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The problem of decomposing an arbitrary periodic function defined on
an n-dimensional cubic lattice info finite linear combinations of certain
primitive functions is considered. Generally, a primitive function is one
which periodically assumes only the values &1 and 0. Rather simple neces-
sary and sufficient conditions are derived for such a decomposition and
when a decomposition is possible, an algorithm is given which accom-
plishes it. These results have been used in recent generalizations of the Ewald
method.

I. INTRODUCTION

In a study of the classical problem of the calculation of the potential
due to an ionic erystal lattice, and in particular, generalizations of the
Ewald method (Ref. 1) along the lines of Nijboer and Dewette (Refs.
3,4), W.J. C. Grant (Ref. 2) proposed the following problem: Suppose
we say that an ionic crystal lattice is primitive if for a suitable choice of
origin there exist three vectors & , &, Z3 such that the charge at the
point m& + neZz + nals is just go(—1)™7 "+ for some fixed g and for
all triples of integers (n,, n2, n3) and that the charge at all other points
is zero. (For example, the ordinary NaCl lattice is primitive with the
#; taken to be the unit coordinate vectors and ¢ = 1.) The question is
then: Which crystal lattices can be decomposed into finite sums of
primitive lattices? Different primitive lattices in the decomposition may
have different origins and by the sum of two lattices we mean, of course,
the component-wise sum.

The object of this paper is threefold:

(¢) The problem is extended to its natural n-dimensional analogue.

(#%) Rather simple necessary and sufficient conditions are given for
the existence of the desired decomposition.
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(#it) When such a decomposition is possible, an algorithm is given
which accomplishes it,

II. PRELIMINARY IDEAS

In order to illustrate the basic ideas which will be used in the proofs
of the general (n-dimensional) theorem (see p. 1200), we begin by con-
sidering the following one-dimensional version.

Suppose we call a real-valued function f defined on the integers
primitive if for some integers x and ¢ it is true that

f(z)={(_1)a f z=azx+¢

0 otherwise

for all integers a. The question then becomes: What is the set of all
those functions which can be represented as real finite linear combina-
tions” of primitive functions? For example, the function ¢ defined by:

f 0 if 2= 0 (mod4)

_ ) 1 i z2=1 (mod 4)
9C) =3 2 if 2=2 (mod4)
=38 if 2= 3 (mod4)

may be decomposed into a linear combination of primitive functions
by:

g(@) = —q(2) + 2¢2(2) + g3(2)

where
_J(=1)* if 2= 2a
0(z) = {0 otherwise g
5o(2) = [(=1)" if z2=2a+1

10 otherwise ’
gs(z) = (=1)~
We can write this more graphically if we use the notation
fioor a0, a0,

to denote the fact that f(0) = ay,f(1) = a;, etc. We then have

* In this paper, linear combination will always mean finite linear combination.
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_glz...’_.l, 0’1’ 0,
2t -o-, 0, 2,0,—2, -
gs: -0y 1’_1)1)—1;
g: -, 07 1,2’—’37

Similarly, if we start with
h: -+ ,1,3,—-2,—1,-3,2, - --

then the desired decomposition is easily found to be:

h:---,10, 0,—1," 00, ---

3hy: - -- ,0,3, 0, 0;_3707

~%hy: ---,00,—2, 0, 02, ---
byt 1,3,-2,—1,-32, -

In general, it is clear that any linear combination f of primitive funec-
tions is periodic and that within a period the sum of the function values of
J must be zero. If a function has these latter two properties, we say that
the function has mean zero. It might at first be surmised that any func-
tion with mean zero could be written as a linear combination of primi-
tive functions. However, attempts to decompose the periodic function

[/ 717_170)1}—1:07 .

(the bar indicating a complete period) soon lead one to suspect that
this initial guess is incorrect. (In fact, g cannot be decomposed into
primitive functions.)

One question which arises immediately is exactly which periods the
primitive components of a function f might have, if f itself has some
period p (where we say that f has period p if f(z + p) = f(z) for all
2). In the preceding example, while g has period 3, perhaps there is a
decomposition of g for which the primitive components have much
larger periods. (It will turn out, however, that this is not possible.)

To answer these questions, we first introduce some notation. If ¢ is
a function defined on the integers,” then by ¢(z/r) we mean the func-
tion defined by:

2\ ., 2. .
(z) g <—> if ©is an integer
gl?) = r r
r
0 otherwise

* In general, in this paper all functions assume the value 0 on points with non-
integral coordinates.
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Let ¢(z) denote the function which assumes the value 1 on all integers.
Thus, if the function f which we wish to decompose has period

= 2°(2m + 1),

then by forming the functions s[(z — k)/(2m + 1)1f(2),0 £ k < 2m + 1,
we have functions which “sample” f at points separated by a distance
of 2m 4+ 1. For example, if f is given by

f: T 173)_673)_5a471737_6,3)_5747 Tt

so that the period of fis 6 = 2.3 (where we will assume that f(0) = 1)
then we have

i(%)f(Z): 1,0, 0,3, 0,0,
i <z —1
3
; (z -2
3
Note that ¢[(z — k)/(2m + 1)]f(z) also has period p and, in general,

@ = 3 (2 +1)f(z)

The result toward which the remainder of this section will be devoted
can now be expressed simply in the following way: If f has period

p=2"2m + 1)

then f can be expressed as a linear combination of primitive functions if
and only if for each k the function i[(z — k)/ (2m + 1)]f(z) has mean
zero.

It follows from this, for example, that if p = 2° then f can be decom-
posed into primitive functions if f has mean zero. On the other hand, if
f has an odd period p = 2m 4 1, then each function i[(z — k)/ (2m + 1)]
has just one nonzero value per period so that f can be decomposed into
primitive funection if it is identically zero.

We now give a series of lemmas, informal proofs and examples which
will indicate the ideas needed for the proof of the general theorem. An
outline of our plan of attack is to establish the following results:

If f is a linear combination of primitive functions then for
any k and for any r # 0, f[(z — k)/r] also is a linear combi-
nation of primitive functions. 1)

)f(Z)Z"',O,?), 030’_570)"'

>f(z):"'70’0)_6;0; 014;"'
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If f is a linear combination of primitive functions and f has
period p = 2°(2m 4+ 1) then forall k,i[(z — k)/ 2m + 1)]f(z)

has mean zero. @
If f has period 2* and mean zero then f is a linear combination 3)
of primitive functions.

Assuming we have established (1), (2) and (3), the proof of the
original assertion follows directly. One direction follows immediately
from (2). To show the other direction assume that for each k, i[(z — k)/
(2m + 1)]f(z) has mean zero. Notice that each function i[(z — k)/
(2m + 1)]f(2) 1s just an “expanded” copy of a function f;(2) which
has period 2° and mean zero (i.e., i[(z — k)/ (2m + 1)If ) = fil G — k)/
(2m + 1)]). Hence, by (3), fi(2) is a linear combination of primitive
functions and it then follows by (1) that this is also true of fi[(z — k)/
(2m + 1)]. Consequently

2m

10 = Ri(E )10 = 28 ()

is a linear combination of primitive functions and the proof is completed.
It remains to prove (1), (2) and (3).
The proof of (1) is straightforward. We first note that if f(z) is primi-
tive then f[(z — k)/r] is also primitive for any & and for any r = 0.
For by hypothesis there exist « and ¢ such that

f(z)={( 1) if z—ax-i—c

0 otherwise

On the other hand, by definition we have
f(z_k)_ 1) it 2=yt k
ro 0 otherwise '

s — k _f(—l)“ if z=r(axz+¢) +Fk
(-

r

Hence

0 otherwise

a(rz) + (rc + k)

(=1 if =z

B 0 otherwise

and so f[(z — k)/r] is primitive. The extension to linear combinations of
primitive functions follows at once and (1) is proved.

In order to prove (2) we first need an auxiliary result (a simplified

version of Lemma 2). This is: Suppose f has periods p = 2°(2m + 1)
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and p’ = 2* (2m’ + 1). Then for any k, 5[(z — k)/(2m + 1)]f(z) has
mean zero iff i{(z — k)/(2m’ + 1)]f(z) has mean zero. To prove this,
let us first assume that ¢’ = @ and 2m + 1 divides 2m’ + 1. The sum

3 il(z — k)/(2m + 1)]f(2) is exactly the sum of the f(z) for which
z—k=0(mod2m + 1),and0 <2 — k < p — 1 (sincei[(z — k)/
(2m 4 1)]f (2) has period p). There are 2° such values of z — k, namely,

z—ked=1{0,2m 4+ 1,22m + 1), ---, (2° — 1)(2m + 1)}.
Similarly the sum Z,_K ilz—k)/(@m' +1)] 7 (2) is exactly the sum of

the f(z) for which z — k = 0 (mod 2m’ + 1)and0 <z— k <p’ — 1.
Again there are 2° such values of z — k, namely,

z—keB=1{0,2m" +1,2@m +1),---, (2" —1)2m + 1)}.

All the elements of A and B are congruent to zero modulo 2m + 1
(since 2m + 1 divides om’ + 1). Also since 2m + 1 and 2m’ + 1 are
odd then both sets A and B contain a complete residue system modulo 2°.
Hence modulo p, A and B are identical. Since f has period p then

p—1

S i(m)r0 = 210 = 2160 = T i (5 ) e,

z=0
If we now assume that ' = a (instead of @' = a) then it is not diffi-
cult to see that

p'—1

2 <2z’+1> @ =2 _“Ez(2m+1>f(z)

Thus, what we have shown is that if f has periods p = 2°(@2m + 1) and
p = 2°@m’ + 1) where p divides p then ¢[(z — k)/(2m + 1)1f(z) has
mean zero iff i[(z — k)/(2m’ 4 1)]f(z) has mean zero. Since in general
a function which has periods ¢ and ¢’ also has period (g,g') (the greatest
common divisor of ¢ and ¢’), then the initial assertion follows at once.
As a simple example consider the function f given by

Foo 132, 142,13,-2,—142, -

This function has 6 = 2-3 as a period and 7(z/3)f(z) has mean zero
since

2,i@/3)() = 10) +7B3) =1 —1=0.

However we may also consider f as having a period of 12 = 2.3 in
which case 2(z/3)f (z) has also mean zero since
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;i(2/3)f(2) =f0)+f3)+76) +f09) =0

Finally, f has a period of 18 = 2-3% and 7 (2/9)f (z) still has mean zero
since

;}i(z/9)f(2) =70)+50) =0.

Our next step will be to prove (2) using the result just established.
We first show that if f is primaitive and has period p = 2°(2m + 1) then

f .(; " 1) f(z) = 0 for all k. (4)

z=0

To see this, we partition the integers into two-element subsets {u;, v,
such that »; = u; + 2m + 1 for each <. Since f is primitive there exist
integers z and ¢ such that

(=0 if z—-ax+c
J) = {0 otherwise

Since
u;x = vz (mod 2m + 1)
and v; — u; = 2m -+ 1 is odd then it follows that
flux +¢) = —fwx + ¢) forall <.
But

fux — kL fvax—k .
Z(2m+1>—2(2—7h-_|_—1> fOI‘ a:ll’l,andk.

Consequently it follows from the fact that f has period p that

p—1

Z (2 +1>f(z) =0 forallk

and (4) is established.

To establish (2) assume that f has period p = 2°(2m + 1) and is a
linear combination of primitive functions f;, 1 £ ¢ £ ¢. If f; has period
pi = 2°(2m; + 1) then by (4) we know that

pi—1

> z(z +1>f(z) =0 forallk

2=0
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Hence, if we choose ¢ = pipe -+ pup = 2v (2m' + 1) then by the sim-
plified version of Lemma 2, we have

¢! —
Zi(%)fi(z) =0 for 1 <7<t andallk.

2=0

Consequently

=« z—k
% ()7 = 0
since by hypothesis f is a linear combination of the f; . But f has period
p so applying the Lemma 2 result again we find

p—1

E (2 T 1>f(z) =0
and (2) is proved.

We are left with (3) to prove. To do this we first establish the follow-
ing result: If h(z) is defined by h(z) = (—1)° then for a fixed n, the
2" — 1 functions h{(z — k)/2'],0 = k < 2',0 £ r < n, are linearly
independent over the reals. This is easy to see since for a fixed r,
h{(z — k)/27] assigns a nonzero value only to those z such that z = k
(mod 2"). Hence for k = 0,1, ,2" — 1, the h[(z — k)/27] assume
nonzero values on disjoint sets. On the other hand, A (z — k) /2 ] assigns
different values to the points £ and Ic + 2" while any k[ (z — k') /2" ]ass1gns
the same value to these points for ¥’ < r. Thus, h [(z — k)/27] is not a lin-
ear combination of other h[ (z — k)/2°] for s < r. This establishes the in-
dependence of the A’s. Note that for0 = &k < 2"and 0 < r < n, the fune-
tion h[(z — k)/2'] has period 2" and mean zero. By taking suitable
linear combinations of the 2" — 1 independent A{(z — k)/27], we can
form functions f which assume any desired values on the points 0, 1, 2,

-, 2" — 2. Of course, we must have

27—2

1@ -1 = - 2ie.

Consequently the 2" — 1 functions k[(z — k)/27] form a basis for the set
of all periodic funetions with period 2" and mean zero. That is, any func-
tion f with period 2" and mean zero can be written as a linear combina-
tion of primitive functions with period 2”. This completes the proof of

(3).
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To conclude this section we give an example which illustrates the ease
with which the primitive components of a function may be found. Con-
sider the function g given by:

g: -, 1’2’_5777%71 - 77%)0: to

¢ has period 8 and mean zero. The only component A{(z — k)/2"] which
can cause a difference in ¢(0) and ¢(4) is

h(z/4): ---,1,0,0,0,—1,0,00, --- .
Since « h(z/4) assigns the points 0 and 4 Vaiues which differ by 2a and
90) —g4) =3

then by choosing o = % we obtain the 4 (z/4) component of g. Perform-
ing similar calculations for h[(z¢ — k)/4], k = 1, 2, 3, we obtain

o = =54(5) - () ()
+ () -5 (5

given by

33—
74) 2 ’

33—

) 2 y

= ©

g T

[

b

W

g(@): - %

T
)5)

(which has period 4). We apply the same arguments to the decomposi-
tion of g, (z) into the h[(z — k)/2], k = 0,1, and find

3. (z 3 = z—1
92(2) = g1(2) _Qh(i)_ (Z_ §)h<—2 )
given by
: ... 33 383 33 33
g2 . ) 4747 4’4, 4,4, 4,4,

so that ¢.(z) = —3h(z). Consequently g has been decomposed into
primitive functions. Graphically we have:
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ih(i):---, i, 0, O, 0,—2, 0, o, 0, -
”:l)h(z;'l) , 0,";1, 0, 0, 0,—(”'2H>, 0, 0,
—Eh(z_z): O Y T S 0, X 0, -
4 4 4 e e '
gh ZZ?’);..., o, o o ’25 0, 0o 0 -7,
gz): -+, 1, 2, —5, e é, 1 - %, 0,

III. THE GENERAL THEOREM

We are ready to proceed to the n-dimensional generalizations of the
results of Section II. The proofs given will use basically the same ideas
as before although the technical details become somewhat more formal
and involved. We begin with some definitions.

Let Z" denote the ring of n-tuples of integers with component-wise

addition and multiplication. That is, if @ = (ay, -+, a,) and b =
(b, + -, bs) are elements of Z" then
a+b= (ar+ b, - ,a0 + b)
and
a'b= (a1-b1, -+, an by).

In general, unless otherwise noted, lower case Latin letters without sub-
scripts will denote elements of Z"; lower case letters with subscripts will
denote elements of Z, i.e., integers. ff a e Zand ¢ = (g1, 92, -~ , n)
e Z" then we define ag to be (ag:,aq, -+, ag.). The n-tuple (1,1,
+++,1) will be denoted by e. By & < b we mean a; < b;for1 < 7 < n.

A function f: Z" — R (the real numbers) is said to be primative if

there exist a,z”, --- , 2™ e Z" such that
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(=) Fn i e =P+ - ™ +a
f2) = ,
0 otherwise
forallze Z".
Let G denote the real vector space generated by the set of all primitive
functions. Z"* will denote the subset of Z" consisting of those n-tuples

which have all positive coordinates. If m & Z"* then P, is defined by
P.={zeZ"0=2 <m}

(ie,0 = x; <m;forl = ¢ = n, where 0 will be used to designate both
an element of Z and also the n-tuple (0,0; ---,0).)
A function f: Z" — R is said to have period m if

fe+ km) = f(z) forallz, keZ"
If f has period m and

i =0

zePy

then f is said to have mean zero. Let 3. denote the real vector space of
all functions of period m which have mean zero. Next, we define

fliz —a)/b], b0,

f) if z=by+a
22— a
f(b >={ ‘

0 otherwise

by

For a e Z, « # 0, let E(a) and O(a) denote the “even part” and “odd
part” of « respectively. In other words, if @« = 26(2u + 1) for 8, u € Z
then E(a) = 2°and O(a) = 24 + 1. Form = (my, --- ,My) & 47,
E (m) will denote the n-tuple (E(m,), ---, E(m,)) with O(m) defined
similarly.

Finally, for m & Z", let $..* denote the real vector space generated by

{f (zO_(__rn—;):f e Femy, Q€ Z"}.

We note that if m = e = (1,1, ---,1) then §." = &, ; in general, we
always have §," C F,.
We come now to the main result of the paper. This is the following:

the set of functions
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Theorem.
¢gNg, =5,"
forme Z",
The proof of this theorem will proceed in a series of Lemmas parallel-
ing the steps taken in the preceding section.
Lemma 1. If g(2) e Gthen g[(z — a)/rleGQforallae Z" and r ¢ Z™F,

Proof. We first show that if f(z) is primitive then f[(z — a)/r] is primi-
tive. If we assume f(z) is primitive then by definition there exist
bz, -+, 2™ e Z" such that

(_1)c1+...+cn lf 2 = C]I(l) + . + Cnx(m + b.

0 otherwise

f2) ={

On the other hand

f<z——a>= J) if z=ry+a
" 0 otherwise

Therefore

(=Dotre it 2=r(ax® + - +ex™ 40 ta
f<z - a>
0 otherwise

(=Dt if z=a@z®) + - +e (™) +rb+a

0 otherwise

and hence, f[(z — a)/r] is primitive. By applying this result to a linear
combination of primitive functions, i.e., an element of G, the lemma, fol-

lows.
Let 4,7: Z" — R be defined by

i(z) = 1, m(z) = 2120 --- 2, forall 2= (2,20, - ,2,) & Z".

Lemma 2. Let com e Z"", r = ¢m and suppose f: Z" — R has period
m. Then for any a e Z"
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i (O()>f(z) - 2 (B©) X § ( ))f@.

ZePp,

Proof. We first note that since

I

r=cm

E(c)O(c)E (m)0O(m)
E(c)E(m)0(c)0(m) = E(r)O(r)

Il

then

E@r) = E()E(m) and O(r) = 0(c)0O(m).
By definition

e (0<0<> >>f(") 2 /@)

and
z;mi@(—m;)f(z) =2./@
where
A =1{2:0=2=£k0()O(m)+ a <O()n forsome k}
and
B=1{220<2z=k0(m)+ a<m forsomek}.

Hence, for each set, the values which k¥ may assume are just a transla-
tion of Pgm, there being =(E(m)) values in all. Since O(m) and
0(c)O(m) are odd (i.e., each component is odd), then A and B both
contain a complete residue system modulo E (m). Consequently, since all
the elements of A and B are congruent to ¢ modulo O (m) then modulo
E (m)O(m), A and B are identical. Sincem = E (m)O(m) and f has period
m then the sums 2 f(2) and >~ f(z) are equal.
zeA zeB

We also note in general that for any s e Znt

= i) ie - @ L)@

since P, is the disjoint union of x(E(c)) copies of P, . Therefore we
have
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% (om) 1@ = £ (59)
" e (ot Lo

=z (E(c)) P%)m (0( )O(m)>f(2)

@) £i (5056

and the lemma is proved.
We should note that as a corollary to this lemma we obtain:

% (z — a) f(z) has mean zero iff
cm
(5)

% (z ;L a> f(z) has mean zero.

We are now in a position to prove the important

Lemma 3. Suppose g € G has period p € Z"*. Then for all a & Z",

T () 0@ = o

Proof. We first show that the above conclusion holds if we assume that

g = fis primitive with period ¢ = (a, , - - - , a). In this case there exists
e, -+, ™ ¢ Z" such that
f(2) (—)mFFe if 2= ax® 4+ - +aa™ +o
¥4 =
0 otherwise

To each u = (u, ---,us) € Z" we can associate the unique point
v= (v, - ,v,) e Z"suchthatv, = u; & O(q), v: = u;fori > 1, where
the -+ sign is chosen so that Z" is decomposed into the union of disjoint
pairs {u,v}. It follows at once that

wx® + oo+ ur™ =0z + - + 0,2™ (mod 0(g)).
Since

> v — Zlui= +0(q)

is odd then
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Flue® + - + ux™ +¢) = —f(n 2@+ oo o™ +c).
Also, note that foralla e Z"

i(ulxm 4o ur™ — > _; <v1x“’ 4o ope™ — )
0(9) 0(9) '

Since f has period ¢ then we must have

5 (o) 1@ -0
as asserted.

We may now remove the restriction that f has period of the form
g = (a,a, -+ ,a) = ae. If we assume f has an arbitrary period p & Z"*
then it is certamly true that f also has period 7 (p)e. By above we have

2
= 0.
= (o) 1@
Since p divides « (p)e then by (5) we see that

£ (o) -0 ©

Finally, to prove the lemma assume that
i

g =2 af;
i=1

where the «; are real and the f; are primitive. If f; has period p? then
by (6) we have

2 i(—z—(%)f,-(z) =0 for 1Sj=t

Pp(.’l)

(1) 2) (t)
.. p

If ¢ has period p and ¢ denotes p p then by Lemma 2

Zz<0()>f,(z) 0 for 1S5t

Therefore

5 (o) o0 = e (5e)10 -

so that applymg Lemma 2 again we obtain

£i ()10 -0

since g has period p. This proves the lemma.
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The final lemma is an n-dimensional generalization of (3). Its proof
however, is considerably more complicated.

b

Lemma 4. If m = 2% for some a € Z* then 5, < g.

Proof. It will be sufficient to show that there exist 2"* — 1 functions
in G which also belong to ., and which are linearly independent over .
Let C* denote the k X k matrix of the form

1 1 1 1 1
1 -1 1 1 1
1 1 —1 1 1
C(k) —
1 1 1 —1 1
1 1 1 1 v -1
and let D® denote the & X k matrix of the form
0 0 0 ‘e 0 0 1
0 0 0 o 0 1 1
0 0 0 1 1 1
D(k) —
1 1 1 1 1 1
In other words,
(1 for 1 =1
Cij = {

(1 —28; for 7>1
and
0 if t4+57=<k

{1 otherwise
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where 6;; is the Kronecker é-function. Define B . to be the » X » matrix

of the form
0 C(v—x+1)
B = <D(“’” 0 > for 1=k =

where 0 denotes the appropriate zero matrix. Let 7.,” denote the point
of Z’ formed from the Ath row of B,”. Finally, let f.”’ denote the func-
tion in G defined by

(€3] ( (_ ]- )al+"'+“n if z = alrx,l(") + A + a/vrx,v(y)
10 @) = _ - .
0 otherwise

We show first that the functions f,”’, 1 < k £ », are linearly independ-
ent over R. To accomplish this it suffices to show that forany «, 1 = « =
v, there are two points p and ¢ in Z” such that

7@ = £ ()

while

.7 () = () for k<7 = w

What we show in fact is that if | f,” (p) | = 1 then f,. ., (p) = 1 for
1 < k < ». This may be proved by showing that if s € Z” is any Z-linear
combination of the 7,,”, 1 £ A £ v, then s can be written as a Z-linear
combination of the r.12”, 1 £ A = », such that the sum of the coeffi-
cients is divisible by 2. We proceed by induction on ». For » = 2 we

have
1 1 0 1
@ _ @ _
sr=( ) 20=0 o)
Since
7‘1.1(2) = 7‘2,1<2) + 7‘2,2(2)
and

2) ) (€]

T, = Tee — T2

then any Z-linear combination of the ra® ean be written as a Z-linear
combination of the 7.,® with the sum of the coefficients divisible by 2
and the assertion is true for this case. Now assume the hypothesis for »
and let
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v+1
_ (r+1)
§ = E (225N
A=1

be a Z-linear combination of the ren’ . There are two cases.

(1) Suppse K >—— 2' I]Ote t’ha't’ BK( ) a'lld BK 1( ) lla‘ve tlle fO]'lO“lllg
+.

0
0
BK(V-H) — BK—I(II)
0
11---10 0
——
k—1

0
0

B‘+1(v+1) - B,,(p)
0
11---10 ... 0
|

K

We also note the important fact that Testa” ™ has all zero components
except for the xth component which is 1. Thus we have

(r+1) (r+1) +1
rx,v+1 = rx+1,v+1 - Tx+1,v—x .

Now s can be written ag

v
41 D)
s = Z [5VFRY + @i .
=1

By the induction hypothesis (since the ren’"? differ from the renl?,
1 = X\ £ », only in an extra zero component) we can write

v v
+1) -+
> axren = > bareqin
=1 =1
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v
where Y by is an even integer. Hence
A=1

14
(v+1) (r+1) (v+1)
§ = Z bﬂ‘x+1,x + a1 (Tﬁc+l,v+1 — Te41,0—x )
A=1

Here, s has been written as a Z-linear combination of the r,,;,“*" with
the sum of the coefficients even and consequently this case is finished.
(ii) Suppose x = 1. We write B,"*" and B,"*™ as

B, = B,

1
B2(l'+ ) 32 @)

We note that

1) (r+1) (r+1)
T1,v41 = To. + To,v41 .

As before, by the induction hypothesis we can write

v v
(v-+1) (v-+1)
Z X1\ = Z b)J‘z,x
=1 r=1

where D by is even. Consequently we have
A=1
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v
4D o+
§ = )\Z [OVSBY g + Ay 417,41 !
=1

v
(r+1) (r+1) (r+1
= xZ baren "+ @ (72, 4 1, O)
=1

which expresses s as a Z-linear combination of the r,,”™ with an even
coefficient sum. This completes the induction step and the proof of the
assertion that the f,”, 1 < x < », are linearly independent over R.

A more careful examination of B,” reveals the following:

(a) 7",)‘4_1(”) — 7',(,)\(1’) = (61,v~—)\ » 62.11—-.)\ y ° 7" ;61',11—)\)
fory —k+1=<A=Zv—1.

(b) r” — rea® = (281, 0001 » 280,001, *** 28y c071)
for2 = AN=v—Lk+1.

(e) Zrm“) -k — 2)“,1@) = (210,200, - ,26,.).
=2

Since the linear combinations of the ., in (a), (b) and (c¢) all have
the sum of coefficients an even integer then

(201, 28, -+, 28,0)) = £.2(0)

for 1 < A,k < ». Hence £, has period 2¢ = (2,2, ---,2). Also we note
that the only points in Py, € Z” at which £, is nonzero are just those
Z-linear combinations of the r,,” which have all coordinates 0 or 1. It
is not difficult to see that the only points of this type which may be gener-
ated are the 2« points of the form (c1,¢2, -+, ¢o1,Co,C0, - -, €o)

where ¢; = 0 or 1. By a translation of f,* by a we mean the function
fe.a” defined by

foa”@) = £z — a).
By letting the a range over the set of points
Ac={(00,---,0,di,ds, -~ ,d,):dy = Oor 1},

the 2+ translations f, ., a & 4., have the property that for each p ¢
Py, , exactly one of the f, ,”’ assumes a nonzero value at p. In fact, if we
define an inner product (f,..”, frs") for f.."” and Hs” by
Gea”, b = 22 fua”@)rs"” ()
peE2,

then the inner product of any two distinct functions £, ., f1,”, a e A,
be Ay, 1 = «k, X £ », is zero. Since

(fx.a(V), fx.a(V)) = 2r
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then by introducing the “normalized” basis functions

fx,a(V) = 2_“/2fx,a(,‘)

we see that the set of (1 + 2 + --- 4+ 21) = 2* — 1 functions f, .,
aeA.,1 =« = v, are orthonormal. Thus, we have shown that F., C G.

The extension of this technique to show that Fiw, C G is quite similar
and will be omitted. The basic idea is simply to introduce the ‘“‘expan-
sions” fean” of fro” defined by

.fx,a.)\(y) (Z) = fK,'l(y) (Z/)\) for A = 20) 21: ) 2(1—1’

and then by taking suitable normalized translations of these functions,
obtain an orthonormal basis (in §) for Fs, . This shows that

iFm = gzae C g

and the proof of the lemma is completed.
We are now ready to proceed to the proof of the

Theorem.
cNg, =5,"
forme Z™".

Proof: g N g, C F,"

Let f e g N F,, . Since f has period m then by Lemma 3, we have for all

aeZ"
2, (0< ))f(” -0

Since

10 = {52)ie

and each of the functions ¢[(z — a)/O(m)]f(z) can be written as
k[ (z — a)/0(m)] for some h & Ty then f € F," and this direction is
established.

¢Ng,>s,"

We have already noted that §,,* C ,, . It remains to show that ,,* C c.
By definition ,.* is the real vector space generated by the set

{hl(z — a)/O(m)]: heFgm,aeZ"}.
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By Lemma 4 we have
Feem) C Fr@mne C G-

Thus, if & € Frm then h € G. But by Lemma 1, k ¢ G implies
hl(z — a)/0(m)] e G.

Therefore, since G contains a set of generators for %,,* then 5,,* < g.
This completes the proof of the theorem.

IV. CONCLUDING REMARKS

As a concluding example of the results of the preceding section; we
consider the decomposition of the function f generated by the charge dis-
tribution of the crystal structure of potassium tantalate, KTaO;. This
compound forms face-centered cubic crystals with a charge distribution
as shown in Fig. 1. That is, a +1 is situated at each vertex, a —2 at each
face-center and a 45 is located in the center of the cube. The periodic
function f defined by this distribution has period (2,2,2) and is shown in
Fig. 2 (which is the forward upper left octant of Fig. 1). We have

11 1), 01 1), 0 0 1
B® =11 -1 1}, B® = Io 1 —1|, B® = \0 10
11 1—1J 1o o 1 10

so that the 7 basis functions into which f will be decomposed are as shown
in Fig. 3.

+1 +1

+1 i

-2 -2

+1 +1

+1 +1

Fig. 1 — Charge distribution of KTaOj; .
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z
o -2
+1 °
Y
//
5 +5
[o] -2 . x

Fig. 2 — A period of the periodic function.

1213

0 -1 -1 0 0 0 0 0
(o] 0 [¢] (o) (¢] =1 -1
Q o o] 0 +1 0 0 +1
+1i ) [o] o] +1 ) 0 0
3 3 3 (3)
1. (0,0,0) 1 1,0,0) 1, (o,1,0) 1, 0,1,0)
-1 +1 0 o +1 +1
o (0] -1 1 -1 2y
0 0 + - -1 -1
+1 -1 +1 +1
(3) (3) 3
30,00 2,(0,1,0) f3,(0,0,0)
Fic. 3 — The seven basis functions.
+1-1=0 -t-1=-2
—2+2+1=1
\\
TUr—t1-241=0
“-2H1=-2-g
\\
+2+2+H1=+5
+1-1=0 —1-1=~2

Fig. 4 — Decomposition of the periodic function.
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The coefficient of f;,(.0,0® is obviously (0 — (—2)) = 1, ete., so
that we obtain

f = .fl,(O,O,O)(3) - fl,(l,0,0)(a) - fl,(O,l,O)(S)

® ® 3
+ 2010 — 2 010" — f3.0,0,0°

Graphically, this equality is shown in Fig. 4.

The author gratefully acknowledges many enlightening discussions on
this subject with H. O. Pollak (whose ideas along the lines of generating
functions led to a short solution of the one-dimensional problem) and
W. J. C. Grant (who originated the preblem ).
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