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Abstract

In studying the scalability of optical networks, one
problem arising involves coloring the vertices of the n-
dimensional hypercube with as few colors as possible such
that any two vertices whose Hamming distance is at most
k are colored differently. Determining the exact value of
X5 (n), the minimum number of colors needed, appears to
be a difficult problem. In this paper, we improve the known
lower and upper bounds of x;(n) and indicate the connec-
tion of this coloring problem to linear codes.
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1 Introduction

An n-cube (or n-dimensional hypercube) is a graph whose
vertices are the vectors of the n-dimensional vector space
over the field GF(2). There is an edge between two vertices
of the n-cube whenever their Hamming distance is exactly
1, where the Hamming distance between two vectors is the
number of coordinates in which they differ. Given n and k,
the problem we consider is that of finding xz(n), the min-
imum number of colors needed to color the vertices of the
n-cube so that any two vertices of (Hamming) distance at
most k have different colors. This problem originated from
the study of the scalability of optical networks [1].

It was shown by Wan [2] that

n+1< x3(n) < 2Mos=(r01, (1)

and it was conjectured that the upper bound is also the true
value, i.e.,

xz(n) = 2Mog2(n+11,
Kim et al. [3] showed that
2n < x3(n) < 20821t @)

*Support in part by the National Science Foundation under grant CCR-
9530306.

£2) Mogy n

(<k72)) <xa(m) < (k+1) (%) : |

3)

k(k+2)

s%+n(%¥)s

[logs n]

“

where (1) = 27 (7).

The upper bounds in (1) and (2) are fairly tight. In (1),
the upper and lower bounds coincide when n + 1 is an exact
power of 2, and the same assertion holds for (2) when n is
a power of 2. However, the upper bounds in (3) and (4) are
not very tight. In fact, when k¥ = 2 and 3, they are already
different from those of (1) and (2). A natural approach for
getting an upper bound for xz (n) is to find a valid coloring of
the n-cube with as few colors as possible. We shall use this
idea and various properties of linear codes (to be introduced
in the next section) to give tighter bounds for general k which
imply (1) when k = 2 and (2) when & = 3. In fact, the upper
bounds in (1) and (2) are straightforward applications of this
idea using the well-known Hamming code [4]. Moreover,
all the lower bounds can be improved slightly by applying
known results from coding theory [4].

The paper is organized as follows. Section 2 introduces
concepts and results from coding theory needed for the rest
of the paper, Section 3 discusses our bounds and Section 4
gives a general discussion about the problem.

2 Preliminaries

The following concepts and results can be found in stan-
dard texts on coding theory (e.g., see [4]).

Let A = {0,1,...q — 1} where ¢ > 2 is an integer,
and let A™ denote the set of all n-dimensional vectors (or
strings of length n) over A. Any non-empty subset C' of



A™ is called a g-ary block code. Our main concern is when
A = {0,1} = GF(2), in which case C is called a bi-
nary code. From here on, the term code refers to a bi-
nary code unless specified otherwise. Each element of C is
called a codeword. If |C| = M then C is called an (n, M)-
code. The Hamming distance between any two codewords
U = UjUu2...Un and v = wvivs...v, is defined to be
d(u,v) = |{i : u; # v;}|. Foru € C, the weight of u
denoted by w(u) is the number of 1’s in u. The minimum
distance d(C') of a code C is the least Hamming distance be-
tween two different codewords in C. If C' C A", |C| = M,
and d(C) = d, then C is called an (n, M, d)-code.

One of the most important problems in coding theory is to
determine A4(n, d), the largest integer M such that a g-ary
(n, M, d)-code exists. For the case ¢ = 2, we will write
A(n,d) instead of Az(n,d). The following theorems are
standard results from coding theory and the reader is referred
to [4] for their proofs.

Theorem 2.1. A(n,2t +1) = A(n+ 1,2t + 2)
Theorem 2.2.

An,2t+1) <

S () + i () (5 - [=])

Theorem 2.2 is a special case of the Johnson bound [4].

The set of all n-dimensional vectors over G F(2) forms an
n-dimensional vector space, which we denote by V,,(2). A
code C' C V,,(2) is called a linear code if it is a linear sub-
space of V,,(2). Moreover, C is called a [n, m]-code if it has
dimension m. A [n,m]-code with minimum distance d is
called an [n, m, d]-code. The square brackets will automat-
ically refer to linear codes. An m X n matrix G is called a
generator matrix of an [n, m]-code C if its rows form a basis
for C. Given an [n, m}-code C, an (n — m) x n matrix H
is called a parity check matrix for C if c € C iff cHT = 0.
From coding theory, we know that specifying a linear code
by using its generator matrix and using a parity check ma-
trix are equivalent. For a vector € V2(n), the syndrome of
z associated with a parity check matrix H is defined to be
synd(z) = cHT.

Given an [n,m, d]-code C, the standard array of C is a
277 x 2™ table where each row is a (left) coset of C. This
table is well defined since elements of C' form an Abelian
subgroup in V3 (n) under addition (and the cosets of a group
partition the group uniformly). The first row of the standard
array contains C itself. The first column of the standard ar-
ray contains the minimum weight elements from each coset.
These are called coset leaders. Each entry in the table is the
sum of the codeword on the top of its column and its coset
leader. Since each pair of distinct codewords has Hamming
distance at least d, each pair of elements in the same row
also has Hamming distance at least d. It is a basic fact from
coding theory that all elements in the same row of the stan-
dard array have the same syndrome and different rows have
different syndromes.

We conclude this section with a well-known result. Again,
the reader is referred to [4] for a proof.

Theorem 2.3, If H is an (n — m) X n matrix where any
d—1 columns of H are linearly independent and there exist d
linearly dependent columns in H, then H is the parity check
matrix of an [n, m, d]-code.

3 Main Results
Lemma 3.1. Let k = 2t, then
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Ifk = 2t + 1, we have

Proof. Given a valid coloring of the n-cube with parameters
n and k using m colors, let S;,1 < 7 < m, be the set of
vertices which are colored 7. Clearly for each ¢, S; forms an
(n,|S;|, d)-code where d > k + 1. With the observation that
A(n, d) is a decreasing function of d, we have

2" =) 1S < Y A(n,k+1) = mA(n, k +1)
i=1 i=1
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Thus, in particular we have x;(n) >
k = 2t, Theorem 2.2 yields

w232 () 1 () (- [53)

When k = 2t + 1 then we can combine Theorems 2.1 and
2.2 to get
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Lemma 3.2. Let (1)) denote 37", (7). Then we have

i
xz(n) < 2llos2 (G2 I+ yen k is even,
and

xp(n) < 211082 (22142 ywhen k is odd

Proof. Let C be an [n,m, k+1]-code. As we have noticed in
the previous section, any two elements in the same row of the
standard array of C are at a distance of at least k¥ + 1. Thus,
coloring each row of (s standard array by a different color
would give us a valid coloring. The number of colors used
is 2”"~™, which is the number of rows of C’s standard array.
Consequently, one way to obtain a good coloring of the n-
cube is to find a linear [n, m, k + 1}-code with as large an m
as possible. Moreover, by Theorem 2.3 we can construct a
linear [n, m, d] code by trying to build its parity check matrix
H, which is an (n — m) x n matrix with the property that d
is the largest number such that any d — 1 columns of H are
linearly independent and there exist d dependent columns.
Also, since all elements of a coset of the code (a row of its
standard array) have the same syndrome, we can use H to
color each vector z € Vz(n) with synd(z) = zH”.

s (1 (") - (32)) |+
= [ ((G72))]

Then clearly we have

() ) (o) e

Now, we describe a procedure for constructing a p x n
parity check matrix H by choosing its column vectors se-
quentially. The first column vector can be any non-zero vec-
tor. Suppose we already have a set V' of ¢ vectors so that
any d — 1 of them are linearly independent. The (i + 1)t"
vector can be chosen as long as it is not in the span of any
d — 2 vectors in V. In other words, since we are working
over the field GF(2), the new vector cannot be the sum of
any d — 2 or fewer vectors in V. The total number of un-
desirable vectors is at most (;) +(3) + ...(di2), which
is an increasing function of ¢. Consequently, as long as
() + () +...(;,) < 2P —1then we can still add a new
column to H. This is a special case of the Gilbert-Varshamov
bound.

The linear code C' whose parity check matrix is H has
minimum distance at least d and size |C'| = 2"~ ?. The num-
ber of rows of the standard array for C is 2P.

For our problem of looking for an upper bound of xz(n),
we want d = k + 1. The linear code C' constructed gives a
valid coloring using 2? colors, so

Xg(n) < 2
gllogz (1+("T)+("2 )+ (RZ1)) J+1
gllog2((321))]+1

This inequality holds regardless of k being odd or even
and thus proves our lemma for the even k case. However,
when k is odd we are able to do better.

Notice that if we add an even parity bit to each vector
of Va(n — 1) then we get half of V5(n). Adding an odd
parity bit would give us the other half. When k is odd,
we just proved that we can color the (n — 1)-cube using

a = 2[108:((RZ2) 141 colors so that if two vertices have the
same color then their distance is at least k. From this, we can
obtain a coloring of the n-cube as follows. We first add an
even parity bit to each vertex of the (n — 1)-cube, color them
using a colors, and then add an odd parity bit and color them
using a completely different set of a colors. This is clearly a
coloring of the n-cube using 2a = 2 log2((222))]+2 colors.
What remains to be shown is that this coloring is valid with
parameters n and k.

For any vertex z of the n-cube, let 2’ be the vector ob-
tained from x by deleting the parity bit just added. By the
way we constructed the coloring, if two vertices = and y
of the n-cube have the same color then d(z',y') > k, and
the same type of parity bit (even or odd) was added to them
to get x and y. It is clear that if d(z’',3') > k + 1, then
d(z,y) > k+ 1. If d(z',y") = k, then since k is odd, z'
and y' must have had different bits added . Consequently,
d(z,y) = k + 1. In other words, if two vertices x and y of
the n-cube have the same color then d(z,y) > k+ 1, and so
we have a valid coloring with parameters n and k. O

Lemmas 3.1 and 3.2 can be summarized by the following
theorem.

Theorem 3.3. Lett = | %] and let (1)) denote 37" (7).
Then, when k is even, we have

2 () g O G- [555)

=0 t—i-Ll
< xz(n) < 2llesa((GZ)) ] +2

and when k is odd, we have

. g(n;1)+[7%q<n;1)x
(- )

< X’-c(n) < 2L1°g2((2:§))J+2

Note that since

olloga ((521)) |+1 _ glioga nj+1 _ olloga(n+1)]



and

2Llog2((g:§))J+2 — 2[10g;,(n—1)]+2 - 2|’log2 n]+1

then inequalities (1) and (2) are direct consequences of this
theorem.

4 Discussions

The key to get a good coloring is to find the parity check
matrix H when k is even. As can be seen, the proof of The-
orem 3.3 implicitly gave us an algorithm to construct H,
but it is still not very constructive. However, in the case
k = 2 (and thus in case k¥ = 3) we can explicitly construct
H. To see this, consider the Hamming code Hy(r), which
isal2" —1,2" — 1 — r,3] code. Its parity check matrix
H(r,2) has dimensions  x (2" —1). Letr = [logy(n+1)],
then 27 — 1 > n. So, if we remove the last 2" — 1 — n
columns of H(r,2), then we get a parity check matrix of an
[n,n — [logy(n + 1)], 3] code. This code gives us a color-
ing of the n-cube with parameters n and 2 using 2[10gz(n+1)]
colors. This proves the upper bounds in (1) and (2).

Besides the Johnson bound we used, other known upper
bounds of A(n, d) might give us better lower bound of x (n)
such as the Plotkin bound, the Elias bound and the Lin-
ear Programming bound. However, applying these bounds
breaks the problem into various cases and doesn’t give us a
significantly better result.

For some special values of n and k, we can get better re-
sults by considering some specially good linear codes. The
Golay G4 code is a binary [24, 12, 8]-code whose generator
matrix has the form G = [I15 | A] where A was “magically”
given by Golay in 1949 (see [5]).

011111111111
1110111000710
110111000T101
101110001011
111100010T1T10

4-|1 11000101101

“l110001011011
100010110111
100101101110
101011011100
110110111000

10110111000 1]

This shows that x7(24) < 2'2, while our theorem gives
2'? < x7(24) <2V

Thus, in fact x7(24) = 22 (!1!), and our upper bound is
far off in this case. Puncturing Ga4 (i.e. removing any coor-
dinate position) at any coordinate gives us G»3, a 23,12, 7]-
code. This implies x3(23) < 2!, while again our theorem
gives too large an upper bound :

2 < xg(23) <2

However, again we obtain x5(23) = 2!'. We summarize
the cases where the exact values of x(n) are known as fol-
lows

24) = 212 (shown above).

x(

x5(23) = 2!! (shown above).

e x5(2™ — 1) = 2™ (immediate from Theorem 3.3)
xa(

2™ — 2) = 2™ (immediate from Theorem 3.3)

x3(2™) = 2™*1 (immediate from Theorem 3.3)
e x3(2™ — 1) = 2™*! (immediate from Theorem 3.3)

One might wonder if we can get more exact values of
X7 (n) using the same method. Our lower bound was proven
using Johnson’s bound, a slight extension of the sphere pack-
ing bound. To construct a linear code that matches the sphere
packing bound, the code has to be perfect, namely there exist
aradius r such that the spheres S(c,r) = {a | d(¢c,a) < r}
around each codeword c covers the whole space. The binary
[2" — 1,2" — 1 — r, 3] Hamming code H(r) and the Go-
lay [23, 12, 7]-code are perfect. This is why we were able to
obtain the exact values as above. Thus, the question comes
down to “does there exist any other binary perfect codes be-
sides the Hamming codes and the Golay codes ?”. The an-
swer was given by Tietdviinen ([6], 1973) with most of the
work done previously by van Lint :

Theorem 4.1. A nontrivial perfect q-ary code C, where q is
a prime power, must have the same parameters as either a
Hamming code or one of the Golay codes Go3 (binary) or
G11 (ternary).

However, as we have mentioned the Johnson bound is
slightly better than the sphere packing bound. That is
how we got two additional values x5(2™ — 2) = 2™ and
x3(2™ — 1) = 2™+l This comes from the fact that the
shorten Hamming [2™ — 2,2™ — 2 — m, 3] is nearly perfect,
i.e. it gives equality in the Johnson bound. Again, does there
exist any other nearly perfect codes ? Lindstrom ([7], 1975)
answered in the affirmative : the only other nearly perfect
code is the punctured Preparata code. This code has param-
eter (2™ — 1,227 ~2™ 5). Unfortunately, this is not a binary
linear code, so our coloring doesn’t quite work.

That is not the end of our hope. Hammons, Kumar,
Calderbank, Sloane and Sole [8, 9, 10] showed that the
Preparata code is Z4-linear, namely it can be constructed
easily from a linear code over Z4 as the binary image un-
der the Gray map. This map transforms Lee distance in Zy4
to Hamming distance in Z2. The mapping is simple, but the
construction of the code is quite involved. We hope to be
able to apply their work to find nice upper bounds for xz(n)

and x5 (n).
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