RAMSEY'S THEOREM FOR \(n \)-DIMENSIONAL ARRAYS

BY R. L. GRAHAM AND B. L. ROTHSCHELD

Communicated by Gian-Carlo Rota, November 5, 1968

Introduction. An analogue to a theorem of Ramsey [5] has been conjectured for finite vector spaces by Gian-Carlo Rota. Namely, for each choice of positive integers \(k, l, r \), and finite field \(F = GF(q) \), there exists an integer \(N(k, l, r; q) \) such that if \(n \geq N(k, l, r; q) \) and the \(k \)-dimensional subspaces of an \(n \)-dimensional vector space \(V \) over \(F \) are partitioned into \(r \) classes, then some \(l \)-dimensional subspace of \(V \) has all of its \(k \)-dimensional subspaces in one class. In this note we present a very general theorem of this type, a brief outline of its proof, and general applications, including some cases of Rota's Conjecture. Complete details will appear elsewhere.

Notation. Let \(A = \{a_1, \ldots, a_t\} \) be a finite set with \(t > 1 \) and let \(H_p: A \rightarrow A \) be a permutation group on \(A \). Define \(H_c = \{a \in A\} \) to be the set of maps of \(A \) into \(A \) given by \(x^a = a \) for all \(x \in A \). \(H \) will denote \(H_c \cup H_p \). We can define an action of \(H \) on \(A^t \) by \((x_1, \ldots, x_t)^\sigma = (x_1^{\sigma}, \ldots, x_t^{\sigma})\) for \(x_i \in A, \sigma \in H \). Let \(I_0 \) denote \(\{a_1, \ldots, a_t\} \in A^t \) and let \(L_c = \{l_0: \sigma \in H_c\}, L_p = \{l_0: \sigma \in H_p\}, L = L_c \cup L_p \). We introduce the basic concept of a \(k \)-parameter set. For fixed nonnegative integers \(k \leq n \), let \(\Pi = \{S_0, S_1, \ldots, S_k\} \) be a partition of the set \(I_n = \{1, 2, \ldots, n\} \) with \(S_i \neq \emptyset \) for \(1 \leq i \leq k \). \(S_0 = \emptyset \) is possible. Let \(f: I_n \rightarrow H \) have the property

\[
 f(i) \in H_c \text{ if } i \in S_0, \\
 f(i) \in H_p \text{ otherwise.}
\]

The set \(P(\Pi, f) \) is defined by

\[
P(\Pi, f) = \bigcup_{1 \leq i_0 < i_1 < \cdots < i_t \leq n} \{(x_1, \ldots, x_t); x_j = a_{f(j)}^{i_j} \text{ if } j \in S_{i_j}\} \subseteq A^n.
\]

Note that since \(f(j) \in H_c \) for \(j \in S_0 \), \(P(\Pi, f) \) consists of exactly \(t^k \) elements of \(A^n \).

Definition. \(P_k \) is a \(k \)-parameter set of \(A^n \) if and only if \(P_k = P(\Pi, f) \) for some partition \(\Pi \) and mapping \(f \). Of course, we say that \(P_k \) is a \(k \)-parameter subset of the \(l \)-parameter set \(P_l \subseteq A^n \) if \(P_k \subseteq P_l \) and \(P_k \) is a \(k \)-parameter set of \(A^n \).

The main results.

Theorem 1. For each choice of positive integers \(k, l, r \) there exists an
integer $M(k, l, r)$ such that if $m \geq M(k, l, r)$ and the k-parameter subsets of an m-parameter set $P_m \subseteq \mathcal{A}^n$ are partitioned into r classes, then there exists an l-parameter subset $P_1 \subseteq P_m$ such that all k-parameter subsets of P_1 belong to the same class.

Let us call a k-parameter set $P_k \subseteq \mathcal{A}^n$ normalized if $f(j) = \sigma_1$ for all $j \in S_0$. We state the important

Theorem 2. The preceding theorem is valid if all parameter sets are required to be normalized.

Before proceeding to the proof outline, we list several immediate corollaries to the theorems.

Corollary 1. Given integers k and r, there exists an integer $N(k, r)$ such that if $|A| \geq N(k, r)$ and the finite subsets of A are partitioned into r classes then there exist k disjoint nonempty subsets A_1, \ldots, A_k of A such that all $2^k - 1$ unions $\bigcup_{j \in J} A_j$, $\emptyset \neq J \subseteq \{1, 2, \ldots, k\}$, is I_k, are in the same class.

This follows from Theorem 2, taking $A = \{0, 1\}$ and $H_r = \{e\}$.

Corollary 2 (J. Folkman, J. Sanders [6]). Given integers k and r, there exists an integer $N(k, r)$ such that if $n \geq N(k, r)$ and the set I_n is partitioned into r classes, then there exist k integers a_1, \ldots, a_k such that all sums $\{\sum_{i=1}^k \epsilon_i a_i : \epsilon_i = 0 \text{ or } 1, \text{ not all } \epsilon_i = 0\}$ are in the same class.

This follows for Corollary 1 by interpreting the characteristic function of A_i as the dyadic expansion of an integer a_i. For $k = 2$, Corollary 2 was first proved by Schur [7]. Schur's result can also be stated as follows:

Given r, there exists an integer $N(r)$ such that if $n \geq N(r)$ and the set I_n is partitioned into two classes, then the equation $x + y = z$ can be solved in one class. This is also a special case of

Corollary 3. Let $\mathcal{E} = L_i(x_1, \ldots, x_m)$, $1 \leq i \leq n$ be a system of homogeneous linear equations with the property that for each j, $1 \leq j \leq m$, there exists a solution $(\epsilon_1, \epsilon_2, \ldots, \epsilon_m)$ to the system \mathcal{E} with $\epsilon_i = 0$ or 1 and $\epsilon_j = 1$. Then given an integer r there exists an integer $N(r)$ such that if $n \geq N(r)$ and the set I_n is partitioned into r classes, then \mathcal{E} can be solved in one class.

This is similar to a result of R. Rado [3].

Corollary 4 (van der Waerden [2]). Given integers k and r there exists an integer $N(k, r)$ such that if $n \geq N(k, r)$ and the set I_n is partitioned into r classes, then at least one class contains an arithmetic progression of length k.

This result is implied by the stronger

Corollary 5 (Hales-Jewett [1]). Let \(A = \{a_1, \ldots, a_t\} \) be a finite set. Given an integer \(r \) there exists an integer \(N(r, l) \) such that if \(n \geq N(r, l) \) and the set \(A^n \) is partitioned into \(r \) classes, then there exists a set of \(t \) elements of the form

\[
X_i = (x_{1i}, \ldots, x_{1u}, a_i, x_{2i}, \ldots, x_{2v}, a_i, \ldots, a_i, x_{di}, \ldots, x_{du}) \in A^n,
\]

\(1 \leq i \leq t, \)

all of which belong to one class.

This follows from Theorem 1 by taking \(A = \{a_1, \ldots, a_t\}, k = 0, l = 1, H_p = \{e\} \).

Corollary 6. Given integers \(l \) and \(r \) and a finite field \(GF(q) \) there exists an integer \(N(l, r, q) \) such that if \(n \geq N(l, r, q) \) and the 1-dimensional subspaces of an \(n \)-dimensional vector space \(V \) over \(GF(q) \) are partitioned into \(r \) classes, then \(V \) contains an \(l \)-dimensional subspace \(V' \) all of whose 1-dimensional subspaces are in one class.

This follows from Theorem 2 by taking \(A = GF(q), H_p = \text{mult. group of } GF(q), k = 0 \). The corresponding result for affine spaces over \(GF(q) \) follows from Theorem 1. Corollary 6 was first proved for \(q = 2 \) by D. Kleitman (unpublished) and \(q = 3, 4 \) by B. L. Rothschild [4]. From the result for 1-dimensional affine subspaces, techniques of Rothschild [4] can be used to prove the result corresponding to Corollary 6 when 1-dimensional subspace is replaced by 2-dimensional subspace. It was conjectured by G.-C. Rota that Corollary 6 holds for \(k \)-dimensional subspaces in general.

Finally, as a more powerful application, let \(C^n \) denote an \(n \)-dimensional cube in \(E^n \). Let us say that a set \(S_k \) of \(2^k \) vertices of \(C^n \) forms a \(k \)-subspace of \(C^n \) if \(S_k \) is contained in some \(k \)-dimensional Euclidean subspace of \(E^n \).

Corollary 7. Given integers \(k, l, r \) there exists an integer \(N(k, l, r) \) such that if \(n \geq N(k, l, r) \) and the \(k \)-subspaces of \(C^n \) are partitioned into \(r \) classes, then there exists an \(l \)-subspace of \(C^n \) all of whose \(k \)-subspaces are in one class.

Brief outline of proof of Theorem 1. Let \(S(k; t_1, \ldots, t_r) \) denote the statement:

There exists an integer \(M(k; t_1, \ldots, t_r) \) such that if \(m \geq M(k; t_1, \ldots, t_r) \) and the \(k \)-parameter subsets of an \(m \)-parameter set \(P_m \) are partitioned into \(r \) classes \(C_1, C_2, \ldots, C_r \), then there exists
an t, $1 \leq t \leq r$ and an t-parameter subset P_u of P_m such that all the k-parameter subsets of P_u belong to class C_l.

We prove $S(k; t_1, \ldots, t_r)$ by multiple induction on k and $t_1 + t_2 + \cdots + t_r$. We can assume $0 \leq k$, $r \geq 1$ and $t_i \geq 1$ for all i. The first step in the induction is $S(0; t_1, \ldots, t_r)$. Once certain notational difficulties have been overcome, the proof of this statement is relatively straightforward. We assume $S(i; t_1, \ldots, t_r)$ has been established for $0 \leq i < k$ and all t_i. Since $S(k; t_1, \ldots, t_r)$ is certainly valid if $t_1 + t_2 + \cdots + t_r \leq rk$, we further assume that for some $t > rk$, $S(k; t_1, \ldots, t_r)$ is valid for all choices of t_i with $t_1 + \cdots + t_r < t$.

A critical step in the proof rests on the following fact. It is possible to define a map $M: L^n \rightarrow 2^a$ such that for each l-parameter set $P_i \subseteq A^n$ there exists an $(l-1)$-parameter set $P_{i-1} \subseteq L^n$ with $M(P_{i-1}) = P_i$ such that for "certain" k-parameter subsets $P_k \subseteq P_i$, there exists a $(k-1)$-parameter subset $P_{k-1} \subseteq P_{i-1}$ which makes the following diagram commutative:

$$
P_{k-1} \subseteq P_{i-1} \subseteq \quad M \downarrow \quad \downarrow M
P_k \quad \subseteq P_i
$$

Thus, the original partition of the k-parameter sets P_k into r classes induces a partition of $(k-1)$-parameter sets P_{k-1} to which we can apply the induction hypothesis. It turns out that the "remaining" k-parameter sets can be naturally embedded in a large parameter set to which we can again apply the preceding argument. After a large number of iterations of this procedure, we are left with a configuration of blocks of "remaining" k-parameter sets which in a certain sense is isomorphic to a large parameter set in which the blocks are identified with points. By then partitioning these point-blocks according to the way in which the corresponding constituent k-parameter subsets have been partitioned and applying $S(0; t_1', \ldots, t_r')$ for suitable t_1', \ldots, t_r', we can extract a configuration of k-parameter sets from which the induction step can be completed fairly directly. Theorem 2 follows from Theorem 1 with little difficulty. As might be expected, the bounds provided on $M(k, l, r)$ by this proof are extremely large.

References

7. I. Schur, *Über die Kongruenz $x^m + y^m = z^m$ (mod p)*, Jahr. Deutsch. Math.-Verein. 25 (1916), 114.

Bell Telephone Laboratories, Murray Hill, New Jersey 07974 and
Massachusetts Institute of Technology, Cambridge, Massachusetts
02139