Bibliography

[1] H. L. Abbott, Lower bounds for some Ramsey numbers, Discrete Math. 2 (1972), 289-293.
[2] A. Agresti, Categorical Data Analysis, John Wiley and Sons, New York, 1990, xvi+558 pp.
[3] D. Aldous, On the Markov-chain simulation method for uniform combinatorial simulation and simulated annealing, Prob. Eng. Info. Sci. 1 (1987), 33-46.
[4] D. Aldous, Some inequalities for reversible Markov chains, J. London Math. Soc. 25 (1982), 564-576.
[5] N. Alon, Eigenvalues and expanders, Combinatorica 6 (1986), 86-96.
[6] N. Alon and F. R. K. Chung, Explicit construction of linear sized tolerant networks, Discrete Math. 72 (1988), 15-19.
[7] N. Alon, F. R. K. Chung and R. L. Graham, Routing permutations on graphs via matchings, SIAM J. Disc. Math. 7 (1994), 513-530.
[8] N. Alon, Z. Galil and V. D. Milman, Better expanders and superconcentrators, J. Algorithms 8 (1987), 337-347.
[9] N. Alon and V. D. Milman, λ_{1} isoperimetric inequalities for graphs and superconcentrators, J. Comb. Theory B 38 (1985), 73-88.
[10] N. Alon, Z. Galil and O. Margalit, On the exponent of the all pairs shortest paths problem, 32nd Symposium on Foundations of Computer Science, IEEE Computer Society Press, (1991), 569-575.
[11] N. Alon and N. Kahale, Approximating the independence number via the θ function, Math. Programming, 80 (1998), 253-264.
[12] N. Alon and J.H. Spencer, The Probabilistic Method, John Wiley and Sons, New York 1991, $\mathrm{xvi}+254 \mathrm{pp}$.
[13] S. Arora and S. Safra, Probabilistic checking of proofs, a new characterization of NP. 33rd Symposium on Foundations of Computer Science, IEEE Computer Society Press, (1992), 2-13.
[14] L. Babai and M. Szegedy, Local expansion of symmetrical graphs, Combinatorics, Probability and Computing 1 (1991), 1-11.
[15] L. Babai, Automorphism groups, isomorphism, reconstruction, Handbook of Combinatorics (eds. R. L. Graham, M. Grótschel and L. Lovász), North-Holland, Amsterdam, (1996), 14471540.
[16] D. Bakry, L'hypercontractivité et son utilisation en théorie des semigroupes, In Ecole d'été de Saint Fleur 1992, Springer Lecture Notes 1581, 1-114.
[17] L. A. Bassalygo, Asymptotically optimal switching circuits, Problems Inform. Transmission 17 (1981), 81-88.
[18] J. Beck, On size Ramsey number of paths, trees and circuits I., J. Graph Theory 7 (1983), 115-129.
[19] W. Beckner, Inequalities in Fourier analysis, Annals of Mathematics 102 (1975), 159-182.
[20] V. E. Benĕs, Mathematical Theory of Connecting Networks and Telephone Traffic, Academic Press, New York 1965, xiv+319 pp.
[21] J. C. Bermond and B. Bollobás, The diameter of graphs - a survey, Congressus Numerantium 32 (1981), 3-27.
[22] J. C. Bermond, C. Delorme and G. Farhi, Large graphs with given degree and diameter, III, Proc. Coll. Cambridge (1981), Ann. Discr. Math. 13, North Holland, Amsterdam (1982), 23-31.
[23] A. J. Berstein, Maximally connected arrays on the n-cube, SIAM J. Appl. Math. 15 (1967), 1485-1489.
[24] S. N. Bhatt and F. T. Leighton, A framework for solving VLSI graph layout problems, J. Comput. System Sci. 28 (1984), 300-343.
[25] F. Bien, Constructions of telephone networks by group representations, Notices Amer. Math. Soc. 36 (1989), 5-22.
[26] N. L. Biggs, Algebraic Graph Theory, (2nd ed.), Cambridge University Press, Cambridge, 1993, xvi+205 pp.
[27] N. L. Biggs and M. H. Hoare, The sextet construction for cubic graphs, Combinatorica 3 (1983), 153-165.
[28] N. L. Biggs, E. K. Lloyd and R. J. Wilson, Graph Theory 1736-1936, Clarendon Press, Oxford, 1976, xi+239 pp.
[29] Y. Bishop, S. Fienberg, P. Holland, Discrete Multivariate Analysis, MIT Press, Cambridge, 1975, x+557 pp.
[30] M. Blum, R. M. Karp, O. Vornberger, C. H. Papadimitriou, and M. Yannakakis, The complexity of testing whether a graph is a superconcentrator, Inf. Proc. Letters 13 (1981), 164-167.
[31] B. Bollobás, Random Graphs, Academic Press, New York (1985), xvi+447 pp.
[32] B. Bollobás and F. R. K. Chung, The diameter of a cycle plus a random matching, SIAM J. Disc. Math. 1 (1988), 328-333.
[33] B. Bollobás and I. Leader, Edge-isoperimetric inequalities in the grid, Combinatorica 11 (1991), 299-314.
[34] B. Bollobás and I. Leader, An isoperimetric inequality on the discrete torus, SIAM J. Disc. Math. 3 (1990), 32-37.
[35] B. Bollobás, and A. Thomason, Graphs which contain all small graphs, European J. of Combinatorics 2 (1981), 13-15.
[36] B. Bollobás and W. F. de la Vega, The diameter of random regular graphs, Combinatorica 2 (1982), 125-134.
[37] J. A. Bondy and M. Simonovits, Cycles of even length in graphs, J. Combin. Theory Ser. B 16 (1974), 97-105.
[38] R. B. Boppana, Eigenvalues and graph bisection: An average-case analysis, 28th Symposium on Foundations of Computer Science, IEEE Computer Society Press, (1987), 280-285.
[39] R. Bott and J. P. Mayberry, Matrices and trees, In Economic Activity Analysis, (O. Morgenstern, ed.), John Wiley and Sons, New York (1954), 391-340.
[40] A. Broder, A. Frieze and E. Upfal, Existence and construction of edge disjoint paths on expander graphs, Proc. Sym. Theo. on Computing, ACM (1992), 140-149.
[41] R. Brooks, The spectral geometry of k-regular graphs, Journal d'Analyse Mathématique, 57 (1991), 120-151.
[42] N. G. de Bruijn, A combinatorial problem, Nederl. Akad. Wetensch. Proc. 49 (1946), 758764.
[43] D. A. Burgess, On character sums and primitive roots, Proc. London Math. Soc. 12 (1962), 179-192.
[44] P. Buser, Cubic graphs and the first eigenvalue of a Riemann surface, Math. Z. 162 (1978), 87-99.
[45] P. Buser, Cayley graphs and planar isospectral domains, in Geometry and Analysis on Manifolds (T. Sunada, ed.), Springer Lecture Notes 1339 (1988), 64-77.
[46] P. Buser, Cubic graphs and the first eigenvalue of a Riemann surface, Math. Z. 162 (1978), 87-99.
[47] L. Caccetta, On extremal graphs with given diameter and connectivity, Ann. New York Acad. Sci. 328 (1979), 76-94.
[48] A. Cayley, A theorem on trees, Quart. J. Math. 23 (1889), 376-378.
[49] J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, Problems in Analysis (R. C. Gunning, ed.), Princeton Univ. Press (1970), 195-199.
[50] S. Y. Cheng, Peter Li and S.-T. Yau, On the upper estimate of the heat kernel of a complete Riemannian manifold, American Journal of Mathematics 103 (1981), 1021-1063.
[51] R. Christensen, Log-Linear Models, Springer-Verlag, New York, 1990, xii+408 pp.
[52] F. R. K. Chung, On concentrators, superconcentrators, generalizers and nonblocking networks, Bell Systems Tech. J. 58 (1979), 1765-1777.
[53] F. R. K. Chung, A note on constructive methods for Ramsey numbers, J. Graph Th. 5 (1981), 109-113.
[54] F. R. K. Chung, Diameters of communications networks, Mathematics of Information Processing, AMS Short Course Lecture Notes (1984), 1-18.
[55] F. R. K. Chung, Diameters of graphs: Old problems and new results, Congressus Numerantium 60 (1987), 295-317.
[56] F. R. K. Chung, Diameters and eigenvalues, J. of Amer. Math. Soc. 2 (1989), 187-196.
[57] F. R. K. Chung, Quasi-random classes of hypergraphs, Random Structures and Algorithms 1 (1990), 363-382.
[58] F. R. K. Chung, Regularity lemmas for hypergraphs and quasi-randomness, Random Structures and Algorithms 2 (1991), 241-252.
[59] F. R. K. Chung, Constructing random-like graphs, in Probabilistic Combinatorics and Its Applications, (B. Bollobas ed.), Amer. Math. Soc., Providence, 1991, 21-55.
[60] F. R. K. Chung, Laplacians of graphs and Cheeger inequalities, in Combinatorics, Paul Erdős is Eighty, Volume 2, (D. Miklós, V. T. Sós, and T. Szőnyi eds.), János Bolyai Mathematical Society, Budapest (1996), 157-172.
[61] F. R. K. Chung, V. Faber and T. A. Manteuffel, An upper bound on the diameter of a graph from eigenvalues associated with its Laplacian, SIAM. J. Discrete Math. 7 (1994), 443-457.
[62] F. R. K. Chung and M. R. Garey, Diameter bounds for altered graphs, J. of Graph Theory 8 (1984), 511-534.
[63] F. R. K. Chung and R. L. Graham, Quasi-random hypergraphs, Random Structures and Algorithms 1 (1990), 105-124.
[64] F. R. K. Chung and R. L. Graham, Quasi-random tournaments, J. of Graph Theory 15 (1991), 173-198.
[65] F. R. K. Chung and R. L. Graham, Maximum cuts and quasirandom graphs, Random Graphs (A. Frieze and T. Luczak, eds.), John Wiley and Sons, New York (1992), 23-33.
[66] F. R. K. Chung and R. L. Graham, On graphs not containing prescribed induced subgraphs, in A Tribute to Paul Erdös, (A. Baker et al. eds.) Cambridge University Press (1990), 111120.
[67] F. R. K. Chung and R. L. Graham, Quasi-random set systems, J. Amer. Math. Soc. 4 (1991), 151-196.
[68] F. R. K. Chung and R. L. Graham, Quasi-random subsets of Z_{n}, J. Combin. Th. (A) 61 (1992), 64-86.
[69] F.R.K. Chung and R.L. Graham, Cohomological aspects of hypergraphs, Trans. Amer. Math. Soc. 334 (1992), 365-388
[70] F. R. K. Chung and R. L. Graham, Random walks on generating sets of groups, Electronic J. Combinatorics, 4, no. 2, (1997), \#R7, 14pp.
[71] F. R. K. Chung and R. L. Graham, Stratified random walks on an n-cube, Random Structures and Algorithms, 11 (1997), 199-222.
[72] F. R. K. Chung, R. L. Graham and R. M. Wilson, Quasi-random graphs, Combinatorica 9 (1989), 345-362.
[73] F. R. K. Chung, R. L. Graham and S.-T. Yau, On sampling with Markov chains, Random Structures and Algorithms 9 (1996), 55-77.
[74] F. R. K. Chung, A. Grigor'yan, and S.-T. Yau, Upper bounds for eigenvalues of the discrete and continuous Laplace operators, Advances in Mathematics 117 (1996), 165-178.
[75] F. R. K. Chung, A. Grigor'yan, and S.-T. Yau, Eigenvalues and diameters for manifolds and graphs, Tsing Hua Lectures on Geometry and Analysis, International Press, Cambridge, MA, 1997, 79-106.
[76] F. R. K. Chung and C. M. Grinstead, A survey of bounds for classical Ramsey numbers, J. Graph Theory 7 (1983), 25-37.
[77] F. R. K. Chung, B. Kostant and S. Sternberg, Groups and the Buckyball, in Lie Theory and Geometry: In honor of Bertram Kostant (Eds. J.-L. Brylinski, R. Brylinski, V. Guillemin and V. Kac) PM 123, Birkhäuser, Boston, 1994, 97-126.
[78] F. R. K. Chung and R. P. Langlands, A combinatorial Laplacian with vertex weights, J. Comb. Theory (A) 75 (1996), 316-327.
[79] F. R. K. Chung and K. Oden, Weighted graph Laplacians and isoperimetric inequalities, Pacific J. of Math. 192 (2000), 257-273.
[80] F. R. K. Chung and S. Sternberg, Laplacian and vibrational spectra for homogenous graphs, J. Graph Theory 16 (1992), 605-627.
[81] F. R. K. Chung and S. Sternberg, Mathematics and the Buckyball, American Scientist 81, No. 1, (1993), 56-71.
[82] F. R. K. Chung and P. Tetali, Communication complexity and quasi-randomness, SIAM J. Discrete Math. 6 (1993), 110-123.
[83] F. R. K. Chung and P. Tetali, Isoperimetric inequalities for Cartesian products of graphs, Combinatorics, Probability and Computing, 7 (1998), 141-148.
[84] F. R. K. Chung and S.-T. Yau, A Harnack inequality for homogeneous graphs and subgraphs, Communications in Analysis and Geometry, 2 (1994), 627-640.
[85] F. R. K. Chung and S.-T. Yau, Eigenvalues of graphs and Sobolev inequalities, Combinatorics, Probability and Computing 4 (1995), 11-26.
[86] F. R. K. Chung and S.-T. Yau, Logarithmic Harnack inequalities, Mathematics Research Letters 3 (1996), 793-812.
[87] F. R. K. Chung and S.-T. Yau, Eigenvalue inequalities for graphs and convex subgraphs, Communications in Analysis and Geometry 5 (1997), 575-623.
[88] F. R. K. Chung and S.-T. Yau, A Harnack inequality for Dirichlet eigenvalues, J. of Graph Theory 34 (2000), 247-257.
[89] D. M. Cvetković, M. Doob and H. Sachs, Spectra of Graphs, Theory and Application, Academic Press, 1980, 368 pp.
[90] D. M. Cvetković, M. Doob, I. Gutman, and A. Torgas̈ev, Recent results in the Theory of Graph Spectra, North Holland, Amsterdam 1988, xii+306 pp.
[91] E. B. Davies, Heat kernel bounds, conservation of probability and the Feller property, J. d'Analyse Math. 58, (1992), 99-119.
[92] P. J. Davis, Circulant Matrices, John Wiley and Sons, New York, 1979, xv +250 pp.
[93] P. Deligne, La conjecture de Weil I, Inst. Hautes Etudes Sci. Publ. Math 43 (1974), 273-307.
[94] E. D'Hoker and D. H. Phong, On determinants of Laplacians on Riemann surfaces, Comm. Math. Phys. 104 (1986), 537-545.
[95] J.-D. Deuschel and D. W. Stroock, Hypercontractivity and spectral gap of symmetric diffusions with applications to the stochastic Ising models, J. Funct. Anal. 92 (1990), 30-48.
[96] P. Diaconis, Group Representations in Probability and Statistics, Institute of Math. Statistics, Hayward, California, 1988, vi+198 pp.
[97] P. Diaconis, R.L. Graham and J. Morrison, Asymptotic analysis of a random walk on a hypercube with many dimensions, Random Structures and Algorithms 1 (1990), 51-72.
[98] P. Diaconis and L. Saloff-Coste, Comparison theorems for reversible Markov chains, Annals of Applied Prob. 3 (1993), 696-730.
[99] P. Diaconis and L. Saloff-Coste, Comparison techniques for random walks on finite groups Annals of Applied Prob. 4 (1993), 2131-2156.
[100] P. Diaconis and L. Saloff-Coste, An application of Harnack inequalities to random walk on nilpotent quotients, J. Fourier Anal. Appl. (1995), 189-207.
[101] P. Diaconis and L. Saloff-Coste, Logarithmic Sobolev inequalities for finite Markov chains, Ann. Appl. Prob. 6 (1996), 695-750.
[102] P. Diaconis and L. Saloff-Coste, Walks on generating sets of groups, Prob. Theory Related Fields 105 (1996), 393-421.
[103] P. Diaconis and D. W. Stroock, Geometric bounds for eigenvalues of Markov chains, Annals Applied Prob. 1 (1991), 36-61.
[104] P. Diaconis and B. Sturmfels, Algebraic algorithms for sampling from conditional distributions, Ann. Statist. 26 (1998), 363-397.
[105] M. J. Dinneen, M. R. Fellows and V. Faber, Algebraic constructions of efficient broadcast networks, Lecture Notes in Comput. Sci., 539, Springer, Berlin, 1991, 152-158.
[106] J. Dodziuk and L. Karp, Spectral and function theory for combinatorial Laplacians, in Geometry of Random Motion, Contemp. Math 73, AMS Publication (1988), 25-40.
[107] M. Dyer, A. Frieze and R. Kannan, A random polynomial time algorithm for approximating the volume of convex bodies, $J A C M \mathbf{3 8}$ (1991), 1-17.
[108] M. Eichler, Quaternary quadratic forms and the Riemann hypothesis for congruence zeta functions, Arch. Math. 5 (1954), 355-366.
[109] B. Elspas, Topological constraints on interconnection limited logic, Switching Circuit Theory and Logical Design 5 (1964), 133-147.
[110] P. Erdős, Some remarks on the theory of graphs, Bull. Amer. Math. Soc. 53 (1947), 292-294.
[111] P. Erdős, Some remarks on chromatic graphs, Colloquium Mathematicum 16 (1967), 253256.
[112] P. Erdős, S. Fajtlowicz and A. J. Hoffman, Maximum degree in graphs of diameter 2, Networks 10 (1980), 87-90.
[113] P. Erdős and A. Hajnal, On spanned subgraphs of graphs, Betrage zur Graphentheorie und deren Anwendungen, Kolloq. Oberhof (DDR) (1977), 80-96.
[114] P. Erdős and A. Rényi, On a problem in the theory of graphs, Publ. Math. Inst. Hungar. Acad. Sci. 7 (1962), 623-641.
[115] P. Erdős, A. Rényi and V. T. Sós, On a problem of graph theory, Studia Sci. Math. Hungar. 1 (1966), 215-235.
[116] P. Erdős and H. Sachs, Reguläre Graphen gegenebener Teillenweite mit minimaler Knotenzahl, Wiss. Z. Univ. Halle - Wittenberg, Math. Nat. R. 12 (1963), 251-257.
[117] P. Erdős and V. T. Sós, On Ramsey-Turán type theorems for hypergraphs, Combinatorica 2 (1982), 289-295.
[118] P. Erdős and J. Spencer, Imbalances in k-colorations, Networks 1 (1972), 379-385.
[119] P. Erdős and J. Spencer, Probabilistic Methods in Combinatorics, Academic Press, New York (1974), 106 pp.
[120] R.J. Faudree and M. Simonovits, On a class of degenerate extremal graph problems, Combinatorica 3 (1983), 83-93.
[121] U. Feige, Randomized graph products, chromatic numbers, and the Lovász θ-function, Proc. Sym. Theo. on Computing, ACM (1995), 635-640.
[122] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy, Approximating clique is almost NP-complete, 32nd Symposium on Foundations of Computer Science, IEEE Computer Society Press, (1991), 2-12.
[123] M. Fiedler, Algebraic connectivity of graphs, Czech. Math. J. 23 (98) (1973), 298-305.
[124] J. A. Fill, Eigenvalue bounds on convergence to stationarity for nonreversible Markov chains, with an application to the exclusion process, Ann. Appl. Prob. 1 (1991) 62-87.
[125] L. R. Ford and D. R. Fulkerson, Flows in Networks, Princeton Univ. Press (1962), xii+194 pp.
[126] P. Frankl, A constructive lower bound for some Ramsey numbers, Ars Combinatoria 3 (1977), 297-302.
[127] P. Frankl and V. Rödl, Forbidden intersections, Trans. AMS 300 (1987), 259-286.
[128] P. Frankl, V. Rödl and R. M. Wilson, The number of submatrices of a given type in a Hadamard matrix and related results, J. Combinatorial Th. (B) 44 (1988), 317-328.
[129] P. Frankl and R.M. Wilson, Intersection theorems with geometric consequences, Combinatorica 1 (1981), 357-368.
[130] M. L. Fredman, New bounds on the complexity of the shortest path problem, SIAM J. Computing 5 (1976), 83-89.
[131] J. Friedman, On the second eigenvalue and random walks in random d-regular graphs, Combinatorica 11 (1991), 331-362.
[132] J. Friedman and N. Pippenger, Expanding graphs contain all small trees, Combinatorica 7 (1987), 71-76.
[133] G. Frobenius, Über die Charaktere der alternierenden Gruppe, Sitzungsberichte Preuss. Akad. Wiss. (1901), 303-315.
[134] G. Frobenius, Über Matrizen aus nicht negative Elementen, Sitzber. Akad. Wiss. Berlin (1912), 456-477.
[135] Z. Füredi and J. Komlós, The eigenvalues of random symmetric matrices, Combinatorica 1 (1981), 233-241.
[136] O. Gabber and Z. Galil, Explicit construction of linear-sized superconcentrators, J. Comput. System Sci. 22 (1981), 407-420.
[137] A. Galtman, Spectral characterizations of the Lovász number and Delsarte number of a graph, J. Algebraic. Combin. 12 (2000), 131-143.
[138] F. R. Gantmacher, The Theory of Matrices, Vol. 1, Chelsea Pub. Co., New York (1977), $\mathrm{x}+374 \mathrm{pp}$.
[139] M. R. Garey and D. S. Johnson, Computers and Intractability, A Guide to the Theory of NP-Completeness, W. H. Freeman and Co., San Francisco, 1979, x+338 pp.
[140] M. Goemans and D. Williamson, Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming, J. ACM 42 (1995), 1115-1145.
[141] P. Ginsbarg, Applied Conformal Field Theory, les Houches (1988), 1-168.
[142] W. Goddard, private communication.
[143] R. L. Graham and V. Rödl, Numbers in Ramsey theory, Surveys in Combinatorics (1987), (C. Whitehead, ed.) London Math. Soc. Lecture Notes Series 123, 111-153.
[144] S. W. Graham and C. Ringrose, Lower bounds for least quadratic nonresidues, Analytic Number Theory, (edited by B. Berndt, H. Halberstam, H. Diamond and A. Hildebrand), Birkhäuser, Boston 1990, 264-309.
[145] R. L. Graham and J. H. Spencer, A constructive solution to a tournament problem, Canad. Math. Bull. 14 (1971), 45-48.
[146] A. Grigor'yan, Integral maximum principle and its applications, Proc. of Royal Society, Edinburgh Sect. A, 124 (1994), 353-362.
[147] M. Gromov, Groups of polynomial growth and expanding maps, Publ. IHES, 53 (1981), 53-73.
[148] L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math. 97 (1975), 1061-1083.
[149] L. Gross, Logarithmic Sobolev inequalities and contractivity properties of semigroups, Springer Lecture Notes 1563,(1993), 54-88.
[150] M. Grotschel, L. Lovász and A. Schrijver, The ellipsoid method and its consequences in combinatorial optimization, Combinatorica 1 (1981), 169-197.
[151] M. Grotschel, L. Lovász and A. Schrijver, Geometric Algorithms and Combinatorial Optimization, Springer-Verlag, Berlin, 1988, xii+362 pp.
[152] W. Haemers, Eigenvalue methods in Packing and Covering in Combinatorics, (A. Schrijver ed.), Mathematisch Centrum, Amsterdam (1982), 15-38.
[153] M. M. Halldorsson, A still better performance guarantee for approximating graph coloring, Information Processing Letters 45 (1993), 19-23.
[154] L. H. Harper, Optimal numberings and isoperimetric problems on graphs, J. of Comb. Theory 1 (1966), 385-393.
[155] S. Hart, A note on the edges of the n-cube, Discrete Math. 14 (1976), 157-163.
[156] J. Hastad, Clique is hard to approximate within $n^{1-\epsilon}$, 37th Symposium on Foundations of Computer Science, IEEE Computer Society Press, (1996), 627-636.
[157] J. Haviland and A. Thomason, Pseudo-random hypergraphs, Discrete Math. 75 (1989), 255-278.
[158] W. Hebisch and L. Saloff-Coste, Gaussian estimates for Markov chains and random walks on groups, Ann. Probab. 21 (1993), 673-709.
[159] A. J. Hoffman, Eigenvalues of graphs, in Studies in Graph Theory II (D. R. Fulkerson, ed.), M.A.A. Studies in Math, Washington D.C.,(1975), 225-245.
[160] A. J. Hoffman and R. R. Singleton, On Moore graphs with diameter 2 and 3, IBM J. of Res. Development 4 (1960), 497-504.
[161] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, New York, 1985, xii+561 pp.
[162] J. Igusa, Fibre systems of Jacobian varieties III, American J. of Math. 81 (1959), 453-476.
[163] W. Imrich, Explicit construction of regular graphs without small cycles, Combinatorica 4 (1984), 53-59.
[164] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, SpringerVerlag, New York 1982, xiii+341 pp.
[165] M. Jerrum and A. J. Sinclair, Approximating the permanent, SIA M J. Computing 18 (1989), 1149-1178.
[166] F. Juhász, On the spectrum of a random graph, Colloq. Math. Soc. János Bolyai 25, Algebraic Methods in Graphs Theory, Szeged (1978), 313-316.
[167] N. Kahale, Isoperimetric inequalities and eigenvalues, SIAM J. Discrete Math., 10 (1997), 30-40.
[168] D. Karger, R. Motwani, and M. Sudan, Approximate graph coloring by semi-definite programming, 35th Symposium on Foundations of Computer science, IEEE Computer Society Press, 1994, 2-13.
[169] B. S. Kashin and S. V. Konyagin, On systems of vectors in a Hilbert space, Trudy Mat. Inst. imeni V. A. Steklova 157 (1981) 64-67. English translation in Proceedings of the Steklow Institute of Math. AMS (1983), 67-70.
[170] G. O. H. Katona, A theorem of finite sets, Theory of Graphs, Proc. Colloq. Tihany, Academic Press, New York, 1966, 187-207.
[171] N. M. Katz, An estimate for character sums, J. Amer. Math. Soc. 2 (1989), 197-200.
[172] F. Kirchhoff, Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird, Ann. Phys. chem. 72 (1847), 497-508
[173] M. Klawe, Non-existence of one-dimensional expanding graphs, 22nd Symposium on Foundations of Computer Science, IEEE Computer Society Press, (1981), 109-113.
[174] D. E. Knuth, The Art of Computer Programming, vol. 3, Addison-Wesley, Reading, MA, 1973, xi +722 pp .
[175] D. E. Knuth, The sandwich theorem, Electronic J. of Combinatorics 1 (1994), A1, 48 pp.
[176] J. B. Kruskal, The number of simplices in a complex, Mathematical Optimization Techniques, (ed. R. Bellman), University of California Press, Berkeley, 1963, 251-78,.
[177] R. P. Langlands and Y. Saint-Aubin, Algebro-geometric aspects of the Bethe equations, Strings and Symmetries, Lecture Notes in Phys. 447, Springer, Berlin, 1995, 40-53.
[178] F. Lazebnik, V. A. Ustimenko and A. J. Woldar, A new series of dense graphs of high girth, Bull. Amer. Math. Soc. 32 (1995), 73-79.
[179] F. T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes, Morgan-Kauffman, San Mateo, CA, 1992, xx+831 pp.
[180] F. T. Leighton and S. Rao, An approximate max-flow min-cut theorem for uniform multicommodity flow problem with applications to approximation algorithms, 29th Symposium on Foundations of Computer Science, IEEE Computer Society Press, (1988), 422-431.
[181] T. Lengauer and R. E. Tarjan, Asymptotically tight bounds on time-space trade-offs in a pebble game, J. Assoc. Comput. Mach. 29 (1982), 1087-1130.
[182] H. Lenstra, personal communication.
[183] G. Lev, Size bounds and parallel algorithms for networks, Ph.D. Thesis, Department of Computer Science, University of Edinburg.
[184] W. Li, Character sums and abelian Ramanujan graphs, J. Number Theory 41 (1992), 199217.
[185] P. Li and S.-T. Yau, On the parabolic kernel of the Schrödinger operator, Acta Mathematica 156 (1986), 153-201.
[186] P. Li and S.-T. Yau, Estimates of eigenvalues of a compact Riemannian manifold, Amer. Math. Soc. Proc. Symp. Pure Math. 36 (1980), 205-239.
[187] J. H. Lindsey, Assignment of numbers to vertices, Amer. Math. Monthly 71 (1964), 508-516.
[188] R. J. Lipton and R. E. Tarjan, A separator theorem for planar graphs, SIAM J. Appl. Math. 36 (1979), 177-189.
[189] L. Lovász, On the Shannon capacity of a graph, Transactions on Information Theory -IT25, IEEE Computer Society Press, (1979), 1-7.
[190] L. Lovász, Perfect graphs, in Selected Topics in Graph Theory 2, (eds R. L. Wilson and L. W. Beineke), Academic Press, New York (1983), 55-87.
[191] L. Lovász and M. Simonovits, Random walks in a convex body and an improved volume algorithm, Random Structures and Algorithms 4 (1993), 359-412.
[192] A. Lubotzky, R. Phillips and P. Sarnak, Ramanujan graphs, Combinatorica 8 (1988), 261277.
[193] G. A. Margulis, Explicit constructions of concentrators, Problemy Peredaci Informacii 9 (1973), 71-80 (English transl. in Problems Inform. Transmission 9 (1975), 325-332.
[194] G. A. Margulis, Arithmetic groups and graphs without short cycles, 6th Internat. Symp. on Information Theory, Tashkent (1984) Abstracts 1, 123-125 (in Russian).
[195] G. A. Margulis, Some new constructions of low-density parity check codes, 3rd Internat. Seminar on Information Theory, convolution codes and multi-user communication, Sochi (1987), 275-279 (in Russian).
[196] G. A. Margulis, Explicit group theoretic constructions of combinatorial schemes and their applications for the construction of expanders and concentrators, Problemy Peredaci Informacii (1988) (in Russian).
[197] J. C. Maxwell, A Treatise on Electricity and Magnetism I, Oxford, Clarendon Press (1892), 403-410.
[198] R. J. McEliece, E. R. Rodemich, and H. C. Rumsey, Jr., The Lovász bound and some generalizations, J. Combinatorics, Inform. Syst. Sci. 3 (1978), 134-152.
[199] B. Mohar, Isoperimetric number of graphs, J. of Comb. Theory (B) 47 (1989), 274-291.
[200] H. L. Montgomery, Topics in Multiplicative Number Theory, Lecture Notes in Math. 227, Springer-Verlag, New York (1971), ix +178 pp.
[201] J. W. Moon, Counting Labelled Trees, Canadian Mathematical Monographs, Canadian Mathematical Congress, Montreal, 1970, x+113 pp.
[202] Z. Nagy, A constructive estimate of the Ramsey number, Mat. Lapok 23 (1975), 301-302.
[203] A. Nilli, On the second eigenvalue of a graph, Discrete Math. 91 (1991), 207-210.
[204] B. Osgood, R. Phillips, and P. Sarnak, Extremals of determinants of Laplacians, J. Funct. Anal. 80 (1988), 148-211.
[205] B. Osgood, R. Phillips, and P. Sarnak, Moduli space, heights and isospectral sets of plane domains, Ann. Math. 129 (1989), 293-362.
[206] E. M. Palmer, Graphical Evolution, John Wiley and Sons, New York (1985), xvii+177 pp.
[207] W. J. Paul, R.E. Tarjan and J.R. Celoni, Space bounds for a game on graphs, Math. Systems. Theory 10 (1977), 239-251.
[208] O. Perron, Zur Theorie der Matrizen, Math. Ann. 64 (1907), 248-263.
[209] M. Pinsker, On the complexity of a concentrator, 7th Internat. Teletraffic Conf., Stockholm, June 1973, 318/1-318/4.
[210] N. Pippenger, Superconcentrators, SIAM J. Comput. 6 (1977), 298-304.
[211] N. Pippenger, Advances in pebbling, Internat. Collo. On Automation Languages and Programming 9 (1982), 407-417.
[212] G. Polyá and S. Szegö, Isoperimetric Inequalities in Mathematical Physics, Annals of Math. Studies, no. 27, Princeton University Press, (1951), xvi+279 pp.
[213] A. M. Polyakov, Quantum geometry of bosonic strings, Phys. Letters B 103 (1981), 207-210.
[214] S. Ramanujan, On certain arithmetical functions, Trans. Cambridge Philos. Soc. 22 (9) (1916), 159-184.
[215] F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. 30 (1930), 264-286.
[216] D. Ray and I. M. Singer, Analytic torsion for complex manifolds, Ann. Math. 98 (1973), 154-177.
[217] D. K. Ray-Chaudhuri and R. M. Wilson, On t-designs, Osaka J. Math. 12 (1975), 737-744.
[218] A. Rényi, On the enumeration of trees, in Combinatorial Structures and their Applications (R. Guy, H. Hanani, N. Sauer, and J. Schonheim, eds.) Gordon and Breach, New York (1970), 355-360.
[219] V. Rödl, On universality of graphs with uniformly distributed edges, Discrete Math. 59 (1986), 125-134.
[220] P. Sarnak, Determinants of Laplacians, Comm. Math. Phys. 110 (1987), 113-120.
[221] P. Sarnak, Some Applications of Modular Forms, Cambridge University Press, Cambridge, 1990, x+111 pp.
[222] A. Schrijver, A comparison of the Delsarte and Lovász bounds, IEEE Transactions on Information Theory IT-25, (1979), 425-429.
[223] J. J. Seidel, Graphs and their spectra, Combinatorics and Graph Theory, PWN-Polish Scientific Publishers, Warsaw (1989), 147-162.
[224] R. Seidel, On the all-pairs-shortest-path problem, Proc. Sym. Theo. on Computing, ACM (1992), 745-749.
[225] M. Simonovits and V. T. Sós, Szemerédi's partition and quasirandomness, Random Structures and Algorithms 2 (1991), 1-10.
[226] A. J. Sinclair, Algorithms for Random Generation and Counting, Birkhauser, Boston, 1993, vi+146 pp.
[227] A. J. Sinclair and M. R. Jerrum, Approximate counting, uniform generation, and rapidly mixing markov chains, Information and Computation 82 (1989), 93-133.
[228] R. Singleton, On minimal graphs of maximum even girth, J. Combin. Theory 1 (1966), 306-332.
[229] J. Spencer, Optimal ranking of tournaments, Networks 1 (1971), 135-138.
[230] J. Spencer, Ramsey's theorem - A new lower bound, J. Combinatorial Theory 18 (1975), 108-115.
[231] S. Sternberg, Group Theory in Physics, Cambridge University Press, Cambridge, 1994. xiv +429 pp .
[232] D. W. Stroock, Logarithmic Sobolev inequalities for Gibbs states, Springer Lecture Notes 1563, Berlin, (1993), 194-228.
[233] J. J. Sylvester, On the change of systems of independent variables, Quarterly Journal of Mathematics 1 (1857), 42-56. Collected Mathematical Papers, Cambridge 2 (1908), 65-85.
[234] J. J. Sylvester, On an application of the new atomic theory to the graphical representation of the invariants and covariants of binary quantics, - with three appendices, Amer. J. Mah. 1 (1878), 64-104.
[235] R.M. Tanner, Explicit concentrators from generalized N-gons, SIAM J. Algebraic Discrete Methods 5 (1984), 287-293.
[236] A. Thomason, Random graphs, strongly regular graphs and pseudorandom graphs, in Survey in Combinatorics (1987) (C. Whitehead, ed.), London Math. Soc., 173-195.
[237] A. Thomason, Pseudo-random graphs, Proc. Random Graphs, Poznán (1985) (M. Karónski, ed.), Annals of Discrete Math. 33 (1987), 307-331.
[238] A. Thomason, Dense expanders and pseudo-random bipartite graphs, Discrete Math. 75 (1989), 381-386.
[239] M. Tompa, Time space tradeoffs for computing functions, using connectivity properties of their circuits, J. Comput. System Sci. 20 (1980), 118-132.
[240] H. M. Trent, Note on the enumeration and listing of all possible trees in a connected linear graph, Proceedings of the National Academy of Sciences, U.S.A. 40 (1954), 1004-1007.
[241] W. T. Tutte, Graph Theory, Addison Wesley, Reading, MA 1984, xxi+333 pp.
[242] G. E. Uhlenbeck and G. W. Ford, Lectures in Statistical Mechanics, Providence, American Mathematical Society (1963), x+181 pp.
[243] L. G. Valiant, The complexity of computing the permanent, Theoret. Comput. Sci. 8 (1979), 189-201.
[244] L. G. Valiant, Graph-theoretic properties in computational complexity, J. Comput. System Sci. 13 (1976), 278-285.
[245] L.G. Valiant, A scheme for fast parallel communication, SIAM J. Comput. 11 (1982), 350361.
[246] N. T. Varopoulos, Isoperimetric inequalities and Markov chains, J. Funct. Anal. 63 (1985), 215-239.
[247] K. Vijayan and U. S. R. Murty, On accessibility in graphs, Sankhyā Ser. A. 26 (1964), 299-302.
[248] D.-L. Wang and P. Wang, Discrete isoperimetric problems, SIAM J. Appl. Math. 32 (1977), 860-870.
[249] A. Weil, Sur les courbes algébrique et les variétés qui s'en déduisent, Actualités Sci. Ind. No. 1041 (1948).
[250] A. Weiss, Girths of bipartite sextet graphs, Combinatorica 4 (1984), 241-245.
[251] D. B. West, Introduction to Graph Theory, Prentice Hall Inc., Upper Saddle River, NJ, 1996, xvi+512 pp.
[252] H. S. Wilf, The eigenvalues of a graph and its chromatic number, J. London Math. Soc. 42 (1967), 330-332.
[253] R. M. Wilson, Constructions and uses of pairwise balanced designs, in Combinatorics (M. Hall, Jr., and J. H. van Lint, eds.) Math Centre Tracts 55, Amsterdam (1974), 18-41.
[254] S.-T. Yau and R. M. Schoen, Differential Geometry, Science Publications, Beijing, 1988 (Chinese version); International Press, Cambridge, Massachusetts, 1994 (English version), $\mathrm{v}+235 \mathrm{pp}$.
[255] L. Zhang, Optimal bounds for matching routing on trees, Proc. The Eighth Annual ACMSIAM Symposium on Discrete Algorithms, New Orleans, (1997), 445-453. The full version appeared in SIAM J. Disc. Math. 12 (1999), 64-77.

