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ABSTRACT

- A disturbance spreads in a rectilinear
n-dimensional grid moving from each affected point to
at most one neighbor in each unit of time. The questlon
we consider: How many points can be affected In N unlts
of time? Ih this note we give the two highest degree

terms in N of the answer.
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INTRODUCTION

The following questicn has been raised by
S. T. Hedetnieml et al. [1]: A disturbance starts at the
origin in an n-dimensional rectangular grid. In each
unit of time it can spread from any grid point 1t has
already reached to one adjacent grid point. To how
many points can it spread in N units of time, and how can
the spreading be arranged to maximize the extent of the
disturbance?

It 1s the intent of this note to point out that
the two terms of highest degree in N 1In the answer to this
question can easlily be deduced, and the arrangements that
give them found. These do not include spreading schemes
of the form suggested by Cockayne and Hedetnieml in [2]

for this problem. The Cockayne znd Hedetniemi arrangement



is seen to be suboptimal in its second term in n
dimensions for n > 3.

It is apparent that in ¥ units of time only
grid points a distance of N or less from the origin

(in the "Manhattan" or Ll metric) could ever be resached.

n

It is easy to verify that there are V(N,n) = 22 (i)(?) ol
1=0

points a distance N or less from the origin in n
dimensional grid. Let S(N,n) denote the maximum number
of polints that can be reached in N units of time in n
dimensional grid. The terms in S(N,n), which 1s the answer
to our problem, of highest degree in N will agree with V(N,n).
RESULTS

We obtain our results through the following
sequence of observatilons.
Remark 1l: Only one grid point a distance of N from the
origin can be reached in N units of time.
Proof: Let the path leading to such a grid point be
po,pl,...,pN. For each j, the spreading pj to pj+l must
be the unique first spreading from pj after its infection.
The path therefore i1s unigue.
Remark 2: The set of grid points reached in N units of

time a distance at least N=k from the origin is at most
k

Ny

(j) in number.
J=0
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Proof: Such a point must be reached by a path experiencing
at most k delays. These delays can occur in at most N
time intervals. If the delay times are specified, the
path is uniquely determined by the spreadling rules if any
path with such delays exists.

Remark 3: The number of grid points in the half space
oppositely directed to the first at a distance of at least

N-k from the origin which can be reached in N time units

k=1 k=2
are at most 22 (NEI) + Ei (Ngz).
3=0 3=0

Proof: This follows as Remark 2 does. The first term
represents spreading along the paths that do not use the
first link. The second reflects that fact that paths
using it that get into the opposite half space can
experience only k-2 delays if they reach a Manhattan
distance of N-k from the origin, as they must run forward
and then back in the first direction.

Remark 4: The number of points a distance of k from the

orlgin within any orthant (with all coordinates non-zero

i:i). ‘There are EH(E:%)

such points altogether. This 1s well known and will not

and having certain fixed signs) is (

be proven here. (It follows easily by induction on
dimension.)

Remark 5: For N large, we can reach a negligible proportion
of the points a distance N-n+2 or further from the origin

and a proportion at most approaching 2fn of those a distance

N-n+l from the origin.
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Proof: The blnomial coefflcients (ﬁ) for large N and
fixed k are strongly lncreasing in k and only slightly

increasing in N. In particular we have
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Thus, the number of reached grid points a distance at
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least N-X from the origin is by Remark 2 at most (%) (1+0(N"1)).

This will be smaller than (E:%) by a factor of the
order of N unless X = n-l, in which case we have
(N;g;l) = (i) (l+O(N-l)) and we can reach on the order

of (nfl) points at a distance N-n+l from the origin.
By Remark 4, we know that this is a proportion

essentially 27"

of all points a distance N-n+l from the
origin, for large N.

Remark 6: Among points in the "back™ half space, directed
cpposite @o the initial spread, we can reach a negligible
portion of points a distance N - n+l from the origin, and
asymptotically (i:%) points a distance N-n from the origin.
Proof: This follows from Remarks 3 and 4 exactly as the

last result follows from Remarks 2 and 4.

Theorem l: An upper bound to the number of points accessible

in N time units from a point 1s, to the first two leading

orders in N,
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% V(N-n-1,n) + %'V(N-n,n) + 2 (#ﬁl)(l+O(N-l))

_ 2% n _n-2"2 n-1 -2
STV - TS N o),

Proof: By Remarks 5 and 6, we can reach only points a
distance up to N-n-l from the origin in the "back"
halfspace and a distance N-n in the "front" half space
except 2(n§1)(l+0(N-1)) points. (We are ignoring
corrections of order N-T with respect to these. The
bound above includes all points wilth any zero coordinates
a distance up to N-n-1 from the origin. The number of
such points that are between N-n-l and N from the origin
is of the order N"l compared to the "surface" term considered,
and we shall make no effort to estimate these.) These
glve the desired bound.
Theorem 2: We can achieve the bound just given, to
leading two orders of N.
Proof: We use‘the followlng construction. A spreading
can be described by giving the rules for the spread at
each point reached by the disturbance. We do this after
ordering the axes of the grid from 1 to n, by describing
the non-delay and first delay paths from each point by
the following four rules (0. - 3.). We describe the\first
three rules.
0. The spread from the origin is first to (1,0,...,0),
then to (-1,0,...,0).



1. The non-=delay spread from a point with components
(al,az,...,aj_l,aj,o,o,...,o) for j 2 n with all
a; # 0 15 0 (a7,3p,...58y_3,8,+(~1) -1 o,...,0)
with ay = 0 when a; >0, 2y = 1l when a., < 0.

1
2. The single delay spread from such polnt for J < n
1s (al,az,...,aj,(—l)aj,o,,..,o).

Thése rules have the following meaning. The
first merely tells us how to start - go first positively
then negatively in the flrst directlion. The second
tells us that when we reach any new point we move first
so as to increase the magnitude of the last non-=zero
component. The third tells us that the first delayed
spread from points whose last component is zeroc is to
move in the first direction whose component was zero in
a direction determined by the parity of ‘the previous
component.

These rules so far are incomplete in that they
leave second delayed spreads unspecified, and do not
specify even first delayed spreads when the last component
1s non-zero. Qur final rule will specify some of the
latter. Before describing it we notlce what 1s
accompllished by the rules so far described.

We will concentrate our attention on polnts with

all |a,| at least two, since: (a) the number of other

points within a distance N of the origin 1s only of order
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N1 1n comparison with V(N,n}); and (k) by obvious second delay
spreadings we can include all but a proportion c L oor

the points in our spreading. These two facts Imply that, as
far as the first two orders in N are concerned we need

not worry about points with any |a one or less. We

JI ,

could attempt to treat these points optimally by defining

explicit second delay spreads or by altering the scheme

just described. It 18 not clear, however, that even

the rules given so far are optimal to within the next order.
Within any orthant, the rules above provide

spreading to only a proporticn of roughly p=(n-1) of

the points. This 1s so since any polints reached whose

parity in. any of the first n-1 components differ will have

been reached by paths that turned differently and so will

be 1n different orthants. (For example in the "positive"

orthant with all aj > 0, only those points whose first

n-1l components are all even will be reached.) We note that

2 (nfl) polnts a distance N-n+l from the origin are

reached.

3. The final spreading rule is as follows. Construct

o=t _ g paths in the grid hyperplane with a_ = 0,

leading from the origin to the on=1

- 1 points having
components Q or 1 with at least one 1. Each of these
paths should be increasing in each component, and
should change one component at each step; (the

magnitude of the Manhattan distance to the origin must



increase by one at each step). It 1s very easy
to find such paths and we have no need of specifylng
any particular set of them. We order them so that
the larger ones are first. Let them be pl""’pzn-l_l’
in some such order.
We now represent the single delay spreads for
1< la ] <2 -1, |
If Ianl = j, the single delay spread is to
proceed "glong the first are of pj" (defined below)
keeping an fixed. TFrom the point thus reached one
continues without further delay to the end of pJ and
then turns again without delay to the direction of
increasing Ianl. Moving along pJ here means changing
the same component that changes 1in an arec of pj, but
always moving 1in a direction away from the origin.
To see what 1s accomplished by this rule, recall
that when a_ # 0, the spreading according tc¢ the first
rules moves along some but not all lines of increasing
la,| in each orthant. The effect of the last step is
(with one more delay) first to spread the disturbance aléng
the {pj} to all values of magnitude two or more of the
first n=1 components and then to spread in the nth
direction (parallel to the first mentioned spread).
It is evident that for a_ > 2”71 - 1 we will
reach all polnts with a; > 0, Iajl > 2 and Z[aj| < N-n by these

rules.



It is straightforward tc define second delay

n-1L _ 1

rules, etc., to pick up those points with’an > 2
and those with ]aJ[ < 1 that are omitted here, except
for those having Zlajl-near N-n.  The -latter represent
a second order set (of order N"% with respect to the
leading term) which we will ignore here.

The "back" halfspace spresading is identical to
that in front with one additional delay unit.

It is therefore evident that thls constructlcn
achieves the bound in its first two orders.

It does not seem impossible to extend this
result to the next order. As already noted, the
spreading rules above (particularly 2) may nct be optimal
for that order. We chose them here to simplify description
of the rule 3.

FURTEER COMMENTS

In two dimensions we can evaluate both the
upper and lower bounds leading tc Theorems 1 and 2
explicitly, and can extend them without much difficulty

to cbtain the exact result,

2

S(N,2) = 2N° - 6N+8 for N > 2.

The exact form for 3(N,3) can surely be obtained
by considering the various corrections to the higher two
orders. It is questicnable that the exact result is of

sufficlent interest to Justify the effort required to get 1it.
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It is also of 1lnterest to know whether we can
reach S(N,n) points in N units of time by a "greedy
algorithm", i.e., whether it exists a scheme such that
we can reach S(M,n) points in M units of time for any
M < N. |

We suspect that for sufficiently large N,‘S(N,n)

is 2 polynomial in N for any given n. We have not, however,

been able to prove this.
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