THE SOLUTION OF A CERTAIN RECURRENCE

R. L. GRAHAM AND JOHN RIORDAN, Bell Telephone Laboratories, Murray Hill, New Jersey

In 1954, P. Turán [3] gave a proof of the identity

\[\binom{n + p}{p} = \sum_{k=0}^{p} \binom{p}{k} \binom{n + 2p - k}{2p} \]

which he said appeared without proof in a book of the Chinese mathematician Le-Jen Shoo from 1867. This is equivalent to

\[\binom{n}{p} = \sum_{k=0}^{p} \binom{p}{k} \binom{n + k}{2p} \]

or

\[\binom{n}{m} = q_{nm} = \sum_{k=0}^{m} q_{mk} \binom{n + k}{2m}. \] \hspace{1cm} (1)

In one of the many successors to Turán's paper T. S. Nandjundiah [2] noticed that the Shoo identity is an instance of the following expansion of a product of binomial coefficients, namely

\[\binom{m}{p} \binom{n}{q} = \sum_{k=0}^{p} \binom{n - m + p}{p - k} \binom{m - n + q}{k} \binom{n + k}{p + q} \] \hspace{1cm} (2)

(the upper limit of the sum is supplied by the convention that \(\binom{a}{b}\) is zero if \(a < 0, b < 0,\) or \(a < b\)). Let

\[r_{nm} = \frac{1}{n + 1} \binom{n - m}{m} \binom{n + 1}{m + 1} = \frac{1}{m + 1} \binom{n}{m} \binom{n - 1}{m}. \]

These numbers appeared in a study of a telephone traffic system with inputs from two sources made by John P. Runyon and are known locally as Runyon numbers; cf. J. A. Morrison [1]. It follows from (2) that

\[(m + 1)r_{nm} = \binom{n}{m} \binom{n - 1}{m} = \sum_{k=0}^{m+1} \binom{m + 1}{m-k} \binom{m - 1}{k} \binom{n + k}{2m} \]

or

\[r_{nm} = \sum_{k=0}^{m+1} \frac{1}{m + 1} \binom{m + 1}{k + 1} \binom{m - 1}{k} \binom{n + k}{2m} = \sum_{k=0}^{m} r_{mk} \binom{n + k}{2m}, \] \hspace{1cm} (3)

604
a relation similar to (1). The natural question arising is: what is the general solution of

\[x_{nm} = \sum_{k=0}^{m} x_{mk} \binom{n+k}{2m}. \]

Since the recurrence (4) leaves \(x_{nn} \) undetermined, this is the same as asking for the coefficient \(X_k(n, m) \) in

\[x_{nm} = \sum_{k=0}^{m} X_k(n, m) x_{kk}. \]

The answer is given by the following

Theorem. If \(n = 0, 1, 2, \ldots, m = 0, 1, \ldots, n, \) and

\[x_{nm} = \sum_{k=0}^{m} x_{mk} \binom{n+k}{2m}, \]

then

\[x_{nm} = \sum_{k=0}^{m} \frac{2k + 1}{m + k + 1} \binom{n+k}{m+k+1} \binom{n-1-k}{m-k} x_{kk}, \quad \text{for} \ m < n \]

with arbitrary \(x_{kk}. \)

For a proof of the theorem, notice first that when \(x_{nm} = r_{nm}, x_{kk} = r_{kk} = \delta_{kk}, \) with \(\delta_{nm} \) the Kronecker delta; hence

\[X_0(n, m) = r_{nm} = \frac{1}{m+1} \binom{n}{m} \binom{n-1}{m}. \]

Next, suppose that

\[x_{nm} = \frac{2\rho + 1}{m + \rho + 1} \binom{n-1-\rho}{m-\rho} \binom{n+\rho}{m+\rho}, \quad \rho = 1, 2, \ldots, m. \]

Then, by (2)

\[x_{nm} = \sum_{k=0}^{m} \frac{2\rho + 1}{m + \rho + 1} \binom{m-1-\rho}{k-\rho} \binom{m+\rho+1}{k+\rho+1} \binom{n+k}{2m} \]

\[= \sum_{k=0}^{m} \frac{2\rho + 1}{k + \rho + 1} \binom{m-1-\rho}{k-\rho} \binom{m+\rho}{k+\rho} \binom{n+k}{2m} \]

\[= \sum_{k=0}^{m} x_{mk} \binom{n+k}{2m} \]

while \(x_{kk} = \delta_{pk}; \) hence
\[X_p(n, m) = \frac{2p + 1}{m + p + 1} \binom{n - 1 - p}{m - p} \binom{n + p}{m + p}, \quad p = 0, 1, \ldots, m \]

and the theorem is proved.

The theorem leads to binomial identities whenever a particular solution of (4) (for which \(x_{kk} \neq \delta_{pk}, \ p = 0, 1, \ldots, m \)) is known. Thus in the first instance \(x_{nm} = q_{nm} \) yields

\[
\binom{n}{m}^2 = \sum_{k=0}^{m} \frac{2k + 1}{m + k + 1} \binom{n - 1 - k}{m - k} \binom{n + k}{m + k} = \sum_{k=0}^{m} X_k(n, m)
\]

since \(q_{nn} = 1 \).

A direct proof of this identity is as follows. First

\[
\sum_{k=0}^{m} \frac{2k + 1}{m + k + 1} \binom{n - 1 - k}{m - k} \binom{n + k}{m + k}
\]

\[
= \sum_{k=0}^{m} \frac{2k + 1}{n - m} \binom{n - 1 - k}{m - k} \binom{n + k}{m + k + 1}
\]

\[
= \sum_{k=0}^{m} \frac{2m + 1}{n - m} \binom{n - 1 - k}{m - k} \binom{n + k}{m + k + 1}
\]

\[
- 2 \sum_{k=0}^{m} \frac{m - k}{n - m} \binom{n - 1 - k}{m - k} \binom{n + k}{m + k + 1}
\]

\[
= f_{nm} - g_{nm}.
\]

Next we have

\[
f_{nm} = \frac{2m + 1}{n - m} \sum_{k=0}^{m} \binom{n - m + k - 1}{k} \binom{n + m - k}{2m + 1 - k}
\]

\[
= \frac{2m + 1}{n - m} \sum_{k=0}^{m} \binom{n - m + k - 1}{k} \binom{n + m - k}{2m + 1 - k}
\]

\[
= \frac{2m + 1}{2n - 2m} \sum_{k=0}^{m} \binom{n - m + k - 1}{k} \binom{n + m - k}{2m + 1 - k}
\]

\[
= \frac{2m + 1}{2n - 2m} \binom{2n}{2m + 1} = \binom{2n}{2m}
\]

(the next to last step uses one form of the Vandermonde relation). Also

\[
g_{nm} = 2 \sum_{k=0}^{m} \binom{n - 1 - k}{m - 1 - k} \binom{n + k}{m + k + 1} = 2 \sum_{k=0}^{m} \binom{n - m + k}{k} \binom{n + m - 1 - k}{2m - k}
\]
and
\[
\binom{2n}{2m} = \sum_{k=0}^{2m} \binom{n-m+k}{k} \binom{n+m-1-k}{2m-k}
\]
\[
= \sum_{k=0}^{m-1} \binom{n-m+k}{k} \binom{n+m-1-k}{2m-k}
\]
\[
+ \sum_{k=0}^{m} \binom{n-m-1+k}{k} \binom{n+m-k}{2m-k}
\]
\[
= \frac{1}{2} \cdot q_{nm} = \sum_{k=0}^{m} \binom{n-m-1+k}{k} \left[\binom{n+m-k-1}{2m-k} + \binom{n+m-k-2}{2m-k-1} + \cdots + \binom{n}{m+1} + \binom{n}{m} \right]
\]
\[
= q_{nm} + \binom{n}{m}^2
\]
which proves the identity.

Notice that
\[
(2m+1)^{-1}f_{nm} = (2m+1)^{-1} \binom{2n}{2m} = \sum_{k=0}^{m} \frac{1}{m+k+1} \binom{n-1-k}{m-k} \binom{n+k}{m+k}
\]
which is equation (5) with \(x_{kk} = (2k+1)^{-1}\); hence
\[
x_{nm} = (2m+1)^{-1} \binom{2n}{2m}
\]
is a solution of (4) and
\[
\frac{1}{2m+1} \binom{2n}{2m} = \sum_{k=0}^{m} \frac{1}{2k+1} \binom{2m}{2k+1} \binom{n+k}{2m}
\]
or
\[
\binom{2n}{2m} = \sum_{k=0}^{m} \binom{2m+1}{2k+1} \binom{n+k}{2m}
\]
which is the \(x_{nm}\) with \(x_{kk} = 2k+1\). Since sums and differences of solutions of (4)
are also solutions, it follows that

$$x_{nm} = \frac{1}{2} \left(\binom{2n+1}{2m} - \binom{n}{m} \right)$$

is the solution for which $x_{kk} = k$.

References

2. T. S. Nandjundiah, Remark on a note of P. Turán, this MONTHLY, 65 (1958) 354.

ON THE TOTIENT FUNCTIONS OF JORDAN AND ZSIGMONDY

J. E. SHOCKLEY, University of Wyoming, and R. J. HURSEY, Madison College

Introduction. K. Zsigmondy (see [2], p. 152) devised a function to determine the number of elements of a certain order in a finite abelian group.

In this note it will be shown that Zsigmondy's function can be described completely by use of Jordan's totient function (see [2], p. 147). The proof is elementary and is much simpler than the lengthy combinatorial proofs of the formula found in the literature (see, for example, [1]).

I. In order to translate the problem into number-theoretic concepts, we make the following definitions:

Definition. Let n and k be positive integers. A k-tuple $\{a_1, a_2, \ldots, a_k\}$ of positive integers is called a prime sequence for n (of length k) provided $1 \leq a_i \leq n$ and $(a_1, a_2, \ldots, a_k, n) = 1$ (the parentheses denote the greatest common divisor).

Definition. If n and k are positive integers, then $J_k(n)$ denotes the number of distinct prime sequences for n, each of length k. $J_k(n)$ is defined to be zero.

Definition. Let m, n_1, n_2, \ldots, n_s be fixed positive integers. An s-tuple $\{a_1, a_2, \ldots, a_s\}$ of positive integers is called a primitive sequence for m (with respect to n_1, \ldots, n_s) provided

(1) $1 \leq a_i \leq n_i$ \hspace{1em} (i = 1, 2, \ldots, s) and

(2) m is the smallest positive integer such that $ma_i \equiv 0 \pmod{n_i}$ \hspace{1em} (i = 1, 2, \ldots, s).

Definition. If m is a positive integer then $\psi(m) = \psi(m; n_1, n_2, \ldots, n_s)$ denotes the number of distinct primitive sequences for m (with respect to n_1, n_2, \ldots, n_s).

Thus if G is a finite abelian group with independent generators g_1, g_2, \ldots, g_r of order n_1, n_2, \ldots, n_r, respectively, then $\psi(m)$ is the number of elements of G of order m.

II. Theorem. ψ is a multiplicative function.