ON TRIANGULAR AND CYCLIC RAMSEY NUMBERS WITH k COLORS

Fan Chung University of Pennsylvania

ABSTRACT

Define r(G;k) to be the smallest integer with the following property: For any $n \ge r(G;k)$, color the edges of K_n in k colors, then there exists a monochromatic graph isomorphic to G. In this paper, we discussed the bounds for $r(K_3;k)$ and $r(C_4;k)$.

ON TRIANGULAR AND CYCLIC RAMSEY NUMBERS WITH & COLORS

Let G be a finite graph and k be a positive integer. Define r(G;k) to be the smallest integer with the following property: For any $n \ge r(G;k)$, color the edges of K_n in k colors; then there exists a monochromatic graph isomorphic to G. The existence of r(G;k) is assured by Ramsey's theorem [1,2].

In the case of $G = K_3$ and k = 2, $r(K_3; 2) = 6$. This is one of the most interesting fundamental problems that appeared in Putnam Mathematics Competition [3] in 1953. The problem can be stated as follows: Color the edges of K_6 in red or blue; then either a red triangle or a blue triangle exists.

In 1955 Greenwood and Gleason [4] proved that $r(K_3;3) = 17$ and $r(K_3;4) > 41$. The value of $r(K_3;4)$ is still unknown. Whitehead and Taylor [5] proved that $r(K_3;4) > 49$ in 1971. In 1972, G. J. Porter (unpublished) and the author [6] proved independently that $r(K_3;4) > 50$ and a lower bound for $r(K_3;k)$ was obtained. A simpler proof will now be presented.

Theorem 1. Let $f(k) = r(K_3; k) - 1$ and let t = 0.103 ... be the only positive root of $x^3 + 6x^2 + 9x - 1 = 0$ and $C = 50t^2 = 0.5454$ Then $f(k+1) \ge 3f(k) + f(k-2)$ for k > 3 and $f(k) \ge (3+t)^k C$.

We need the following lemma.

Lemma 1: The edges of K_n can be colored in k colors without any monochromatic triangle if and only if its adjacency matrix A_n is the sum of k symmetric binary matrices M_1, M_2, \ldots, M_k where the componentwise product of M_1 and M_1^2 is zero for $i = 1, 2, \ldots, k$, i.e., $A_n = M_1 + M_2 + \ldots + M_k$ and $(M_1 * M_1^2)_{jm} = (M_1)_{jm} (M_1^2)_{jm} = 0$ for $i = 1, 2, \ldots, k$.

 $\underline{\text{Proof}}\colon$ If the edges of K_n are colored in k colors without monochromatic triangles, then define

$$(M_i)_{jm} = \begin{cases} 1 & \text{if the edge (jm) has color i} \\ 0 & \text{otherwise} \end{cases}$$

Obviously $({\rm M_i}^2)_{jm}$ is the number of paths of length 2 joining points j and m. But $({\rm M_i})_{jm}$ should be zero when $({\rm M_i}^2)$ is non-zero. Hence ${\rm A_n} = {\rm M_1} + {\rm M_2} + \ldots + {\rm M_k}$ and ${\rm M_i}*{\rm M_i}^2 = 0$ for all i.

Conversely, given k symmetric binary matrices M_1, M_2, \dots, M_k with their sum A_n and $M_1 * M_1^2 = 0$ for $i = 1, 2, \dots, k$, we have a k-coloring of K_n without any monochromatic triangles.

<u>Proof of theorem.</u> The edges of $K_{f(k)}$ can be colored in k colors without monochromatic triangles. By Lemma 1 there exist M_1, M_2, \ldots, M_k and $N_1, N_2, \ldots, N_{k-2}$ such that

$$A_{f(k)} = M_1 + M_2 + ... + M_k$$
 and $M_i * M_i^2 = 0$ for $i = 1, 2, ..., k$
 $A_{f(k-2)} = N_1 + N_2 + ... + N_{k-2}$ and $N_j * N_j^2 = 0$ for $j = 1, 2, ..., k-2$

and let J be the $f(k-2) \times f(k)$ matrix with all entries 1.

Let $L_1, L_2, \ldots, L_{k+1}$ be square matrices of order (3f(k) + f(k-2)); then symmetric matrices are defined as follows:

$$L_{1} = \begin{bmatrix} 0 & M_{2} & M_{2} & & & & \\ M_{1} & I & M_{1} & & & \\ M_{1} & I & M_{1} & & & & \\ & & I & M_{1} & 0 & & & \\ I & M_{2} & M_{2} & & & & \\ 0 & J & 0 & 0 & & & \\ \end{bmatrix}$$

$$L_{3} = \begin{bmatrix} M_{2} & & & & & \\ I & M_{1} & & & & \\ M_{2} & M_{1} & 0 & & & \\ 0 & 0 & J & 0 & & \\ \end{bmatrix}$$

$$L_{i} = \begin{bmatrix} M_{i} & & & & & \\ M_{i} & M_{i} & & & & \\ M_{i} & M_{i} & M_{i} & & & \\ M_{i} & M_{i} & M_{i} & & & \\ 0 & 0 & 0 & N_{i-3} \end{bmatrix} \quad \text{for } i = 4,5,\dots,k+1.$$

It is clear that $L_1 + L_2 + ... + L_{k+1} = A_{3f(k)} + f(k-2)$ and $L_i * L_i^2 = 0$ for i = 1, 2, ..., k+1.

Since the complete graph $K_{3f(k)} + f(k-2)$ can be colored in k+l colors without any monochromatic triangle,

$$f(k+1) \ge 3f(k) + f(k-2)$$
 for $k \ge 3$.

From the above inequality we can get $f(k) \ge (3+t)^k C$ where t = 0.103... is the only positive root of $x^3 + 6x^2 + 9x - 1 = 0$ and $C = 50t^2 = 0.5454...$

The classical upper bound [4] for $r(K_3;k)$ is [k!e]+1. Whitehead [5] proved $r(K_3;4) \le 65$ [4!e] + 1 . Combining these, we get the next inequality.

Theorem 2. $r(K_3;k) \leq [k!(e-1/24)] + 1$.

From Theorems 1 and 2, we know that the limit of k'th root of f(k) will be between 3+t and = if it exists.

Lemma 2. $f(jk) \ge (f(k))^{j}$.

<u>Proof.</u> Let f(k) = n so that the edges of K_n can be k-colored without any monochromatic triangles.

Define K_{nj} with vertices the vectors (i_1, i_2, \dots, i_j) , $i_s = 1, 2, \dots, n$. Let c_s , s = 1,...,j,m=1,...,k, be the jk colors available.

The edge joining (i_1, i_2, \dots, i_1) and $(i'_1, i'_2, \dots, i'_1)$ is colored in the color c_{jm} if and only if $i_1 = i_1^*, \dots, i_{j-1} = i_j^*, i_j \neq i_j^*$ and the edge joining i, and i has color m.

It is clear that this gives a coloring of edges of $K_{n,j}$ without any monochromatic triangle in kj colors.

Therefore

$$f(jk) \ge (f(k))^{j}$$

 $\lim_{k \to \infty} (f(k))^{1/k} \text{ exists.}$ Theorem 3.

<u>Proof</u>: Let $x = \lim \sup (f(k))^{1/k}$

There exists an integer m such that $f(m)^{1/m} > x-\epsilon$

For any
$$n \ge m/\varepsilon$$
, $f(n)^{1/n} \ge f(m[n/m])^{1/n}$
 $\ge f(m)^{[n/m]/n}$
 $\ge (x-\varepsilon)^{(1-\varepsilon)}$

Hence $\lim \inf f(k)^{1/k} = \lim \sup f(k)^{1/k} \geq 3.103...$

Theorem 4. Let $r(K_m;k)$ be the classical Ramsey number $N(m,m,\dots,m;2)$. Then $\lim_{k \to \infty} r(K_m;k)^{1/k}$ exists for any m and is greater than m-1.

<u>Proof</u>: By a similar method we can prove $r(K_m; kj)^{1/k} \ge r(K_m; k)^{1/k}$ and the limit exists.

Let $\xi_m = \lim_{k \to \infty} r(K_m; k)^{1/k}$. Then $\xi_3 = 3.103...$ It is not known that ξ_3 is finite or infinite. It was shown in [7] that $\xi_4 \ge \sqrt{17}$, $\xi_5 \ge \sqrt{37}$, $\xi_6 \ge \sqrt{101}$,

 $\xi_7 \ge \sqrt{109}$, $\xi_8 \ge \sqrt{281}$, $\xi_9 \ge \sqrt{373}$ and ξ_m is strictly increasing.

Some upper and lower bounds for r(C4,k) have been obtained.

Lemma 3. The edges of K_n can be colored in k colors without any monochromatic triangle if and only if the matrix A_n is the sum of k symmetric binary matrices M_1, M_2, \dots, M_k where $(M_1^2)_{jm} \leq 1$ for $j \neq m$ $i = 1, 2, \dots, k$.

The proof of Lemma 3 is clear.

Lemma 4. Let M be an n x n symmetric binary matrix and $(M^2)_{jm} \le 1$ for $j \ne m$. Then $S = \sum_{i,j=1}^{n} M_{ij} \le n\sqrt{n-3/4} + n/2 .$

Sum over k = 1, ..., n, $k \neq j$, to get

$$\sum_{j=1}^{n} M_{ij} \quad \sum_{k=1}^{n} M_{jk} \leq n-1,$$

$$k \neq 0$$

or
$$\sum_{j=1}^{n} M_{ij}(r(i)-M_{ji}) \leq n-1,$$

where r(i) is the i'th column sum or row sum.

Then sum over j, to get $\sum_{j=1}^{n} r(i)^{2} - \sum_{i,j=1}^{n} M_{ij} \leq n(n-1),$

$$\sum_{i=1}^{n} r(i)^{2} \leq n(n-1) + S.$$

For any positive numbers r(1), r(2), ..., r(n),

$$\sum_{i=1}^{n} r(i)^{2} \ge \left(\sum_{i=1}^{n} r(i)\right)^{2/n}.$$

So
$$S^2/n \le n(n-1) + S$$

and $S \le n/2 + n\sqrt{n-3/4}$.

The equality holds when all the r(i) are equal.

Theorem 5. $k^2 + k + 1 \ge r(C_{\lambda}; k)$.

Proof. Let
$$r(C_4;k) - 1 = n$$
. By Lemma 3 we know that $A_n = \sum_{i=1}^{n} M_i$ and

 $(M_{i})_{jm} \leq 1$ for $j \neq m$, i = 1, 2, ..., k. There is some M_{i} with the property that

$$\sum_{j,m=1}^{n} (M_{i})_{jm} \ge n(n-1)/k.$$

By Lemma 4, we have $n/2 + n\sqrt{n-3/4} \ge n(n-1)/k$. Then $k^2 + k + 1 \ge n$.

The equality holds when the row sums of M_1 are all equal to k+1. In this case M_1 is the adjacency matrix of a projective plane. But there does not exist [8] an adjacency matrix of a projective plane of trace 0.

Hence
$$k^2 + k + 1 > n$$

and $k^2 + k + 1 \ge r(C_4; k)$.

Theorem 6. $r(C_4;k) \ge k^2/16$ for infinitely many k's.

The proof is established by an explicit construction.

After the conference the author proved that $r(C_4;(1+\epsilon)k \ge k^2)$ for any small ϵ and large k and that $r(C_4;k)$ is asymptotically equal to k^2 .

REFERENCES

- Ramsey, F. P., "On a Problem of Formal Logic", <u>Proc. London Math. Soc.</u>, 30 (1930) 264-286.
- 2. Ryser, H. J., Combinatorial Mathematics, Wiley, New York, 1963.
- Bush, L. E., "The William Lowell Putnam Mathematical Competition", Amer. Math. Monthly, 60 (1953) 539-542.
- Greenwood, R. E., and Gleason, A. M., "Combinatorial Relations and Chromatic Graphs", <u>Canad. Math.</u> 7 (1955) 1-7.
- Whitehead, E. G., Jr., "Ramsey Numbers of the Form N(3,...,3;2)", Doctoral Dissertation, University of Southern California, 1971.
- Chung, F. R. K., "On the Ramsey Numbers N(3,3,...,3;2)", Discrete Math., to appear.
- Burling, J. P., and Reyner, S. W., "Some Lower Bounds of the Ramsey Numbers n(k,k)", Combinatorial Theory 13B (1972) 168-169.
- Wilf, H. S., "The Friendship Theorem", Combinatorial Mathematics and Its Applications, (D. J. A. Welsh, ed.), Academic Press, New York, 1971, 307-309.