this

case Mi is the adjacency matrix of a projective plane. But there does not exist

[8] an adjacency matrix of a projective plane of trace O.

Hence k2+k+1>n

and K24k + 1210,
Theorem 6. r(C,5k) > k%/16 for infinitely many k's.
The proof 1s established by an explicit construction.
After the conference the author proved that r(Ca;(1+e)k 2> k? for any small

€ and large k and that r(C4;k) 1is asymptotically equal to k2.
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