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either case, this implies that B contains at least one of its endpoints in violation
of Lemma 2 and the proof is complete.

Clearly, the proofs given above are valid when 4 and B are arcs with or
without one or both endpoints. We summarize these results in the following
theorem.

TueoreMm 1. If A and B are nondegenerate connected subsets of arcs and if n
is a positive integer, then there exist (n, 1) functions f on A onto B when, and only
when, A and B are open (i.e., both A and B lack both endpoints) and n is odd.

The following theorem shows how limited the examples of (%, 1) functions,
n odd, must be. They are all about like the (3, 1) example given above.

THEOREM 2. Let n>0 be an odd integer and let f be an (n, 1) function on A
onto B, where A and B are open intervals of the real line. For b&E B, f~1(b) contains
as many relative maxima for f as it contains relative minima. In particular, f can
not have an absolute maximum or absolute minimum on A.

Proof. Suppose f~1(b) contains M relative maxima and m relative minima
with either m >0 or M >0. If m ¢ M we may assume, without loss of generality,
that 0 =m < M. There are » numbers in f~1(b) but there is a number, &', slightly
smaller than b such that f~1(?’) contains at least # —m - M numbers since there
are M maxima and f~1(0') will have at least two elements near each of these
maxima. However, # —m-+ M >#n since M >m and this is a contradiction.
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ON A THEOREM OF USPENSKY
R. L. GranaM, Bell Telephone Laboratories, Murray Hill, New Jersey

Let o be a real number and define S, to be the sequence ( [a], [2a], [3«], - - ),
where [ ] denotes the greatest integer function. The following result has been
obtained by Uspensky [1]:

THEOREM. Suppose that oy, oz, -+ -, o, are n positive real numbers which
have the property that every positive integer occurs exactly once in some one of the
sequences Seyy Sagy * * * 3 Sape 1 hen n<3.

The proof given by Uspensky is somewhat elaborate and based on an ap-
proximation theorem of Kronecker. It is the purpose of this note to present a
direct and elementary proof that #<3.
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Proof. Assume that #=3 and let oy, o, - - -, s be 7 positive real numbers
satisfying the hypothesis of the theorem. Certainly a;>1 for all 7 and without
loss of generality, we can assume that oy <ae< - - - <a,. Since 1 occurs in just

one of the Sa,, then it must occur in S,, and we have [a;]=1. Thus ay=1+3,
where 0 <8 <1.

Note that

[nai] = 1= nay <141
=@+ D= +a<l+1+14+6<I+3
=[m+ D]l 1+ 2
so that two consecutive integers cannot be missing from S.,.

Let m be the smallest positive integer which does not occur in Se,. Then m
satisfies (m—1)8 <1=<mé. By hypothesis, m must occur in some S,, and since
an<oz< - - - <op then we have [ozz]=m, i.e., ag=m-¢, where 0=5e<1.

Now, let x be any integer which does not occur in S,,. Then x is of the form
[pa;]+1 for some p and [(p+1)an] —[paa]>1. But

[(6+ Dau] = [ped] > L& [p+ 14+ (p+ 18] - [p+ 3] > 1
& [(p + 1)o] — [ps] > 0
S pd <k
and (p+1)6=k for some integer %.
Since (p4+m—1)0=pd+(m—1)6<k+1 and (P+m+1)d=(p+1)0+md
= k-1, there are two possibilities:
1 (p+mozk+1
in which case the next integer which does not occur in S, is
[(p+m—Da]+1l=p+m—1+k+1=p+k+m
2) (p+ms<k+1

in which case the mext integer which does not occur in S., is [(p+m)aa]+1
=p+m-+k+1.

Since x = [pay]+1=p+[pd]41=p+F, we have shown that if x is any in-
teger which is missing from S,, then the next integer which is missing from Sa,
is either x-+m or x+m--1.

Notice that

['}'Laz] = Y= Nay — 1< y é noe
=m+ Das=ne+a<y+1l4+mt+1l=9+m+2
and (n+1)as=nas+o;=y+m. Therefore, [(n+1)az]=y+m or y+m--1.
To complete the proof, suppose that the kth integer x; which is missing from

S., is exactly the kth term y;= [kaz] of Sz, We have just shown that x4 =%, +m
or xx+m-41 and yr1=yx+m or y,-+m-+1. But two consecutive integers cannot
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be missing from S,; and, by hypothesis, no integer can occur in both S,, and
Se,. Consequently, we must have %j41=yx41. Since x;=m = y;, then by induction
on k, we conclude that x,=1y, for all #. In other words, every positive integer
occurs in either S,, or Se,. This is a contradiction to the assumption that #=3
and the proof is completed.
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A REMARK ON SINGULAR STURM-LIOUVILLE DIFFERENTIAL EQUATIONS

F. Max SteIN AND K. F. KLOPFENSTEIN, Colorado State University

1. In 1934, Hahn [1] showed, as an intermediate result, that any system of
orthogonal polynomials, whose first derivatives also form an orthogonal system,
satisfies a differential equation of the form

M Py’ + s(x)y + Ay =0

for which the coefficients are real and at most p(x) is quadratic, s(x) is linear,
and A is constant. As a final result he showed by examining the singularities
that (1) is equivalent, up to a linear transformation, to the Hermite, Jacobi, or
Laguerre differential equations.

We propose to arrive at Hahn’s final result by a different method; the method
and the results are given in section 2. We first state some definitions and known
results that we shall need in our development.

We shall consider (1) as a singular Sturm-Liouville differential equation. It
has been shown in [2] that (1) can be transformed into the self-adjoint form
usually given as a Sturm-Liouville differential equation by multiplying through
by the factor

(2) T(x) = é—exp f %dx.

It is known [3, 4] that, for a certain discrete set of values of N, there exists
over an interval (g, b) a set of sclutions, called eigenfunctions, of the Sturm-
Liouville problem consisting of (1) and a set of appropriate boundary conditions
which are to be considered in the next section. Upon considering the orthogonal-
ity of these eigenfunctions over the interval, a weight function w(x) is obtained.
It follows from [2] that the weight function that corresponds to (1), and is
customarily assumed to be positive over (g, b), is the same as (2). That is,

T(x) =w(x).

2. We start with the equation of Hahn’s intermediate result (1) which may
be written as

3) (e +Bx 4+ v)y" + G+ &y + Ay = 0.





