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Abstract

We investigate the problem of disseminating broadcast messages in wireless networks with time-varying links
from a percolation-based perspective. Using a model of wireless networks based on random geometric graphs with
dynamic on-off links, we show that the delay for disseminating broadcast information exhibits two behavioral
regimes, corresponding to the phase transition of the underlying network connectivity. When the dynamic network
is in the subcritical phase, ignoring propagation delays, the delay scales linearly with the Euclidean distance
between the sender and the receiver. When the dynamic network is in the supercritical phase, the delay scales sub-
linearly with the distance. Finally, we show that in the presence of a non-negligible propagation delay, the delay
for information dissemination scales linearly with the Euclidean distance in both the subcritical and supercritical
regimes, with the rates for the linear scaling being different in the two regimes.

I. INTRODUCTION

Large-scale wireless networks for the gathering, processing, and dissemination of information have

become an important part of modern life. To ensure that important broadcast messages can be received

by each node in a wireless network, the network needs to maintain full connectivity [1]. Here, the system

ensures that each pair of network nodes are connected by a path of consecutive links. In large-scale

wireless networks exposed to severe natural hazards, enemyattacks, and resource depletion, however,

the full connectivity criterion may be overly restrictive or impossible to achieve. In these challenging

environments, the system designer may reasonably aim for a slightly weaker notion of connectivity, one

which ensures that a high fraction of the network nodes can successfully receive broadcast messages. This

latter viewpoint can be explored using the mathematical theory of percolation [2]–[5].

In this paper, we investigate the problem of information dissemination in wireless networks from a

percolation-based perspective. Using a model of wireless networks based on random geometric graphs

with dynamic on-off links, we show that the delay for disseminating broadcast information exhibits a

phase transition as a function of the underlying node density. Assuming zero propagation delay, we show

that in the subcritical regime, the delay scales linearly with the distance between the sender and receiver.

In the supercritical regime, the delay scales sub-linearlywith the distance.
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In recent years, percolation theory, especially continuumpercolation theory [4], [5], has become a useful

tool for the analysis of large-scale wireless networks [6]–[15]. A major focus of continuum percolation

theory is the random geometric graph in which nodes are distributed according to a Poisson point process

with constant densityλ, and two nodes share a link if they are within distance 1 of each other. A

fundamental result of continuum percolation concerns a phase transition effect whereby the macroscopic

behavior of the random geometric graph is very different fordensities below and above the critical density

λc. For λ < λc (subcritical), the connected component containing the origin contains a finite number of

points almost surely. Forλ > λc (supercritical), the connected component containing the origin contains

an infinite number of points with a positive probability [3]–[5].

Wireless networks are subject to multi-user interference,fading, and noise. Thus, even when two nodes

are within each other’s transmission range, a viable communication link may not exist [7]. Furthermore,

due to fading, the link quality can vary dynamically in time,inducing a frequently changing network

topology. To capture these effects, we model a wireless network by a random geometric graph in which

each link’s functionality (activity) varies dynamically in time according to a Markov on-off process. Using

this model, we investigate the problem of disseminating broadcast messages in wireless networks. Due to

the dynamic on-off behavior of links, a delay is incurred in transmitting a broadcast message from the

sender to the receiver even when propagation delay is ignored. The main question we address is how this

delay scales with the distance between the sender and the receiver.

As a first step, we show that the connectivity of the network with dynamic links exhibits a phase

transition as a function of the underlying node density. We characterize the critical density for this phase

transition in terms of the link state process. Next, we show that the delay for disseminating broadcast

information exhibits two behavioral regimes, corresponding to the phase transition of the underlying

network connectivity. When the dynamic network is in the subcritical phase, ignoring propagation delays,

the delay scales linearly with the Euclidean distance between the sender and the receiver. This follows

from the fact that in this regime, connectivity decays exponentially with distance, and on average, any

information dissemination process is blocked by inactive links after the message travels a finite distance

(and is resumed after the next link turns back on). When the dynamic network is in the supercritical

phase, the delay scales sub-linearly with the distance between the sender and the receiver. In this case, the

delay is determined largely by the amount of time it takes forthe message to reach the infinite connected

component of the dynamic network. Finally, we characterizethe delay for information dissemination when

propagation delays are taken into account. Here, the problem becomes more subtle. We show that, with

the presence of a non-negligible propagation delay, the delay for information dissemination scales linearly
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with the Euclidean distance between the sender and the receiver in both the subcritical and supercritical

regimes, with the rates for the linear scaling being different in the two regimes.

In order to study the behavior of information disseminationdelay in wireless networks with dynamic

links, we model the problem as a first passage percolation process [16], [17]. Similar first passage

percolation problems have been studied within the context of lattices [3], [16]. Related continuum models

are considered in [8], [13], [17]. In [17], Deijfen studies acontinuum growth model for a spreading

infection with Poisson point processes, and shows that the shape of the infected cluster scales linearly

with time in all directions. In [8], Dousseet al. study how the latency of information dissemination

scales within an independent site percolation model in wireless sensor networks. There, each sensor

independently switches between the on and off states at random from time to time. The authors show

that the latency scales linearly with the distance between the sender and the receiver when the dynamic

sensor network is in the subcritical phase. In [13], the authors obtain similar results for degree-dependent

site percolation model in wireless sensor networks. Unlikethe problems studied in [8], [13], however, the

problem addressed in this paper requires a bond percolationmodel, which demands different modelling

and analysis techniques. Furthermore, in contrast to [8], [17], we also study the delay scaling for networks

in the supercritical phase. Finally, we present new resultsregarding networks with propagation delay.

The remainder of this paper is organized as follows. In Section II, we outline some preliminary results

for random geometric graphs and continuum percolation. In Section III, we present a simple model for

wireless networks with static unreliable links. In SectionIV, we introduce a more sophisticated model for

wireless networks with dynamic unreliable links, and present our main results regarding percolation-based

connectivity and information dissemination within this model. In Section V, we present simulation results,

and finally, in Section VI, we conclude the paper.

II. RANDOM GEOMETRIC GRAPHS AND CONTINUUM PERCOLATION

A. Random Geometric Graphs

We use random geometric graphs to model wireless networks. That is, we assume that the network

nodes are randomly placed over some area or volume, and a communication link exists between two

(randomly placed) nodes if the distance between them is sufficiently small, so that the received power

is large enough for successful decoding. A mathematical model for this is as follows. Let‖ · ‖ be the

Euclidean norm, andf(·) be some probability density function (p.d.f.) onRd. Let X1,X2, ...,Xn be

independent and identically distributed (i.i.d.)d-dimensional random variables with common densityf(·),

whereXi denotes the random location of nodei in Rd. The ensemble of graphs with undirected links
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connecting all those pairs{xi,xj} with ‖xi − xj‖ ≤ r, r > 0, is called arandom geometric graph[5],

denoted byG(Xn, r). The parameterr is called the characteristic radius.

In the following, we consider random geometric graphsG(Xn, r) in R2, with X1,X2, ...,Xn distributed

i.i.d. according to a uniform distribution in a square areaA = [0,
√

n
λ
]2. Let A = |A| be the area ofA.

There exists a link between two nodesi andj if and only if i lies within a circle of radiusr aroundxj .

As n andA both become large with the ration
A

= λ kept constant,G(Xn, r) converges in distribution

to an (infinite) random geometric graphG(Hλ, r) induced by a homogeneous Poisson point process with

densityλ > 0. Due to the scaling property of random geometric graphs [4],[5], we focus onG(Hλ, 1)

in the following.

B. Critical Density for Continuum Percolation

To intuitively understand percolation processes in large-scale wireless networks, consider the following

example. Suppose a set of nodes are uniformly and independently distributed at random over an area. All

nodes have the same transmission radius, and two nodes within a transmission radius of each other are

assumed to communicate directly. At first, the nodes are distributed according to a very small density. This

results in isolation and no communication among nodes. As the density increases, some clusters in which

nodes can communicate with one another directly or indirectly (via multi-hop relay) emerge, though the

sizes of these clusters are still small compared to the wholenetwork. As the density continues to increase,

at some critical point a huge cluster containing a large portion of the network forms. This phenomenon

of a sudden and drastic change in the global structure is called aphase transition. The density at which

phase transition takes place is called thecritical density[3]–[5].

More formally, letHλ,0 = Hλ ∪{0}, i.e., the union of the origin and the infinite homogeneous Poisson

point process with densityλ. Note that in a random geometric graph induced by a homogeneous Poisson

point process, the choice of the origin can be arbitrary. We have the following definition [4].

Definition 1: For G(Hλ,0, 1), let W0 be the connected component ofG(Hλ,0, 1) containing0. Define

the following critical densities:

λ# , inf{λ : Pr(|W0| = ∞) > 0}, (1)

λN , inf{λ : E[|W0|] = ∞}, (2)

λc , inf{λ : Pr(d(W0) = ∞) > 0}, (3)

λD , inf{λ : E[d(W0)] = ∞}, (4)

where|W0| is the cardinality—the number of nodes—ofW0, andd(W0) , sup{||x − y|| : x,y ∈W0}.
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As shown in Theorem 3.4 and Theorem 3.5 in [4], these four critical densities are identical. According

to the theory of continuum percolation [4],0 < λc <∞. Furthermore, whenλ > λc, there exists a unique

infinite component inG(Hλ,0, 1) with probability 1, and whenλ < λc, there is no infinite component in

G(Hλ,0, 1) with probability 1 [4].

III. W IRELESS NETWORKS WITH STATIC UNRELIABLE L INKS

Random geometric graphs are good simplified models for wireless networks. However, due to noise,

fading, and interference, wireless communication links between two nodes are usually unreliable. We first

use the bond percolation model on random geometric graphs tostudy percolation-based connectivity of

large-scale wireless networks with static unreliable links. Given a random geometric graphG(Hλ, 1), let

each link ofG(Hλ, 1) be active (independent of all other links) with probabilitype(d) which may depend

on d, whered = ‖xi −xj‖ ≤ 1 is the length of the link(i, j). The resulting graph consisting of all active

links and their end nodes is denoted byG(Hλ, 1, pe(·)). This model is a specific example of therandom

connection modelin continuum percolation theory [4]. In this simple model, all links in the network are

either active (on) or inactive (off) for all time. Later in this paper, we will study a more sophisticated

model where links dynamically switch between active and inactive states from time to time.

Definition 2: ForG(Hλ,0, 1, pe(·)), let W ′
0

be the connected component ofG(Hλ,0, 1, pe(·)) containing

0. We define four critical densities:

λ#(pe(·)) , inf{λ : Pr(|W ′
0
| = ∞) > 0}, (5)

λN(pe(·)) , inf{λ : E[|W ′
0
|] = ∞}, (6)

λc(pe(·)) , inf{λ : Pr(d(W ′
0
) = ∞) > 0}, (7)

λD(pe(·)) , inf{λ : E[d(W ′
0
)] = ∞}, (8)

where|W ′
0
| is the cardinality—the number of nodes—ofW ′

0
, andd(W ′

0
) , sup{||x − y|| : x,y ∈W ′

0
}.

As in traditional continuum percolation, the following proposition asserts that the above four critical

densities are identical.

Proposition 1: For G(Hλ,0, 1, pe(·)), we have

λ#(pe(·)) = λN(pe(·)) = λc(pe(·)) = λD(pe(·)). (9)

Proof: The identityλ#(pe(·)) = λN(pe(·)) is given by Theorem 6.2 in [4].
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We now showλ#(pe(·)) = λc(pe(·)). The proof method is similar to the one used for Theorem 3.4

in [4]. Supposeλ > λ#(pe(·)). Then for someδ > 0, Pr(|W ′
0
| = ∞) = δ > 0. For everyh > 0, the

box B(h) = [−h, h]2 contains at most a finite number of nodes ofG(Hλ,0, 1, pe(·)) with probability 1.

Thus,Pr(|W ′
0
∩ B(h)c| = ∞) = δ > 0. However,{|W ′

0
∩ B(h)c| = ∞} implies {|W ′

0
∩ B(h)c| > 0},

so thatd(W ′
0
) ≥ h. Hence we havePr(d(W ′

0
) ≥ h) = δ > 0. Since this holds for allh > 0, we have

λ > λc(pe(·)). Therefore,λ#(pe(·)) ≥ λc(pe(·)).

To showλ#(pe(·)) ≤ λc(pe(·)), note thatd(W ′
0
) ≤ |W ′

0
| − 1, where equality is obtained whenW ′

0
is a

chain and the distance between any two adjacent nodes equals1. Thus,{|W ′
0
| < ∞} implies {d(W ′

0
) <

∞}. This provesλ#(pe(·)) = λc(pe(·)).

Finally, we showλD(pe(·)) = λN(pe(·)). Since d(W ′
0
) ≤ |W ′

0
| − 1, {E[d(W ′

0
)] = ∞} implies

{E[|W ′
0
|] = ∞}. Thus we haveλD(pe(·)) ≥ λN(pe(·)). On the other hand, ifλ > λN(pe(·)), then

λ > λc(pe(·)), i.e., Pr(d(W ′
0
) = ∞) > 0. As a consequence,E[d(W ′

0
)] = ∞, which impliesλN(pe(·)) ≥

λD(pe(·)). Therefore,λD(pe(·)) = λN(pe(·)). �

Since the four critical densities are identical, in the remainder of this paper, we state our results with

respect toλc(pe(·)).

It is known that whenλ > λc(pe(·)), G(Hλ, 1, pe(·)) is percolated, i.e. with probability 1, there exists

a unique infinite component inG(Hλ, 1) consisting of active links and their end nodes, and whenλ <

λc(pe(·)), G(Hλ, 1, pe(·)) is not percolated, i.e., with probability 1, there is no infinite component in

G(Hλ, 1) consisting of active links and their end nodes [4].

The following monotonic property forλc(pe(·)) can be easily proved by coupling methods.

Proposition 2: Let λc(pe(·)) andλc(p
′
e(·)) be the critical densities forG(Hλ, 1, pe(·)) andG(Hλ, 1, p

′
e(·)),

respectively. Then, ifp′e(x) ≤ pe(x), ∀x ∈ (0, 1], we haveλc(pe(·)) ≤ λc(p
′
e(·)).

The following proposition asserts that when the random connection model is in the subcritical phase,

the probability that the origin and a given node are connected decays exponentially with the distance

between them. This is analogous to similar results in traditional continuum percolation (Theorem 2.4

in [4]) and discrete percolation (Theorem 5.4 in [3]).

Proposition 3: GivenG(Hλ,0, 1, pe(·)) with λ < λc(pe(·)), let B(h) = [−h, h]2, h ∈ R+. Then there

exist constantsc1, c2 > 0, such thatPr(0 ! B(h)c) ≤ c1e
−c2h, where{0 ! B(h)c} denotes the event

that the origin and some node inB(h)c are connected, i.e., the origin and some node outsideB(h) are

in the same component.
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The proof for this proposition is similar to the one for Theorem 2.4 in [4]. For completeness, we give

the proof in Appendix A.

IV. W IRELESS NETWORKS WITH DYNAMIC UNRELIABLE L INKS

A. Percolation-based Connectivity

For the random connection model, we assumed that the structure of the graph does not change with

time. Once a link is active, it remains active forever. In wireless networks, however, the link quality

usually varies with time due to shadowing and multi-path fading. In order to study percolation-based

connectivity of wireless networks with time-varying links, we investigate a more sophisticated model.

Formally, given a wireless network modelled byG(Hλ, 1), we associate a stationary on-off state process

{Wij(dij , t); t ≥ 0} with each link(i, j), wheredij is the length of the link, such thatWij(dij, t) = 0 if

link (i, j) is inactive at timet, andWij(dij, t) = 1 if link (i, j) is active at timet. A similar problem for

discrete lattice has been studied in [18]. Our model can be viewed as one of dynamic bond percolation

in random geometric graphs.

For such dynamic networks, we will show that there exists a phase transition, and the critical density

for this model is the same as the one for static networks with the corresponding parameters. To simplify

matters, assume that{Wij(dij, t)} is probabilistically identical for all links with the same length. Use

{W (d, t)} to denote the process for a link with lengthd when no ambiguity arises. Assume that{W (d, t)}

is a Markov on-off process with i.i.d. inactive periodsYk(d), k ≥ 1, and i.i.d. active periodsZk(d), k ≥ 1,

whereE[Yk(d) + Zk(d)] < ∞, Pr(Zk(d) > 0) = 1 and Pr(Yk(d) > 0) = 1 for 0 < d ≤ 1. That is,

both the active and inactive periods are always nonzero. Further assume thatinf0<d≤1{E[Yk(d)]} > 0 and

sup0<d≤1{E[Yk(d)]} <∞.

Under the above assumptions, the stationary distribution of {W (d, t)} is given by [19]

η1(d) , Pr(W (d, t) = 1) =
E[Zk(d)]

E[Zk(d)] + E[Yk(d)]
, (10)

η0(d) , Pr(W (d, t) = 0) =
E[Yk(d)]

E[Zk(d)] + E[Yk(d)]
, (11)

whereη1(d) is theactive ratio for a link with lengthd.

Let the graph at timet be G(Hλ, 1,W (d, t)). That is,G(Hλ, 1,W (d, t)) consists of all active links

at time t, along with their associated end nodes. The following theorem establishes a phase transition

phenomenon with respect to connectivity in a wireless network with dynamic unreliable links modelled

by G(Hλ, 1,W (d, t)). It also asserts that the critical density is the same as the one for the static network

G(Hλ, 1, η1(d)), i.e, the network in which each link is active with probability η1(d).
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Theorem 4:Letλc(η1(d)) be the critical density for the static modelG(Hλ, 1, η1(d)). ThenG(Hλ, 1,W (d, t))

is percolated for allt ≥ 0 if λ > λc(η1(d)), and not percolated at anyt ≥ 0 if λ < λc(η1(d)).

Proof: Sinceλ > λc(η1(d)) and 0 < η1(d) < 1, ∀d ∈ (0, 1], by the monotonic property ofλc(pe(·))

(Proposition 2), we can construct a new modelG(Hλ, 1,W
′(d, t)) and chooseǫ > 0 such thatλ >

λc(η
′
1(d)) ≥ λc(η1(d)) and 0 < η′1(d) < 1, ∀d ∈ (0, 1], whereη′1(d) = (1 − ǫ)η1(d), for d ∈ (0, 1]. As

active periods are always nonzero, we can chooseδ > 0 such that for any link(i, j),

Pr(Wij(δ) = 1|Wij(d, 0) = 1) > 1 − ǫ,

whereWij(δ) , mint∈[0,δ]Wij(d, t). Then,

Pr(Wij(δ) = 1) > (1 − ǫ)η1(d) = η′1(d).

Sinceλ > λc(η
′
1(d)), for any t ∈ [0, δ], G(Hλ, 1,W (d, t)) is percolated. Repeat this argument for all

intervals [kδ, (k + 1)δ] with integerk. Let Ek be the event thatG(Hλ, 1,W (d, t)) is percolated for all

t ∈ [kδ, (k + 1)δ]. Then, we have

Pr

(

⋂

k

Ek

)

= 1 − Pr

(

⋃

k

Ec
k

)

≥ 1 −
∑

k

Pr(Ec
k) = 1.

Similarly, whenλ < λc(η1(d)), we can construct another modelG(Hλ, 1,W
′′(d, t)) and chooseǫ > 0

such thatλ < λc(η
′′
1(d)) ≤ λc(η1(d)) and 0 < η′′1(d) < 1, ∀d ∈ (0, 1], whereη′′1(d) = ǫ(1 − η1(d)) +

η1(d), ∀d ∈ (0, 1]. Since inactive periods are always nonzero, we can chooseδ > 0 such that for any link

(i, j),

Pr(Wij(δ)
′ = 0|Wij(d, 0) = 0) > 1 − ǫ,

whereWij(δ)
′ , maxt∈[0,δ]Wij(d, t). Then,

Pr(Wij(δ)
′ = 0) < 1 − (1 − η1(d))(1 − ǫ) = η′′1(d).

Sinceλ < λc(η
′′
1(d)), for any t ∈ [0, δ], G(Hλ, 1,W (d, t)) is not percolated. Repeat this argument for all

intervals[kδ, (k + 1)δ] with integerk, and then proceed in the same way as before, i.e., using countable

additivity. �

When the process{W (d, t)} is independent of link lengthd, we use{W (t)} to denote the process,

andη1 andη0 to denote its stationary distribution.
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B. Information Dissemination in Wireless Networks with Dynamic Unreliable Links

We have shown that there exists a critical densityλc(η1(d)) such that whenλ > λc(η1(d)),G(Hλ, 1,W (d, t))

is percolated for all time. IfG(Hλ, 1,W (d, t)) is percolated, when one node inside the infinite component

of G(Hλ, 1,W (d, t)) broadcasts a message to the whole network, then assuming that there is no propaga-

tion delay, all nodes in the infinite component ofG(Hλ, 1,W (d, t)) receive this message instantaneously.

The nodes in the infinite component ofG(Hλ, 1) but not in the infinite component ofG(Hλ, 1,W (d, t))

cannot receive this message instantaneously. Nevertheless, as links switch between the active and inactive

states from time to time, those nodes can still receive the message via multi-hop relaying at some later

time. This remains true even ifλ < λc(η1(d)) andG(Hλ, 1,W (d, t)) is never percolated. In this case,

when one node inside the infinite component ofG(Hλ, 1,W (d, t)) broadcasts a message, due to poor

connectivity, only a small number of nodes can receive this message instantaneously. However, as long as

two nodesu andv are in the infinite component ofG(Hλ, 1), the message can eventually be transmitted

from u to v over multi-hop relays. The main question we address here is the nature of this information

dissemination delay.

This problem is similar to thefirst passage percolationproblem in lattices [3], [16]. Related continuum

models are considered in [8], [13], [17]. In [17], the authorstudy continuum growth model for a spreading

infection. In [8] and [13], the authors consider wireless sensor networks where each sensor has independent

or degree-dependent dynamic behavior, which can be modelled by an independent or a degree-dependent

dynamic site percolation on random geometric graphs, respectively. The main tool is the Subadditive

Ergodic Theorem [20]. We will use this technique to analyze our problem.

In the following, we will show that in a large-scale wirelessnetwork with dynamic unreliable links,

the message delay scales linearly with the Euclidean distance between the sender and the receiver if the

resulting network is in the subcritical phase, and the delayscales sub-linearly with the distance if the

resulting network is in the supercritical phase.

To begin, we define the delay on a link(i, j) as the amount of time for nodei to deliver a packet

to nodej over link (i, j). In particular, ignoring propagation delay, if(i, j) is active wheni initiates a

transmission, then the delay is zero. If(i, j) is inactive, the delay is the time from the instant wheni

initiates transmission until the instant when(i, j) becomes active. Mathematically, let delayTij(dij) be a

random variable associated with link(i, j) having lengthdij , such that
{

Pr(Tij(dij) = 0) = η1(dij),
Pr(Tij(dij) > t) = η0(dij)Pdij

(t),
(12)

wherePdij
(t) = Pr(Wij(dij, t

′) = 0, ∀t′ ∈ [0, t)|Wij(dij, 0) = 0), and (η1(d), η0(d)) is the stationary
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distribution of{W (d, t)} given by (10) and (11).

Let d(u, v) , ||Xu −Xv|| and

T (u, v) = T (Xu,Xv) , inf
l(u,v)∈L(u,v)







∑

(i,j)∈l(u,v)

Tij(dij)







, (13)

wherel(u, v) is a path of adjacent links from nodeu to nodev, andL(u, v) is the set of all such paths.

Hence,T (u, v) is the message delay on the path fromu to v with the smallest delay.1

Theorem 5:Given G(Hλ, 1,W (d, t)) with λ > λc, there exists a constantγ satisfyingγ < ∞ and

γ > 0 with probability 1, such that for anyu, v ∈ C(G(Hλ, 1)), whereC(G(Hλ, 1)) denotes the infinite

component ofG(Hλ, 1),

(i) if G(Hλ, 1,W (d, t)) is in the subcritical phase, i.e.,λ < λc(η1(d)), then for anyǫ > 0, δ > 0, there

existsd0 <∞ such that for anyu, v with d(u, v) > d0,

Pr

(∣

∣

∣

∣

T (u, v)

d(u, v)
− γ

∣

∣

∣

∣

< ǫ

)

> 1 − δ; (14)

(ii) if G(Hλ, 1,W (d, t)) is in the supercritical phase, i.e.,λ > λc(η1(d)), then for anyǫ > 0, δ > 0, there

existsd0 <∞ such that for anyu, v with d(u, v) > d0,

Pr

(

T (u, v)

d(u, v)
< ǫ

)

> 1 − δ. (15)

Before proceeding, we introduce some new notation. Let

X̃i , argmin
Xj∈C(G(Hλ,1))

{||Xj − (i, 0)||}, (16)

Tl,m , T (X̃l, X̃m), for ||X̃l − X̃m|| <∞, 0 ≤ l ≤ m. (17)

The proof for Theorem 5-(i) is based on the following lemma:

Lemma 6:Let

γ , lim
m→∞

E[T0,m]

m
. (18)

Then,γ = infm≥1
E[T0,m]

m
, and limm→∞

T0,m

m
= γ with probability 1.

To show Lemma 6, we use the following Subadditive Ergodic Theorem by Liggett [20].

Theorem 7 (Liggett [20]):Let {Sl,m} be a collection of random variables indexed by integers0 ≤ l <

m. Suppose{Sl,m} has the following properties:

1Note that the path with the smallest delay may be different from the shortest path (in terms of number of links) from nodeu to nodev.
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(i) S0,m ≤ S0,l + Sl,m, 0 ≤ l ≤ m;

(ii) {S(m−1)k,mk, m ≥ 1} is a stationary process for eachk;

(iii) {Sl,l+k, k ≥ 0} = {Sl+1,l+k+1, k ≥ 0} in distribution for eachl;

(iv) E[|S0,m|] <∞ for eachm.

Then

(a) α , limm→∞
E[S0,m]

m
= infm≥1

E[S0,m]

m
; S , limm→∞

S0,m

m
exists with probability 1 andE[S] = α.

Furthermore, if

(v) the stationary process in (ii) is ergodic,

then

(b) S = α with probability 1.

To show Lemma 6, we need to verify that the sequence{Tl,m, l ≤ m} satisfies conditions (i)–(v) of

Theorem 7. It is easy to see that (i) is satisfied, sinceT0,m is the delay of the path with the smallest

delay fromX̃0 to X̃m andT0,l + Tl,m is the delay on a particular path from̃X0 to X̃l (it has the smallest

delay fromX̃0 to X̃l, and fromX̃l to X̃m). Furthermore, because all nodes are distributed according to

a homogeneous Poisson point process, the geometric structure is stationary and hence (ii) and (iii) are

guaranteed. We need only to show conditions (iv) and (v) alsohold for {Tl,m, l ≤ m}. To accomplish

this, we first show property (iv) holds for{Tl,m, l ≤ m}.

Lemma 8:Let r0 = ||X̃0 − (0, 0)||, thenr0 <∞ with probability 1.

Proof: We consider a mapping betweenG(Hλ, 1) and a square latticeL = d · Z2, whered is the edge

length. The vertices ofL are located at(d × i, d × j) where(i, j) ∈ Z2. For each horizontal edgea, let

the two end vertices be(d× ax, d× ay) and (d× ax + d, d× ay).

For edgea in L, define eventAa(d) as the set of outcomes for which the following condition holds:

the rectangleRa = [axd−
d
4
, axd+ 5d

4
] × [ayd−

d
4
, ayd+ d

4
] is crossed2 from left to right by a connected

component inG(Hλ, 1). If Aa(d) occurs, we say that rectangleRa is a good rectangle, and edgea is a

goodedge. Let

pg(d) , Pr(Aa(d)).

DefineAa(d) similarly for all vertical edges by rotating the rectangle by 90◦. An example of a good

rectangle and a good edge is illustrated in Figure 1-(a).

2Here, a rectangleR = [x1, x2]× [y1, y2] being crossed from left to right by a connected component inG(Hλ, 1) means that there exists a sequence of
nodesv1, v2, ..., vm ∈ G(Hλ, 1) contained inR, with ||xvi

− xvi+1
|| ≤ 1, i = 1, ...,m − 1, and0 < x(v1) − x1 < 1, 0 < x2 − x(vm) < 1, where

x(v1) andx(vm) are thex-coordinates of nodesv1 andvm, respectively. A rectangle being crossed from top to bottomis defined analogously.
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3d/2

a

Ra

Sa
- Sa

+

d/2

(a) Good Rectangle

3d/2

a

Ra

Sa
- Sa

+

d/2

(b) Open Rectangle

Fig. 1. Examples of good and open rectangles (edges)

Further define eventBa(d) for edgea in L as the set of outcomes for which both of the following

hold: (i) Aa(d) occurs; (ii) the left squareS−
a = [axd −

d
4
, axd + d

4
] × [ayd −

d
4
, ayd + d

4
] and the right

squareS+
a = [axd+ 3d

4
, axd+ 5d

4
]× [ayd−

d
4
, ayd+ d

4
] are both crossed from top to bottom by connected

components inG1(Hλ, 1).

If Ba(d) occurs, we say that rectangleRa is anopenrectangle, and edgea is anopenedge. Let

po(d) , Pr(Ba(d)).

Define Ba(d) similarly for all vertical edges by rotating the rectangle by 90◦. Examples of an open

rectangle and an open edge are illustrated in Figure 1-(b).

Suppose edgesb andc are vertically adjacent to edgea, then it is clear that if eventsAa(d), Ab(d) and

Ac(d) all occur, then eventBa(d) occurs. Moreover, since eventsAa(d), Ab(d) andAc(d) are increasing

events3, by the FKG inequality [3]–[5],

po(d) = Pr(Ba(d))

≥ Pr(Aa(d) ∩Ab(d) ∩ Ac(d))

≥ Pr(Aa(d)) Pr(Ab(d)) Pr(Ac(d))

= (pg(d))
3.

According to Corollary 4.1 in [4], the probabilitypg(d) converges to 1 asd→ ∞ whenG(Hλ, 1) is in

the supercritical phase. In this case,(pg(d))
3 converges to 1 asd → ∞ as well. Hence,po(d) converges

to 1 asd→ ∞ whenG(Hλ, 1) is in the supercritical phase.

Note that in our model, the events{Ba(d)} are not independent in general. However, if two edges

a and b are not adjacent, i.e., they do not share any common end vertices, thenBa(d) andBb(d) are

independent. Furthermore, when edgesa and b are adjacent,Ba(d) andBb(d) are increasing events and

thus positively correlated4. Consequently, our model is a 1-dependent bond percolationmodel. It is known

3An eventA is called increasing ifIA(G) ≤ IA(G′) whenever graphG is a subgraph ofG′, whereIA is the indicator function ofA. An eventA is
called decreasing ifAc is increasing. For details, please see [3]–[5].

4Positive correlation meansPr(Ba(d)|Bb(d)) > Pr(Ba(d)).
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a

e

d

cb

f

g

Fig. 2. A path of open edges inL implies a path of connected nodes inG(Hλ, 1)

that there existspbond
1-dep< 1 such that any 1-dependent model withp > pbond

1-dep is percolated, wherep is

the probability of an edge being open [21].

Now define

d0 , inf

{

d′ > 1 : po(d
′) > max

{

8

9
, pbond

1-dep

}}

, (19)

and choose the edge length ofL to bed > d0. Then there is an infinite cluster consisting of open edges

and their end vertices inL. Denote this infinite cluster byC(L).

¿From Figure 2, it is easy to see that all the nodes along the crossings inRa and all the nodes along the

crossings inRb for any a, b ∈ C(L) are connected. Since the infinite component ofG(Hλ, 1) is unique,

all the nodes along the crossings inRa for eacha ∈ C(L) must belong toC(G(Hλ, 1)).

By definition, no node ofG(Hλ, 1) strictly insideA(0, r0) belongs toC(G(Hλ, 1)). This implies that

no edge ofL strictly insideA(0, r0) belongs toC(L). To see this, suppose edgeai,j of L is strictly inside

A(0, r0) and belongs toC(L). The nodes along the crossings inRai,j
belong toC(G(Hλ, 1)). As shown

in Figure 3-(a), whend > 1 andr0 ≫ 1, no matter what direction the edgeai,j has, there are some nodes

along the crossings inRai,j
(therefore belonging toC(G(Hλ, 1))) which are strictly insideA(0, r0). These

nodes then have strictly smaller distance to0 than nodeX̃0. This contradiction ensures that no edge of

L strictly insideA(0, r0) belongs toC(L).

Consider thedual latticeL′ of L. The construction ofL′ is as follows: let each vertex ofL′ be located

at the center of a square ofL. Let each edge ofL′ be open if and only if it crosses an open edge ofL,

and closed otherwise. It is clear that each edge inL′ is open also with probabilitypo(d). Let

q = 1 − po(d) <
1

9
.

Choose2m edges inL′. Since the states (open or closed) of any set of non-adjacentedges are
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0

L

r0

ai,j

ai,j

X0

~

(a)

0

L
L'

r0

X0

~

(b)

Fig. 3. (a) Two possibilities forai,j in L. (b) There exists a closed circuit inL containing all edges ofL that are strictly insideA(0, r0)

independent, we can choosem edges among the2m edges such that their states are independent. As

a result,

Pr(all the 2m edges are closed) ≤ qm.

Now a key observation is that if no edge ofL strictly insideA(0, r0) belongs toC(L), for which

the event is denoted byEL, then there must exist a closed circuit inL′ (a circuit consisting of closed

edges) containing all edges ofL strictly insideA(0, r0), for which the event is denoted byEL′ , and vice

versa [3]. This is demonstrated in Figure 3-(b). Hence

Pr(EL) = 1 ⇐⇒ Pr(EL′) = 1.

Any closed circuit inL′ containing all edges ofL strictly insideA(0, r0) has length greater than or

equal to2l, wherel , 2⌊ r0

d
⌋. Thus we have

Pr(EL′) =
∞
∑

m=l

Pr(∃Oc(2m)) ≤
∞
∑

m=l

γ(2m)qm,

whereOc(2m) is a closed circuit having length2m in L′ containing all edges ofL strictly insideA(0, r0),

andγ(2m) is the number of such circuits. By Proposition 15 in AppendixB, we haveγ(2m) = 4
27

(m−
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1)32m so that
∞
∑

m=l

γ(2m)qm ≤
∞
∑

m=l

4

27
(m− 1)(9q)m

=
4

27

[

∞
∑

m=l

m(9q)m −
∞
∑

m=l

(9q)m

]

=
4[l − 1 − (l − 2)9q]

27(1 − 9q)2
(9q)l. (20)

Sinceq < 1
9
, we havePr(EL′) → 0 as l = 2⌊ r0

d
⌋ → ∞. That is, asr0 goes to infinity, with probability

1, there is some edge ofL strictly insideA(0, r0) belonging toC(L). Hence, with probability 1, there is

some node ofG(Hλ, 1) strictly insideA(0, r0) belonging toC(G(Hλ, 1)). This contradiction implies that

r0 is finite with probability 1. �

Let rm = ||X̃m − (m, 0)||, by Lemma 8 and stationarity, we haverm <∞ with probability 1, for any

m.

Lemma 9:Let L(X̃0, X̃m) be the shortest path (in terms of the number of links) fromX̃0 to X̃m, and

let |L(X̃0, X̃m)| denote the number of links on such a path. If||X̃0−X̃m|| <∞, then|L(X̃0, X̃m)| <∞,

andE[TL
0,m] <∞, whereTL

0,m denotes the delay on pathL(X̃0, X̃m).

Proof: We use the same mapping as the one for the proof of Lemma 8. For any given 4

√

8
9
< δ < 1,

define

dδ = max{inf{d′ : pg(d
′) ≥ δ}, ||X̃0 − X̃m||}. (21)

Then, for anyd > dδ, we havepg(d) ≥ δ.

Now, consider a fractal structure as shown in Figure 4: first asquareS(dδ) is constructed with edge

length dδ centered atX̃0+X̃m

2
. Then, a second squareS(3dδ) is constructed with edge length3dδ also

centered atX̃0+X̃m

2
. The construction proceeds in the same manner, i.e., at stepj, a squareS(3j−1dδ) is

constructed with edge length3j−1dδ centered atX̃0+X̃m

2
. Thus, we have the initial square and a sequence

of square annuli that do not overlap.

Denote the square annulus with inside edge length3j−1dδ (j ≥ 2) and outside edge length3jdδ by

D(3jdδ). Let A+
j be the event that the upper horizontal rectangle ofD(3jdδ)— [m

2
− 3j

2
dδ,

m
2

+ 3j

2
dδ] ×

[3
j−1

2
dδ,

3j

2
dδ] is good, i.e., it is crossed by a connected component inG(Hλ, 1) from left to right. Since

the length of the corresponding lattice edge of the upper horizontal rectangle ofD(3jdδ) is 2 ·3j−1dδ > dδ,

we have Pr{A+
j } ≥ δ. Similarly defineA−

j , B+
j andB−

j to be the events that the lower, right and left

rectangles are good, respectively. Then Pr{A−
j } ≥ δ, Pr{B+

j } ≥ δ and Pr{B−
j } ≥ δ, ∀j ≥ 1.
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3j+1d

3jd

Aj
-

Bj
+

Aj
+

Bj
-

m/2

3j-1d

Fig. 4. Square annuli

Let Ej be the event that there exists a circuit of connected nodes inG(Hλ, 1) within D(3jdδ). Once

A+
j , A

−
j , B

+
j andB−

j all occur,Ej must also occur. AlthoughA+
j , A

−
j , B

+
j andB−

j are not independent,

they are increasing events. By the FKG inequality, we have

Pr(Ej) ≥ Pr(A+
j ∩ A−

j ∩ B+
j ∩B−

j )

≥ Pr(A+
j ) Pr(A−

j ) Pr(B+
j ) Pr(B−

j )

≥ δ4. (22)

WhenEj occurs,X̃0 and X̃m are contained inS(3j−1dδ) and there is a circuit of connected nodes in

G(Hλ, 1) contained in the square annulusD(3jdδ). If the shortest path betweeñX0 andX̃m, L(X̃0, X̃m),

were to go outsideS(3jdδ), it would intersect the closed circuit contained byD(3jdδ) and we could

construct a shorter path from̃X0 to X̃m. This implies thatL(X̃0, X̃m) must be contained inS(3jdδ).

Supposeu, v and w are three consecutive nodes alongL(X̃0, X̃m). Then ||Xu − Xw|| > 1, since

otherwisev would not belong to the shortest path. Hence, if we draw circles with radius1
2
, centered at

Xu andXw, respectively, then the two circles do not overlap. Consequently, if the length ofL(X̃0, X̃m)

is |L| , |L(X̃0, X̃m)|, then we must be able to draw at least⌈ |L|
2
⌉ circles with radius1

2
centered at

alternating nodes alongL(X̃0, X̃m). All of these circles are contained in the square with edge length

3jdδ + 1. Such a square contains at most⌈(3jdδ + 1)2/[π(1
2
)2]⌉ non-overlapping circles with radius1

2
.

Therefore,|L| ≤ 2⌈4(3jdδ + 1)2/π⌉ <∞.

Now if |L| > 2⌈4(3jdδ + 1)2/π⌉, then |L| > 2⌈4(3idδ + 1)2/π⌉ for all i = 1, 2, ..., j. By the above
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argument, none of the eventsE1, E2, ...Ej can occur. Thus

Pr

(

|L| > 2

⌈

4

π
(3jdδ + 1)2

⌉)

≤

j
∏

i=1

Pr(Ec
i ) ≤ (1 − δ4)j .

Let M = 2
⌈

4
π
(3dδ + 1)2

⌉

, then we have

E[|L|] =

∞
∑

k=0

Pr(|L| > k)

=
M
∑

k=0

Pr(|L| > k) +
∞
∑

k=M+1

Pr(|L| > k)

≤ M +

∞
∑

j=1

⌈

4

π
(3j+1dδ + 1)2

⌉

Pr

(

|L| >

⌈

4

π
(3jdδ + 1)2

⌉)

≤ M +

∞
∑

j=1

(

4

π
(3j+1dδ + 1)2 + 1

)

(1 − δ4)j

= M +

∞
∑

j=1

(

4

π
(9 · 9jd2

δ + 6 · 3jdδ + 1) + 1

)

(1 − δ4)j

= M +
36d2

δ

π

∞
∑

j=1

9j(1 − δ4)j +
24dδ

π

∞
∑

j=1

3j(1 − δ4)j +

(

4

π
+ 1

) ∞
∑

j=1

(1 − δ4)j. (23)

Whenδ > 4

√

8
9
, we have(1 − δ4)j < 9−j . Thus,E[|L|] <∞.

Let ΛW (d,t) , sup0<d≤1{η0(d)E[Yk(d)]} <∞, then

E[TL
0,m||L|] =

|L|
∑

i=1

η
(i)
0 (d)E[Y

(i)
k (d)] ≤ |L|ΛW (d,t), (24)

whereη(i)
0 (d) andE[Y

(i)
k (d)] are the stationary probability of the inactive state, and the expected inactive

period of thei-th link with lengthd on L(X̃0, X̃m), respectively. Hence

E[TL
0,m] = E[E[TL

0,m||L|]] ≤ E[|L|]ΛW (d,t) <∞. (25)

�

To show property (v), we show{T(m−1)j,mj , m ≥ 1} is strong mixing.5

Lemma 10:The sequence{T(m−1)k,mk, m ≥ 1} is strong mixing, so that it is ergodic.

Proof: From the proof of Lemma 8, we havePr(Ej) ≥ δ4 for all j = 1, 2, .... Summing overj yields
∞
∑

j=1

Pr(Ej) ≥
∞
∑

j=1

δ4 = ∞. (26)

5A measure preserving transformationH on (Ω,F , P ) is called strong mixing if for all measurable setsA and B, limm→∞ |P (A ∩ H−mB) −
P (A)P (B)| = 0. A sequence{Xn, n ≥ 0} is called strong mixing if the shift on sequence space is strong (weak) mixing. Every strong mixing system is
ergodic [22].
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kj

(m-1)j mj (m+k-1)j (m+k)j

Fig. 5. Ask → ∞, the paths insideA1 andA2 do not share any common nodes. HenceT(m−1)j,mj andT(m+k−1)j,(m+k)j are independent
of each other ask → ∞.

SinceEj are independent events, by the Borel-Cantelli Lemma, with probability 1, there existsj′ < ∞

such thatEj′ occurs.

We now construct squaresA1 andA2 centered at
X̃(m−1)j+X̃mj

2
and

X̃(m+k−1)j+X̃(m+k)j

2
with edge length

3j′dδ and 3j′′dδ respectively, such that the path with the smallest delay from X̃(m−1)j to X̃mj , and the

path with the smallest delay from̃X(m+k−1)j to X̃(m+k)j are contained inA1 andA2, respectively. LetE

be the event thatj′ <∞ and j′′ <∞. ThenPr(E) = 1.

When finite j′ and j′′ exist, due to stationarity,j′ and j′′ are independent ofk. Hence, ask → ∞,

A1 andA2 become non-overlapping so that the paths insideA1 andA2 do not share any common nodes

of G(Hλ, 1). HenceT(m−1)j,mj and T(m+k−1)j,(m+k)j are independent of each other ask → ∞. This is

illustrated in Figure 5.

Therefore

lim
k→∞

Pr({T(m−1)j,mj < t} ∩ {T(m+k−1)j,(m+k)j < t′})

= lim
k→∞

Pr({T(m−1)j,mj < t} ∩ {T(m+k−1)j,(m+k)j < t′}|E) Pr(E)

+ lim
k→∞

Pr({T(m−1)j,mj < t} ∩ {T(m+k−1)j,(m+k)j < t′}|Ec) Pr(Ec)

= Pr(T(m−1)j,mj < t|E) Pr(T(m−1)j,mj < t′|E)

= Pr(T(m−1)j,mj < t) Pr(T(m−1)j,mj < t′), (27)

This implies that sequence{T(m−1)k,mk, m ≥ 1} is strong mixing, so that it is ergodic. �

Now, we present the proof for Lemma 6.

Proof of Lemma 6:Conditions (i)–(iii) of Theorem 7 have been verified. The validation of (iv) is

provided by Lemma 9. LetL(X̃0, X̃m) be the shortest path from̃X0 to X̃m. SinceL(X̃0, X̃m) is a

particular path, we haveT0,m ≤ TL
0,m so thatE[T0,m] ≤ E[TL

0,m], whereTL
0,m denotes the delay on path
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0

X0

~
r0

m

~
Xm

rm

K K K

X

X

j(1)
1

j(1)
2

Xj(2)
1

Fig. 6. Path segments of the paths from̃X0 to X̃m.

L(X̃0, X̃m). By Lemma 9, we haveE[TL
0,m] <∞ and thereforeE[T0,m] <∞. Furthermore, due to Lemma

10, {T(m−1)k,mk, m ≥ 1} is ergodic, thus the results (a) and (b) of Theorem 7 hold. �

Remark:Using the proof for condition (iv) of Theorem 7, we can show that for any two nodesu and

v in the infinite component ofG(Hλ, 1) which are within finite Euclidean distance of each other, i.e.,

u, v ∈ C(G(Hλ, 1)) with d(u, v) <∞, E[T (u, v)] <∞.

The following lemma asserts that the constantγ defined in (18) assumes different values according to

whetherG(Hλ, 1,W (d, t)) is in the subcritical phrase or the supercritical phase.

Lemma 11:Let γ be defined as (18). (i) IfG(Hλ, 1,W (d, t)) is in the subcritical phase, i.e.,λ <

λc(η1(d)), then γ < ∞, and γ > 0 with probability 1. (ii) If G(Hλ, 1,W (d, t)) is in the supercritical

phase, i.e.,λ > λc(η1(d)), thenγ = 0 with probability 1.

Proof: To show (i), note thatγ <∞ follows directly from

γ = inf
m≥1

E[T0,m]

m
≤ E[T0,1] <∞, (28)

where the last inequality is shown above in the proof for Lemma 6.

To see whyγ is positive with probability 1, suppose the node atX̃0 disseminates a message at time

t = t0 and considerG(Hλ, 1,W (d, t0)). ChooseK large enough such thatc1e−c2K < 1
2
, wherec1 and c2

are the constants given in Proposition 3. Letq = ⌊ m
2(K+1)

⌋. Whenm > 2(K + 1), q ≥ 1.

Let Sh = {(x, y) ∈ R2 : K + (h − 1)(K + 1) ≤ x − x(X̃0) < h(K + 1)} for h = 1, 2, ..., wherex(v)

is thex-coordinate of nodev. SinceX̃0 and X̃m are both inC(G(Hλ, 1)), there exists at least one path

from X̃0 to X̃m. Moreover, since each stripSh has width 1, at least one node ofC(G(Hλ, 1)) lies inside

eachSh.

Let {X(1)
l , l = 1, 2, ...} be the nodes ofC(G(Hλ, 1)) which lie insideS1. SinceG(Hλ, 1,W (d, t0))

is in the subcritical phase, by Proposition 3, the probability that there exists a path consisting of only
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active links fromX̃0 to anyX
(1)
l , l = 1, 2, ..., is less than or equal toc1e−c2K < 1

2
. In other words, with

probability strictly greater than1
2
, there exists at least one inactive link at timet = t0 on any path from

X̃0 to X
(1)
l , l = 1, 2, .... Let T (1) = inf l{T (X̃0,X

(1)
l )}. Let ΓW (d,t) , inf0<d≤1 {η0(d)E[Yk(d)]} > 0, then

E[T (1)] > 1
2
ΓW (d,t) > 0.

Let {X(h+1)
l′ , l′ = 1, 2, ...} be the nodes ofC(G(Hλ, 1)) which lie insideSh+1, for h ≥ 1. By the same

argument as above, the probability that there exists a path consisting of only active links from any node

in Sh to any node inSh+1 is less than or equal toc1e−c2K < 1
2
. In other words, with probability strictly

greater than1
2
, there exists at least one inactive link on any path from any node inSh to any node inSh+1.

Let T (h+1) = inf l,l′{T (X
(h)
l ,X

(h+1)
l′ )}. ThenE[T (h+1)] > 1

2
ΓW (d,t) > 0. The path segments are illustrated

in Figure 6.

Since||X̃0−X̃m|| ≥ m−r0−rm, whenm
2
> r0+rm, any path fromX̃0 to X̃m has at least⌊ m

2(K+1)
⌋ = q

segments and the delay on each segment is strictly greater than 1
2
ΓW (d,t) > 0. Hence,E[T0,m] > 1

2
qΓW (d,t)

when m
2
> r0 +rm. Since bothr0 andrm are finite with probability 1,m

2
> r0 +rm holds with probability

1 asm→ ∞.

SinceK is finite andΓW (d,t) is positive and independent ofm, we have

γ = lim
m→∞

E[T0,m]

m

> lim
m→∞

q

m

1

2
ΓW (d,t)

> lim
m→∞

(

1

2(K + 1)
−

1

m

)

1

2
ΓW (d,t)

> 0 (29)

with probability 1, where we used the fact thatq > m
2(K+1)

− 1.

For (ii), supposeG(Hλ, 1,W (d, t)) is in the supercritical phase. To simplify notation, letC(t) be the

infinite component ofG(Hλ, 1,W (d, t)). Let t′ be the first time when some node inC(t′) receivesX̃0’s

message, and let

w1 , argmin
i∈C(t′)

d(Xi, X̃0), and w2 , argmin
i∈C(t′)

d(Xi, X̃m).

That is, w1 and w2 are the nodes in the infinite component ofG(Hλ, 1,W (d, t′)) with the smallest

Euclidean distances to nodes̃X0 andX̃m, respectively. If nodẽX0 is in C(t0), thent′ = t0 andw1 = X̃0.

If at time t′, nodev is in C(t′), thenw2 = X̃m.

Since bothw1 andw2 belong toC(t′), T (w1, w2) = 0. The distancesd(X̃0,Xw1) andd(Xw2, X̃m) are

finite with probability 1 by Lemma 16 in Appendix C. Clearly,d(X̃0,Xw1) is independent ofm. By

stationarity,d(Xw2, X̃m) is also independent ofm. Hence, by the proof of Lemma 6,E[T (X̃0,Xw1)] <
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∞, E[T (Xw2, X̃m)] < ∞ with probability 1 for anym, andE[T (X̃0,Xw1)] and E[T (Xw2, X̃m)] are

independent ofm. Moreover,

0 ≤
T0,m

m
≤

T (X̃0,Xw1) + T (w1, w2) + T (Xw2, X̃m)

m

=
T (X̃0,Xw1) + T (Xw2, X̃m)

m
. (30)

Henceγ = limm→∞
E[T0,m]

m
= 0 with probability 1. �

We are now ready to prove Theorem 5.

Proof of Theorem 5:Assume nodeu disseminates a message at timet = t0. TakeXu as the origin,

and the lineXuXv as thex-axis. By definitionu, v ∈ C(G(Hλ, 1)). Since nodeu is the origin,Xu = X̃0.

Let m be the closest integer tox(v)—the x-axis coordinate of nodeXv. Now T0,m = T (Xu, X̃m). If

Xv = X̃m, T (u, v) = T0,m.

Note thatm− 1 < d(u, v) < m+ 1, Thus, for anym > 1, we have

T0,m

m+ 1
<
T (u, v)

d(u, v)
<

T0,m

m− 1
. (31)

On the other hand, ifXv 6= X̃m, thenX̃m must be adjacent toXv. This is because||(m, 0)−Xv|| ≤
1
2

(m

is the closest integer tox(v)) and ||(m, 0)− X̃m|| ≤
1
2

(X̃m is the closest node to(m, 0)). Consequently,

T0,m − T (X̃m,Xv) ≤ T (u, v) ≤ T0,m + T (X̃m,Xv). Thus, for anym > 1, we have

T0,m − T (X̃m,Xv)

m+ 1
<
T (u, v)

d(u, v)
<
T0,m + T (X̃m,Xv)

m− 1
. (32)

SinceX̃m is adjacent toXv, T (X̃m,Xv) <∞ with probability 1. Therefore, in both cases, by Lemma 6

and a typicalǫ-δ argument (see Appendix D), we have for anyǫ > 0, δ > 0, there existsd0 < ∞, such

that if d(u, v) > d0, then

Pr

(∣

∣

∣

∣

T (u, v)

d(u, v)
− γ

∣

∣

∣

∣

< ǫ

)

> 1 − δ. (33)

WhenG(Hλ, 1) is in the subcritical phase, by Lemma 11, we have0 < γ <∞ with probability 1.

On the other hand, whenG(Hλ, 1) is in the supercritical phase, by Lemma 11, we haveγ = 0 with

probability 1. Then, by a typicalǫ-δ argument (see Appendix E), we have for anyǫ > 0, δ > 0, there

existsd0 <∞, such that ifd(u, v) > d0 then

Pr

(

T (u, v)

d(u, v)
< ǫ

)

> 1 − δ.

�
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C. Effects of Propagation Delay

Up to this point, we have ignored propagation delays. We now take this type of delay into account.

Suppose the propagation delay is0 < τ < ∞ for any link, independent of the link length. We assume

the following mechanism is used for a transmission from nodei to nodej: (i) a packet is successfully

received by nodej if the length of the active period on link(i, j), during which the packet is being

transmitted, is greater than or equal toτ ; (ii) node i retransmits a packet to nodej until the packet is

successfully received byj.

Note that due to the Markovian nature of the link state processes{Wij(dij, t)}, at the instant when a

packet arrives at nodei, the residual active time for link(i, j) has the same distribution asZ(dij). Thus

without loss of generality, we assume that nodei initiates transmission on link(i, j) at time 0. If link

(i, j) is on at time 0 withZ1(d) ≥ τ , then the transmission delayT τ
ij(d) on (i, j) is τ . However, if link

(i, j) is on at time 0 withZ1(d) < τ , or if (i, j) is off at time t = 0, then the delay on(i, j) is less

straightforward to calculate. In this case, we need to capture the behavior of retransmissions. Let

K(d) = argmin
k≥1

{Zk(d) ≥ τ}. (34)

Then,K(d) is a stopping time for the sequence{Zk(d), k ≥ 1}. Now we have






















T τ
ij =

K−1
∑

i=1

(Yi + Zi) + YK + τ, W (d, 0) = 0,

T τ
ij =

K−1
∑

i=1

(Yi + Zi) + τ, W (d, 0) = 1,

(35)

where we abbreviateT τ
ij(d), K(d), Yi(d) andZi(d) asT τ

ij , K, Yi andZi, respectively.

Let

T τ(u, v) = T τ(Xu,Xv) , inf
l(u,v)∈L(u,v)







∑

(i,j)∈l(u,v)

T τ
ij(dij)







, (36)

whereT τ
ij(dij) is given by (35). Then,T τ (u, v) is the message delay on the path fromu to v with the

smallest delay, including propagation delays.

Corollary 12: GivenG(Hλ, 1,W (d, t)) with λ > λc and propagation delay0 < τ <∞, there exists a

constantγ(τ) < ∞ with γ(τ) ≥ τ (with probability 1), such that for anyu, v ∈ C(G(Hλ, 1)), and any

ǫ > 0, δ > 0, there existsd0 <∞ such that for anyu, v with d(u, v) > d0,

Pr

(∣

∣

∣

∣

T τ(u, v)

d(u, v)
− γ(τ)

∣

∣

∣

∣

< ǫ

)

> 1 − δ. (37)
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Moreover, whenG(Hλ, 1,W (d, t)) is in the subcritical phase, asτ → 0, γ(τ) → γ with probability

1, whereγ is defined in Theorem 5. WhenG(Hλ, 1,W (d, t)) is in the supercritical phase, asτ → 0,

γ(τ) → 0 with probability 1.

To prove this corollary, we need the following two lemmas.

Lemma 13:Given any0 < τ <∞, for all 0 < d ≤ 1, the expected delay on each link(i, j) is positive

and finite, i.e.,

0 < E[T τ
ij ] <∞. (38)

Proof: By (35), we have

E[T τ
ij ] = E[E[T τ

ij |W (d, 0)]]

= η0E[T τ
ij |W (d, 0) = 0] + η1E[T τ

ij |W (d, 0) = 1]

= η0E

[

K−1
∑

i=1

(Yi + Zi) + YK + τ |Zi < τ, i = 1, ..., K − 1

]

+η1E

[

K−1
∑

i=1

(Yi + Zi) + τ |Zi < τ, i = 1, ..., K − 1

]

= τ + η0E[YK ] + E

[

K−1
∑

i=1

(Yi + Zi)|Zi < τ, i = 1, ..., K − 1

]

< E[K]τ + η0E[YK ] + (E[K] − 1)E[Yi], (39)

where in the last equality, we used the fact thatYi andZi are i.i.d. andZi < τ for i = 1, 2, ...K − 1, as

well as Wald’s Equality for stopping timeK.

Since0 < τ < ∞, 0 < η0 < 1, and0 < E[Yi] < ∞, in order to show0 < E[T τ
ij ] < ∞, it suffices to

show1 ≤ E[K] <∞. By definition,K ≥ 1 so thatE[K] ≥ 1. Thus, we need only to showE[K] <∞.

For any k ≥ 1, Pr(K = k) = Pr(Z1 < τ, ..., Zk−1 < τ, Zk ≥ τ) = FZ(τ)k−1(1 − FZ(τ)), where

FZ(·) = Pr(Zi ≤ τ). Then

E[K] =
∞
∑

k=1

kFZ(τ)k−1(1 − FZ(τ)) =
1

1 − FZ(τ)
. (40)

Therefore, we haveE[K] <∞. �

Lemma 14:GivenG(Hλ, 1,W (d, t)) with λ > λc and no propagation delay, letL0,m be the path from

X̃0 to X̃m that attainsT0,m and has the smallest number of links (in case there exist multiple paths

attainingT0,m). Then |L0,m| < ∞ with probability 1 for eachm, where |L0,m| is the number of links

alongL0,m.
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Proof: By the proof of Lemma 9, we haveE[T0,m] <∞. We can expressE[T0,m] as

E[T0,m] = E[E[T0,m||L0,m|]],

where

E[T0,m||L0,m|] =

|L0,m|
∑

i=1

η
(i)
0 (d)E[Y

(i)
k (d)] ≥ |L0,m|ΓW (d,t),

whereη(i)
0 (d) andE[Y

(i)
k (d)] are the stationary probability of the inactive state, and the expected inactive

period of thei-th link with length d on L0,m respectively, andΓW (d,t) = inf0<d≤1{η0(d)E[Yk(d)]} > 0.

Thus, we have

E[|L0,m|]ΓW (d,t) <∞.

This impliesE[|L0,m|] <∞, which further implies|L0,m| <∞ with probability 1. �

Proof of Corollary 12:Let T τ
l,m = T τ (X̃l, X̃m), for ||X̃l − X̃m|| <∞, 0 ≤ l ≤ m, whereX̃i is defined

as in (16).

Clearly, the relationshipT τ
0,m ≤ T τ

0,l + T τ
l,m still holds for any0 ≤ l ≤ m. Hence, condition (i) of

Theorem 7 holds. Since the propagation delay does not affectthe stationarity of the geometric structure

of the network, conditions (ii) and (iii) of Theorem 7 also hold.

By the same argument as that in the proof of Lemma 9, we haveE[|L|] <∞, where|L| , |L(X̃0, X̃m)|

andL(X̃0, X̃m) is the shortest path from̃X0 to X̃m. Let T τ,L
0,m be the delay on this path. Then,

E[T τ,L
0,m||L|] =

|L|
∑

i=1

E[T τ
i (di)] ≤ |L|ΛW τ(d,t),

whereT τ
i (di) is the delay on thei-th link with lengthdi on the pathL(X̃0, X̃m), as given by (35), and

ΛW τ (d,t) , sup0<d≤1 E[T τ
i (di)] <∞. By Lemma 13, we have0 < E[T τ

i (di)] <∞ for all 0 < di ≤ 1, so

that ΛW τ (d,t) <∞. Hence

E[T τ,L
0,m] = E[E[T τ,L

0,m||L|]] ≤ E[|L|]ΛW τ (d,t) <∞,

which impliesE[T τ
0,m] <∞. This ensures that condition (iv) of Theorem 7 holds.

Furthermore, the propagation delay does not affect the strong mixing property of{T τ
l,m, 0 ≤ l ≤ m}.

Therefore the result of Lemma 6 holds for{T τ
l,m, 0 ≤ l ≤ m}. Let γ(τ) , limm→∞

E[T τ
0,m]

m
, thenγ(τ) =

infm≥1
E[T τ

0,m]

m
, and

lim
m→∞

T τ
0,m

m
= γ(τ) with probability 1. (41)
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Then applying the same proof for Theorem 5, we can show that for any ǫ > 0, δ > 0, there exists

d0 <∞, such that ifd(u, v) > d0, then

Pr

(∣

∣

∣

∣

T τ(u, v)

d(u, v)
− γ(τ)

∣

∣

∣

∣

< ǫ

)

> 1 − δ.

To see whyγ(τ) <∞ andγ(τ) ≥ τ with probability 1, first note that

γ(τ) = inf
m≥1

E[T τ
0,m]

m
≤ E[T τ

0,1] <∞. (42)

Moreover, since the shortest path between nodesX̃0 andX̃m has at least⌊||X̃0− X̃m||⌋ ≥ ⌊m− r0 − rm⌋

links, T τ
0,m ≥ τ⌊m− r0 − rm⌋. Sincer0 andrm are both finite with probability 1 and independent ofm,

we haveγ(τ) ≥ τ with probability 1.

In the following, we show that asτ → 0, γ(τ) → γ with probability 1 whenG(Hλ, 1) is in the

subcritical phase, andγ(τ) → 0 with probability 1 whenG(Hλ, 1) is in the supercritical phase. Observe

that

T0,m ≤ T τ
0,m ≤

|L0,m|
∑

i=1

T τ
i (di),

whereL0,m is defined in Lemma 14, andT τ
i (di) is the delay on thei-th link with lengthdi alongL0,m,

as given by (35). From Lemma 14, we have|L0,m| <∞ with probability 1. Thus with probability 1,

E[T0,m] ≤ E[T τ
0,m] ≤

|L0,m|
∑

i=1

E[T τ
i (di)].

By (39) andE[T0,m] =
∑|L0,m|

i=1 η0(di)E[Yk(di)] we have

E[T0,m] ≤ E[T τ
0,m] ≤ E[T0,m] + |L0,m|E[K]τ +

|L0,m|
∑

i=1

(E[K] − 1)E[Yk(di)], (43)

with probability 1. From (40), we know that asτ → 0, E[K] → 1. Therefore, asτ → 0, we have

|L0,m|E[K]τ +
∑|L0,m|

i=1 (E[K] − 1)E[Yk(di)] → 0 with probability 1. This, combined with (43) implies

limτ→0E[T τ
0,m] = E[T0,m] with probability 1. Therefore,

lim
τ→0

γ(τ) = lim
τ→0

lim
m→∞

E[T τ
0,m]

m

= lim
m→∞

lim
τ→0

E[T τ
0,m]

m

= lim
m→∞

E[T0,m]

m

= γ, (44)

with probability 1, where the interchanging of limitation operations is justified byE[T τ
0,m] <∞. Conse-

quently, asτ → 0, γ(τ) → γ with probability 1 whenG(Hλ, 1) is in the subcritical phase. Sinceγ → 0
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Fig. 7. Delay performance of information dissemination in wireless networks with dynamic unreliable links (λ = 1.75): (a) E[T1(d)] = 0.5
andE[T0(d)] = 2 for any 0 < d ≤ 1; (b) E[T1(d)] = 2.5 andE[T0(d)] = 0.5 for any 0 < d ≤ 1.

with probability 1 if G(Hλ, 1) is in the supercritical phase, we haveγ(τ) → 0 with probability 1 in this

case. �

An interesting observation of this corollary is when the propagation delay is large, the message delay

cannot be improved too much by transforming the network fromthe subcritical phase to the supercritical

phase. However, as the propagation delay becomes negligible, the message delay scales almost sub-linearly

(γ(τ) ≈ 0) when the network is in the supercritical phase, while the delay scales linearly (γ(τ) ≈ γ)

when the network is in the subcritical phase.

V. NUMERICAL EXPERIMENTS

In this section, we present some simulation results. Figure7-9 show simulation results of the information

dissemination delay performance in large-scale wireless networks with dynamic unreliable links.

In Figure 7, the lengths of the active and inactive periods have exponential distributions independent

of d—the length of the link. In Figure 8, the lengths of the activeand inactive periods have exponential

distributions depending ond. In all of these scenarios, it can be seen that when the resulting dynamic

network is in the subcritical phase,T (u,v)
d(u,v)

converges to a non-zero value asd(u, v) → ∞. The limit

depends on the density ofG(Hλ, 1) and the distributions and expected values of the active and inactive

periods. When the resulting dynamic network is in the supercritical phase,T (u,v)
d(u,v)

converges to zero as

d(u, v) → ∞.

To see how propagation delays affect the message delay, and to verify the results of Corollary 12, we

illustrate simulation results in Figure 9, whereT1(d) andT0(d) have exponential distributions independent

of d.
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Fig. 8. Delay performance of information dissemination in wireless networks with dynamic unreliable links (λ = 1.875): (a) E[T1(d)] = 0.5
andE[T0(d)] = 1.5d + 1 for any 0 < d ≤ 1; (b) E[T1(d)] = 2 andE[T0(d)] = 0.5d + 0.5 for any 0 < d ≤ 1.
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Fig. 9. Delay performance of information dissemination in wireless networks with dynamic unreliable links (λ = 1.875) and propagation
delayτ = 1: (a) E[T1(d)] = 1 andE[T0(d)] = 8 for any 0 < d ≤ 1; (b) E[T1(d)] = 1 andE[T0(d)] = 2 for any 0 < d ≤ 1.

VI. CONCLUSIONS

In this paper, we studied percolation-based connectivity and information dissemination latency in large-

scale wireless networks with unreliable links. We first studied static models, where each link of the network

is functional (or active) with some probability, independently of all other links. We then studied wireless

networks with dynamic unreliable links, where each link is active or inactive according to Markov on-off

processes. We showed that a phase transition exists in such dynamic networks, and the critical density

for this model is the same as the corresponding one for staticnetworks (under some mild conditions). We

further investigated the delay performance in such networks by modelling the problem as a first passage

percolation process on random geometric graphs. We showed that without propagation delay, the delay of

information dissemination scales linearly with the Euclidean distance between the sender and the receiver

when the resulting network is in the subcritical phase, and the delay scales sub-linearly with the distance
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if the resulting network is in the supercritical phase. We further showed that when propagation delay

is taken into account, the delay of information dissemination always scales linearly with the Euclidean

distance between the sender and the receiver.

APPENDIX A

Proof of Proposition 3:Let B be a bounded box containing the origin, and letW (B) be the union of

components that have some node(s) ofG(Hλ, 1, pe(·)) inside boxB. Precisely,W (B) = {componentW ′ ∈

G(Hλ, 1, pe(·)) : ∃w ∈W ′,xw ∈ B}.

Consider the following two events:

E , {d(W (B)) ≥ h}, and F , {all nodes ofG(Hλ, 1, pe(·)) insideB belong toW0}.

Clearly, eventsE and F are both increasing events. By the FKG inequality, we havePr(E ∩ F ) ≥

Pr(E) Pr(F ). Thus,

Pr(d(W0) ≥ h) ≥ Pr(E ∩ F )

≥ Pr(E) Pr(F )

= Pr(F ) Pr(d(W (B)) ≥ h), (45)

wherePr(F ) > 0 sinceB is bounded. By (45), we have

E[d(W (B)] ≤
E[d(W0)]

Pr(F )
.

Therefore, whenλ < λc(pe(·)), we haveE[d(W0)] <∞ and thusE[d(W (B)] <∞.

To prove the Proposition, it is sufficient to showPr(B ! B(h)c) ≤ c1e
−c2h, where{B ! B(h)c}

denotes the event that some node(s) insideB and some nodes inB(h)c are connected.

We partition the space as the union ofB(i, j) ,
(

i− 1
2
, i+ 1

2

]

×
(

j − 1
2
, j + 1

2

]

, where(i, j) ∈ Z2. Since

E[d(W (B(0, 0))] <∞, d(W (B(0, 0)) <∞ with probability 1. Then we can chooseM sufficiently large

so thatE[HM ] < 1
6
, whereHM is the number of boxesB(i, j) outsideB(M) = [−M,M ]2 intersecting

W (B(0, 0)).

Now chooseL large enough so that the set
⋃

m(i,j)≥L−1B(i, j) is disjoint fromB(M), wherem(i, j) =

max{|i|, |j|}. Chooseh sufficient large so that
⋃

m(i,j)≤LB(i, j) ⊂ B(h). Observe that if{B(0, 0) !

B(h)c} occurs, then there exists(i, j) with m(i, j) = L for which {B(0, 0) ! D(i, j)} and{B(i, j) !

B(h)c} occur disjointly,6, whereD(i, j) ,
⋃

m(i′j,′)=L−1,m(i−i′,j−j′)=1B(i′, j′). This is illustrated in Fig-

6Let U be a bounded Borel set inR2. For any realizationG ∈ G(Hλ, 1, pe(·)), let Gu = (Vu, Eu), whereVu = {v : v ∈ G ∩ U}
and Eu = {(u, v) : u, v ∈ Vu}. Define [Gu] = {G′ ∈ G(Hλ, 1, pe(·)) : ∃G′′ ⊂ G′ s.t. G′′

u = Gu}. We say that an increasing eventA

is an event onU if IA(G) = 1 and G′ ∈ [Gu] imply that IA(G′) = 1. A rational rectangle is an open 2-dimensional box with rational
coordinates. LetA andB be two increasing events onU , andW1 andW2 be two disjoint sets that are finite unions of rational rectangles.
For G ∈ G(Hλ, 1, pe(·)), if IA(G′

W1
) = 1 whereG′

W1
∈ [GW1

], and IB(G′

W2
) = 1 whereG′

W2
∈ [GW2

], then we say thatA and B

occur disjointly. We useA�B to denote the event thatA andB occur disjointly. For details, please refer to [3], [4].
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Fig. 10. B(h), B(M), L, B(i, j) andD(i, j).

ure 10.

Let {B(0, 0) ! D(i, j)�B(i, j) ! B(h)c} denote the event that{B(0, 0) ! D(i, j)} and{B(i, j) !

B(h)c} occur disjointly. It then follows from the BK inequality [3], [4] that

Pr(B(0, 0) ! B(h)c) ≤
∑

(i,j):m(i,j)=L

Pr(B(0, 0) ! D(i, j)�B(i, j) ! B(h)c)

≤ max
(i,j):m(i,j)=L

Pr(B(i, j) ! B(h)c)
∑

(i,j):m(i,j)=L

Pr(B(0, 0) ! D(i, j))

= max
(i,j):m(i,j)=L

Pr(B(i, j) ! B(h)c)
∑

(i,j):m(i,j)=L

E[I{B(0,0)!D(i,j)}]

= max
(i,j):m(i,j)=L

Pr(B(i, j) ! B(h)c)E





∑

(i,j):m(i,j)=L

I{B(0,0)!D(i,j)}





≤ max
(i,j):m(i,j)=L

Pr(B(i, j) ! B(h)c)3E[HM ], (46)

where the last inequality follows from the fact the each boxB(i′, j′) can be contained in at most 3

D(i, j)’s.

It follows that

Pr(B(0, 0) ! B(h)c) ≤
1

2
max

(i,j):m(i,j)=L
Pr(B(i, j) ! B(h)c). (47)

To bound the right hand side of (47), choose a sufficiently largeh such that
⋃

m(i′−i,j′−j)=L,m(i,j)=LB(i′, j′) ⊂

B(h). The same argument as above shows that for all(i, j) with m(i, j) = L,

Pr(B(i, j) ! B(h)c) ≤
1

2
max

(i′,j′):m(i′−i,j′−j)=L
Pr(B(i′, j′) ! B(h)c). (48)
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O

L'

y=0

x=0

Fig. 11. An example of a circuit surrounding the origin in lattice L′

Repeating this argument leads to the desired conclusion. �

APPENDIX B

The following lemma is similar to the one used in [3], [9], [11]. For completeness, we provide the

proof here.

Lemma 15:Given a square latticeL′, suppose that the origin is located at the center of one square.

Let the number of circuits7 surrounding the origin with length2m be γ(2m), wherem ≥ 2 is an integer,

then we have

γ(2m) ≤
4

27
(m− 1)32m. (49)

Proof: In Figure 11, an example of a circuit that surrounds the origin is illustrated. First note that the

length of such a circuit must be even. This is because there isa one-to-one correspondence between each

pair of edges above and below the liney = 0, and similarly for each pair of edges at the left and right of the

line x = 0. Furthermore, the rightmost edge can be chosen only from thelinesli : x = i− 1
2
, i = 1, ..., m−1.

Hence the number of possibilities for this edge is at mostm−1. Because this edge is the rightmost edge,

each of the two edges adjacent to it has two choices for its direction. For all the other edges, each one

has at most three choices for its direction. Therefore the number of total choices for all the other edges

is at most32m−3. Consequently, the number of circuits that surround the origin and have length2m must

be less or equal to(m− 1)2232m−3, and hence we have (49). �

7A circuit in a latticeL′ is a closed path with no repeated vertices inL′.
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APPENDIX C

Lemma 16:SupposeG(Hλ, 1, pe(·)) is in the supercritical phase, i.e,λ > λc(pe(·)). Letv /∈ C(G(Hλ, 1, pe(·)))

and define

w , argmin
i∈C(G(Hλ,1,pe(·)))

d(i, v),

i.e., w is the node in the infinite component ofG(Hλ, 1, pe(·)) with the smallest Euclidean distances to

nodev. Then,d(w, v) <∞ with probability 1.

The idea behind the proof for this lemma is similar to that forthe proof for Lemma 8. The difference

is that the probability of a good event is now defined with respect toG(Hλ, 1, pe(·)) instead ofG(Hλ, 1).

GivenG(Hλ, 1, pe(·)) with λ > λc(pe(·)), as in the proof for Lemma 8, we consider a mapping between

G(Hλ, 1, pe(·)) and a square latticeL = d ·Z2, whered is the edge length. The vertices ofL are located

at (d× i, d× j) where(i, j) ∈ Z2. For each horizontal edgea, let the two end vertices be(d× ax, d× ay)

and (d× ax + d, d× ay).

As in the proof for Lemma 8, define eventAa(d, pe(·)) for edgea in L as the set of outcomes for which

the following condition holds: The rectangleRa = [axd−
d
4
, axd+

5d
4
]×[ayd−

d
4
, ayd+

d
4
] is crossed fromleft

to right by a connected component inG(Hλ, 1, pe(·)). Define eventA′
a(d, pe(·)) for edgea in L as the set of

outcomes for which the following condition holds: The rectangleRa = [axd−
d
4
, axd+

5d
4
]×[ayd−

d
4
, ayd+

d
4
]

is crossed fromtop to bottomby a connected component inG(Hλ, 1, pe(·)).

Let

pg(d, pe(·)) , Pr(Aa(d, pe(·))), and p′g(d, pe(·)) , Pr(A′
a(d, pe(·))). (50)

DefineAa(d, pe(·)) andA′
a(d, pe(·)) similarly for all vertical edges by rotating the rectangle by 90◦.

Define avacant componentV in R2 with respect to (w.r.t.)G(Hλ, 1, pe(·)) to be a regionV ⊂ R2 such

thatV ∩G(Hλ, 1, pe(·)) = ∅ (i.e., no node or any part of a link ofG(Hλ, 1, pe(·)) is contained inV ), and

such that there exists no other regionU ⊂ R2 satisfyingV ⊂ U andU ∩G(Hλ, 1, pe(·)) = ∅.

Definition 3: ForG(Hλ, 1, pe(·)), let V0 be the vacant component inR2 w.r.t.G(Hλ, 1, pe(·)) containing

0. Let

λ∗c(pe(·)) , sup{λ : Pr(d(V0) = ∞) > 0}. (51)

Similarly we can define the vacant componentV ′
0

containing the origin inR2 w.r.t. G(Hλ, 1), and

λ∗c , sup{λ : Pr(d(V ′
0
) = ∞) > 0}. It is known thatλ∗c = λc (Chapter 4 in [4]). SinceG(Hλ, 1, pe(·)) is

a subgraph ofG(Hλ, 1), it is clear thatλ∗c(pe(·)) ≥ λ∗c .
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Proposition 17: Let ψ∗(pe(·)) , Pr(∃ vacant componentV ⊂ R2 w.r.t. G(Hλ, 1, pe(·)) : d(V ) = ∞).

Then

ψ∗(pe(·)) =

{

1, λ < λ∗c(pe(·)),
0, λ > λ∗c(pe(·)).

(52)

Proof: First assumeλ < λ∗c(pe(·)). The graphG(Hλ, 1, pe(·)) is obtained by placing a link between

two nodesi and j with probability pe(·) when ||xi − xj|| ≤ 1. The event{∃ vacant componentV ⊂

R2 w.r.t. G(Hλ, 1, pe(·)) : d(V ) = ∞} does not depend on the existence of any finite collection of

those links. By Kolmogorov’s zero-one law [3], [22],ψ∗(pe(·)) assumes the values 0 and 1 only. Since

Pr(d(V0) = ∞) > 0, then

ψ∗(pe(·)) ≥ Pr(d(V0) = ∞) > 0,

so thatψ∗(pe(·)) = 1 by Kolmogorov’s zero-one law.

On the other hand, ifλ > λ∗c(pe(·)) ≥ λc, with probability 1, there is no vacant component with infinite

diameter inR2 w.r.t. G(Hλ, 1) (Chapter 4 in [4]). SincePr(d(V0) = ∞) = 0, we have

ψ∗(pe(·)) ≤
∑

x∈Q2

Pr(d(Vx) = ∞) = 0,

where we used the fact thatQ2 is dense and any infinite vacant component is open so that any infinite

component contains at least onex ∈ Q2. �

Given the mapping betweenG(Hλ, 1, pe(·)) andL, define eventA∗
a(d, pe(·)) for edgea in L as the set of

outcomes for which the following condition holds: the rectangleRa = [axd−
d
4
, axd+

5d
4
]×[ayd−

d
4
, ayd+

d
4
]

is crossed fromleft to right by avacantcomponent inR2 w.r.t.G(Hλ, 1, pe(·)). Define eventA∗′

a (d, pe(·))

for edgea in L as the set of outcomes for which the following condition holds: the rectangleRa =

[axd−
d
4
, axd+ 5d

4
]× [ayd−

d
4
, ayd+ d

4
] is crossed fromtop to bottomby a vacantcomponent inR2 w.r.t.

G(Hλ, 1, pe(·)).

Let

p∗g(d, pe(·)) , Pr(A∗
a(d, pe(·))), and p∗

′

g (d, pe(·)) , Pr(A∗′

a (d, pe(·))). (53)

Define A∗
a(d, pe(·)) and A∗′

a (d, pe(·)) similarly for all vertical edges by rotating the rectangle by 90◦.

Figure 12 illustratesA∗′

a (d, pe(·)).

We now define another critical density with respect toG(Hλ, 1, pe(·)).

Definition 4: GivenG(Hλ, 1, pe(·)), let

λ∗S(pe(·)) , sup{λ : lim sup
d→∞

p∗
′

g (d, pe(·)) > 0}. (54)
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3d/2

d/2a

Ra

Fig. 12. The rectangleRa is crossed fromtop to bottomby a vacantcomponent inR2 w.r.t. G(Hλ, 1, pe(·))

Proposition 18: For G(Hλ, 1, pe(·)), we have

λc(pe(·)) = λ∗c(pe(·)) = λ∗S(pe(·)). (55)

Proof: To show (55), it is sufficient to show (i)λc(pe(·)) ≤ λ∗c(pe(·)), (ii) λ∗c(pe(·)) ≤ λ∗S(pe(·)), and

(iii) λ∗S(pe(·)) ≤ λc(pe(·)).

To show (i)λc(pe(·)) ≤ λ∗c(pe(·)), let λ < λc(pe(·)). ThenG(Hλ, 1, pe(·)) is in the subcritical phase.

Let B1(i) = (0, 2i) +B(1) whereB(1) = [−1, 1]2 for i = 0, 1, 2.... Observe that the existence of a left to

right crossing in rectangle[0, 3k] × [0, 3k+1] by a componentW ′ of G(Hλ, 1, pe(·)) implies the existence

of a componentW ′′ of G(Hλ, 1, pe(·)) starting from
⋃⌈ 3k+1

2
⌉

i=0 B1(i) (i.e., the first node inW ′′ in the x-axis

direction is inside
⋃⌈ 3k+1

2
⌉

i=0 B1(i)) with diameter greater than or equal to3k − 2. Hence, we have for any

k ≥ 1,

p′g(d = 2 · 3k, pe(·)) ≤ Pr







⌈ 3k+1

2
⌉

⋃

i=0

{d(W (B1(i))) ≥ 3k − 2}







≤

⌈ 3k+1

2
⌉

⋃

i=0

Pr(d(W (B1(i))) ≥ 3k − 2)

=

(⌈

3k+1

2

⌉

+ 1

)

Pr(d(W (B(1))) ≥ 3k − 2)

<

(

9

2
3k−1 + 2

)

Pr(d(W (B(1))) ≥ 3k − 2)

≤

(

9

2
3k−1 + 2

)

Pr(d(W (B(1))) ≥ 3k−1), (56)

whereW (B1(i)) is the union of components ofG(Hλ, 1, pe(·)) that have some node(s) inside boxB1(i).

Precisely,W (B1(i)) = {componentW ′ of G(Hλ, 1, pe(·)) : ∃w ∈W ′,xw ∈ B1(i)}.

Since λ < λc(pe(·)) = λD(pe(·)), E[d(W0)] < ∞. By the same argument used in the proof for

Proposition 3, we haveE[d(W (B(1))] <∞.
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tk

0

3k+1

3k
3k+2

lk

Fig. 13. A vertical crossingtk of [0, 3k] × [0, 3k+1] and a horizontal crossinglk of [0, 3k+2] × [0, 3k+1] must intersect.

Let Pk = Pr(d(W (B(1))) ≥ k). ThenPk is non-increasing ink, and thus we have
∞
∑

k=1

p′g(d = 2 · 3k, pe(·)) <
∞
∑

k=1

(

9

2
3k−1 + 2

)

P3k−1

=

∞
∑

k=0

(

9

2
3k + 2

)

P3k

=
9

2

∞
∑

k=0

3kP3k + 2
∞
∑

k=0

P3k

≤
9

2

(

P1 + 3

∞
∑

k=1

3k−1P3k

)

+ 2E[d(W (B(1)))]

≤
9

2
(P1 + 3E[d(W (B(1)))]) + 2E[d(W (B(1)))]

< ∞. (57)

Note thatp′g(d = 2 · 3k, pe(·)) + p∗g(d = 2 · 3k, pe(·)) = 1 for all k ≥ 1. Hence by the Borel-Cantelli

Lemma, we have

Pr(∃ vacant top to bottom crossingtk in [0, 3k] × [0, 3k+1] for all suffcient largek) = 1.

Rotational invariance implies that

Pr(∃ vacant left to right crossinglk in [0, 3k+2] × [0, 3k+1] for all suffcient largek) = 1.

As illustrated in Figure 13, a vertical crossingtk of [0, 3k] × [0, 3k+1] and a horizontal crossinglk of

[0, 3k+2]× [0, 3k+1] must intersect. Also,tk+1 of [0, 3k+1]× [0, 3k+2] and lk must intersect. Thus the union

of vacant crossings{tk} and {lk} combines to give an infinite vacant component in the first quadrant.

Therefore, by Proposition 17,λ ≤ λ∗c(pe(·)), andλc(pe(·)) ≤ λ∗c(pe(·)).

We now show (ii)λ∗c(pe(·)) ≤ λ∗S(pe(·)). Let λ > λ∗S(pe(·)). Then lim supd→∞ p∗
′

g (d, pe(·)) = 0, and

hencelim supd→∞ pg(d, pe(·)) = 1. Then there existsδ > 0 such that there are infinitely manyd′1, d
′
2, ...

satisfyingpg(d
′
i, pe(·)) ≥ δ for i = 1, 2, .... Now choosed1 = d′1 anddi+1 = min{d′j : d′j ≥ 3d′i}. Then by
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the same argument used in the proof for Lemma 9, we can construct infinitely many annuli around the

origin, each annulus having edge lengthd′i and containing a circuit with a probability larger thanδ. Then,

by the Borel-Cantelli Lemma, with probability 1, there exist infinitely many circuits surrounding the origin

and henced(V0) is finite with probability 1. This implies thatλ > λ∗c(pe(·)), and thusλ∗S(pe(·)) ≥ λ∗c(pe(·)).

Finally, (iii) λ∗S(pe(·)) ≤ λc(pe(·)) can be shown by the same argument as that for the proof of Theorem

4.3 and Theorem 4.4 in [4]. �

Proof of Lemma 16:If G(Hλ, 1, pe(·)) is in the supercritical phase,λ > λc(pe(·)) = λ∗c(pe(·)) =

λ∗S(pe(·)). Thus,lim supd→∞ p∗
′

g (d, pe(·)) = 0 andlim supd→∞ pg(d, pe(·)) = 1. Then by the same methods

used in the proof for Lemma 8, we can show Lemma 16. �

APPENDIX D

SinceT (X̃m,Xv) <∞ with probability 1, for any0 < δ1 < δ, there existsM <∞ such that

Pr(T (X̃m,Xv) < M) > 1 − δ1.

Then for anyǫ > 0,

Pr

(∣

∣

∣

∣

T (u, v)

d(u, v)
− γ

∣

∣

∣

∣

< ǫ

)

= Pr

(

γ − ǫ <
T (u, v)

d(u, v)
< γ + ǫ

)

≥ Pr

(

γ − ǫ <
T (u, v)

d(u, v)
< γ + ǫ|T (X̃m,Xv) < M

)

Pr(T (X̃m,Xv) < M)

> Pr

(

γ − ǫ <
T (u, v)

d(u, v)
< γ + ǫ|T (X̃m,Xv) < M

)

(1 − δ1)

≥ Pr

(

γ − ǫ <
T0,m −M

m+ 1
,
T0,m +M

m− 1
< γ + ǫ

)

(1 − δ1)

= Pr
(

(γ − ǫ+M) + (γ − ǫ)m < T0,m < m(γ + ǫ) − (M + γ + ǫ)
)

(1 − δ1)

≥ Pr
(

(γ + ǫ+M) + (γ − ǫ)m < T0,m < m(γ + ǫ) − (M + γ + ǫ)
)

(1 − δ1).

Sincelimm→∞
T0,m

m
= γ with probability 1, forδ2 = 1 − 1−δ

1−δ1
, there existsm0 < ∞ such that for any

m > m0,

Pr

(

γ −
ǫ

2
<
T0,m

m
< γ +

ǫ

2

)

> 1 − δ2.

If γ − ǫ
2
<

T0,m

m
< γ + ǫ

2
, then

T0,m <
(

γ +
ǫ

2

)

m < m(γ + ǫ) − (M + γ + ǫ),
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and

T0,m >
(

γ −
ǫ

2

)

m > m(γ − ǫ) + (M + γ + ǫ).

Hence, for anym > max{m0,
2(M+γ+ǫ)

ǫ
}, we have

Pr ((γ + ǫ+M) + (γ − ǫ)m < T0,m < m(γ + ǫ) − (M + γ + ǫ)) > 1 − δ2.

Moreover, sincem > d(u, v)−1, if d(u, v) > d0 , max{m0,
2(M+γ+ǫ)

ǫ
}+1, we havem > max{m0,

2(M+γ+ǫ)
ǫ

},

so that

Pr

(∣

∣

∣

∣

T (u, v)

d(u, v)
− γ

∣

∣

∣

∣

< ǫ

)

> (1 − δ1)(1 − δ2) = 1 − δ.

APPENDIX E

Let ǫ > 0, 0 < δ < 1 be given. WhenG(Hλ, 1,W (d, t)) is in the supercritical phase,γ = 0 with

probability 1. Thus, there exists0 < ǫ1 < ǫ and0 < δ1 < δ such that

Pr(γ < ǫ1) > 1 − δ1.

Let ǫ2 = ǫ− ǫ1, andδ2 = 1− 1−δ
1−δ1

. From Appendix D, we know that forǫ2 andδ2, there existd0 <∞

such that whend(u, v) > d0,

Pr

(

γ − ǫ2 <
T (u, v)

d(u, v)
< γ + ǫ2

)

> 1 − δ2.

Then for the givenǫ, whend(u, v) > d0, we have

Pr

(

T (u, v)

d(u, v)
< ǫ

)

≥ Pr

(

T (u, v)

d(u, v)
< ǫ|γ + ǫ2 < ǫ

)

Pr(γ + ǫ2 < ǫ)

> Pr

(

T (u, v)

d(u, v)
< ǫ|γ + ǫ2 < ǫ

)

(1 − δ1)

≥ Pr

(

T (u, v)

d(u, v)
< γ + ǫ2

)

(1 − δ1)

> (1 − δ2)(1 − δ1)

= 1 − δ.
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