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ON THE GROWTH OF A VAN DER WAERDEN-LIKE FUNCTION
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Abstract

Let W (3, k) denote the largest integer w such that there is a red/blue coloring of {1, 2, . . . , w}
which has no red 3-term arithmetic progression and no block of k consecutive blue integers.
We show that for some absolute constant c, W (3, k) ≥ kc log k for all k.
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1. Introduction

A classic theorem of van der Waerden [13], [8] asserts that for all k and r, there is a least inte-
ger Wr(k) such that any r-coloring of [Wr(k)] := {1, 2, . . . , Wr(k)} contains a monochromatic
k-term arithmetic progression (k -AP). The true order of growth of Wr(k) (and especially
W (k) := W2(k)) has attracted the interest of many researchers since van der Waerden’s
theorem first appeared in 1927 ([1], [3], [4], [6], [7], [11], [12]). The best current upper bound
on W (k) is the striking result of Gowers [7]:

W (k) < 2222
22

k+9

.

On the other hand, the best lower bound available is due to Berlekamp in 1968 ([3]), and
asserts that

W (p + 1) ≥ p 2p

for p prime.

In order to obtain a better understanding of W (k), it is natural to study the so-called
“off-diagonal” van der Waerden number W (k, l), which is defined to be the least integer w
such that any red/blue coloring of [w] either has a red k -AP or a blue l -AP.
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A complete list of the known values of W (k, l) appears in the recent paper of Landman,
Robertson and Culver [10]. In particular, they have computed the following values of W (3, k):

k 3 4 5 6 7 8 9 10 11 12 13
W (3, k) 6 18 22 32 46 58 77 97 114 135 160

In [10], it is suggested that W (3, k) might be bounded by some polynomial in k (perhaps
even a quadratic!). We don’t resolve this question here. Instead we study the related function
W (3, k), defined to be the least integer w such that any red/blue coloring of [w] either has
a red 3-AP or a block of k consecutive blue integers. Since a block of k consecutive integers
is a k -AP, then we have W (3, k) ≥ W (3, k).

What we show in this note is that W (3, k) grows faster than any polynomial in k.

We note that the function W (3, k) is closely related to the function Γk(3) discussed in
Nathanson [11] as well as Landman and Robertson [9]. This is defined to be the least integer
t such that any sequence x1 < x2 < · · · < xt with xi+1 − xi ≤ k for 1 ≤ i ≤ t − 1 must
contain a 3 -AP. Since it is easy to show that W (3, k) ≤ k Γk(3), then our result also gives
non-polynomial growth bounds to this function as well.

2. The Main Result

Theorem. For all m > 0,

W (3, 3m) ≥ 2m (Wr3(m)(3) − 1).

where r3(m) is defined by

r3(m) = max
S⊆[m]

{|S| : S has no 3 -AP}.

Proof. By definition, there is a set S(m) = {s1, s2, . . . , sr} ⊆ [m] with no 3 -AP, where
r = r3(m). Also, by definition, with w := Wr(3) − 1, there is an r-coloring χ : [w] → [r]
with no monochromatic 3 -AP. Let Ik denote the interval {2(k − 1)m + 1, . . . , (2k − 1)m}
for 1 ≤ k ≤ w.

For 1 ≤ k ≤ w, select the element

xk = 2(k − 1)m + sχ(k).

In other words, thinking of each Ik as a copy of [m], xk corresponds to

sχ(k) ∈ S(m) = {s1, . . . , sr} ⊆ [m].

We claim that the set X = {x1, x2, . . . , xw} contains no 3 -AP. Suppose to the contrary that
xi, xj and xk, i < j < k, form a 3 -AP. Thus,
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xi ∈ Ii = [2(i − 1)m + 1, (2i − 1)m],
xj ∈ Ij = [2(j − 1)m + 1, (2j − 1)m],
xk ∈ Ik = [2(k − 1)m + 1, (2k − 1)m].

Therefore,

2(j − 1)m + 1 − (2i − 1)m ≤ xj − xi ≤ (2j − 1)m − 2(i − 1)m − 1,
2(k − 1)m + 1 − (2j − 1)m ≤ xk − xj ≤ (2k − 1)m − 2(j − 1)m − 1,

i.e.,

2(j − i)m − m + 1 ≤ xj − xi ≤ 2(j − i)m + m − 1,
2(k − j)m − m + 1 ≤ xk − xj ≤ 2(k − j)m + m − 1.

However, since xi, xj and xk form a 3 -AP then xj−xi = xk−xj. This implies that j−i = k−j,
i.e., i, j and k form a 3 -AP. Furthermore, since

xi = 2(i − 1)m + sχ(i),
xj = 2(j − 1)m + sχ(j),
xk = 2(k − 1)m + sχ(k),

then we can conclude that sχ(i), sχ(j) and sχ(k) form a 3 -AP. However, by definition, S has
no non-trivial 3 -AP. Hence, the only possibility is that sχ(i) = sχ(j) = sχ(k), which implies
χ(i) = χ(j) = χ(k). Thus, i, j and k form a monochromatic 3 -AP, which is a contradiction.

Note that since every interval Ik contains a point of X, then the difference between
consecutive terms of X is less than 3m.

Finally, define the red/blue coloring χ∗ : [2mw] → {red, blue} by:

χ∗(i) =

{
red : if i = xk for some k,

blue : otherwise.

Thus, χ∗ has no red 3 -AP and no blue 3m -block. Therefore,

W (3, 3m) > 2mw = 2m(Wr(3) − 1) = 2m(Wr3(m)(3) − 1)

and the theorem is proved. !

Corollary. For some absolute constant c,

W (3, k) > kc log k.
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Proof. It is known [8] that
Wk(3) > kc1 log k

for a suitable constant c1 > 0. Also, it is known [2] that

r3(k) > k exp(−c2

√
log k)

for a suitable constant c2 > 0. Thus,

Wr3(k)(3) > r3(k)c1 log r3(k)

= exp(c1 log2(r3(k)))

> exp(c1(log k − c2

√
log k)2)

> exp((c1/2) log2 k)

= k(c1/2) log k

for k > k0(c2) sufficiently large. Now setting m = k/3 in the preceding theorem (together
with a little algebra) gives the desired inequality. This completes the proof. !

3. Concluding Remarks.

The best available upper bound on W (3, k) comes from the upper bound estimate on r3(k)
due to Bourgain [5]:

r3(k) = O

(
k

√
log log k

log k

)
.

Using this estimate, we can obtain an upper bound for W (3, k) as follows. First, suppose
[N ] is red/blue-colored, and let x1 < x2 < · · · < xt denote the red integers in [N ]. Hence, by

Bourgain’s estimate, if t > cN
√

log log N
log N for a sufficiently large c, then we have a red 3 -AP.

If not, then we must have

xi+1 − xi > c′

√
log N

log log N

for some i and suitable constant c′. Hence, if N > kck2
for a suitable constant c, then the

RHS is greater than k, i.e., we have a block of k consecutive blue integers. This shows that
W (3, k) < kck2

for a suitable constant c > 0.

Whether this is close to the true behavior of W (3, k), and whether our result suggests
that the function W (3, k) is also non-polynomial, we leave for the reader to decide.

The author would like to thank Steve Butler, Fan Chung, and Bruce Landman for useful
comments in preparing the final version of this note.
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