References

AN IRREDUCIBILITY CRITERION FOR POLYNOMIALS OVER THE INTEGERS

W. S. Brown and R. L. Graham, Bell Telephone Laboratories

1. Introduction. If \(P(x) \) is a reducible polynomial of degree \(d \geq 1 \) with integer coefficients, we should not expect the sequence
\[
S(P) = (\cdots, P(-1), P(0), P(1), \cdots)
\]
to have many noncomposite (that is, prime or unit) elements. By making this idea precise, we shall obtain an irreducibility criterion. A special case of our main result is that if \(S(P) \) contains \(p \) primes and \(u \) units with \(p + 2u > d + 4 \), then \(P \) is irreducible.

2. Fatness. Let \(P(x) \) be any polynomial of degree \(d \geq 1 \) with integer coefficients, and let \(u \) be the number of units in \(S(P) \). We define the fatness of \(P \) to be
\[
f(P) = u - d,
\]
and we say that \(P \) is fat if \(f(P) > 0 \).

If \(\varepsilon \) is a unit (that is, \(+1 \) or \(-1 \)), and if \(a_1, \ldots, a_d \) are distinct integers, then the polynomial \((x-a_1) \cdots (x-a_d)+\varepsilon \) has fatness at least 0. If \(P \) is fat, then clearly \(S(P) \) must contain units of both signs.

Note that all polynomials in the set
\[
3(P) = \{ \pm P(\pm x + b) \},
\]
where \(b \) ranges over the integers and where all possible choices of signs are taken, have the same fatness.

3. Notation. If \(P(x) \) is a polynomial, we define
\[
d = d(P) = \text{degree of } P
\]
\[
p = p(P) = \text{number of primes in } S(P)
\]
\[
u = u(P) = \text{number of units in } S(P)
\]
\[
u_+ = u_+(P) = \text{number of positive units in } S(P)
\]
\[
u_- = u_-(P) = \text{number of negative units in } S(P)
\]
\[
f = f(P) = \text{fatness of } P.
\]
Thus \(u = u_+ + u_- \), and \(f = u - d \).

Theorem 1. Let \(P(x) \) be a fat polynomial (with \(d \geq 1 \)). Then \(u \leq 4 \), \(d \leq 3 \), \(f \leq 2 \); and one of the following holds:

(a) \(P(x) \subseteq 5(x), \ u_+ = 1, \ u_- = 1, \ d = 1, \ f = 1 \)

(b) \(P(x) \subseteq 5(x^2 + x - 1), \ u_+ = 2, \ u_- = 2, \ d = 2, \ f = 2 \)

(c) \(P(x) \subseteq 5(x^3 + 2x^2 - x - 1), \ u_+ = 3, \ u_- = 1, \ d = 3, \ f = 1 \)

(d) \(P(x) \subseteq 5(2x - 1), \ u_+ = 1, \ u_- = 1, \ d = 1, \ f = 1 \)

(e) \(P(x) \subseteq 5(2x - 1), \ u_+ = 2, \ u_- = 1, \ d = 2, \ f = 1 \).

Proof. We first prove that \(u \leq 4 \). Since \(P \) is fat, we have seen that \(u_+ \geq 1 \) and \(u_- \geq 1 \). Clearly \(P \) may be written

\[
P(x) = (x - a_1) \cdots (x - a_{u_+})Q(x) + 1,
\]

where \(a_1 < \cdots < a_{u_+} \). Now if \(P(b) = -1 \), we have \((b-a_1) \cdots (b-a_{u_+})Q(b) = -2 \), \(\{ b-a_1, \ldots , b-a_{u_+} \} \subseteq \{-2, -1, 1, 2 \} \). By the first of these relations, at least \(u_+ \geq 2 \) of the distinct integers \(b-a_1, \ldots , b-a_{u_+} \) must be \(\pm 1 \). Hence \(1 \leq u_+ \leq 3 \), and similarly \(1 \leq u_- \leq 3 \). If \(u_+ = 3 \), there is at most one integer \(b \) for which the second relation holds, so \(u_- = 1 \). If \(u_+ = 2 \), there are at most two such integers, so \(u_- \leq 2 \). Thus in every case \(u \leq 4 \).

Since \(P \) is fat, \(d < u \), and therefore \(d \leq 3 \). Since \(u \leq 4 \) and \(d \geq 1 \), we have \(f \leq 3 \); however, we shall see that the case \(f = 3 \) does not occur, and therefore \(f \leq 2 \).

Next we prove that \(d(Q) = 0 \). We may assume \(u_+ \geq u_- \), (otherwise replace \(P \) by \(-P\)). Since \(u \leq 4 \), it follows that \(u_- \leq 2 \). Since \(P \) is fat, \(d(Q) < u_- \), and therefore \(d(Q) = 0 \) or \(1 \). If \(d(Q) = 1 \), then \(u_+ = u_- = 2 \). Hence, for some \(b_1 \neq b_2 \),

\[
(b_1 - a_1)(b_1 - a_2)Q(b_1) = (b_2 - a_1)(b_2 - a_2)Q(b_2) = -2,
\]

\[
\{ b_1 - a_1, b_1 - a_2, b_2 - a_1, b_2 - a_2 \} \subseteq \{-2, -1, 1, 2 \}.
\]

Since \(\{ b_1 - a_1, b_1 - a_2 \} \) is a translate of \(\{ b_2 - a_1, b_2 - a_2 \} \), it follows that \((b_1 - a_1)(b_1 - a_2) = (b_2 - a_1)(b_2 - a_2) \) and \(Q(b_1) = Q(b_2) \). Hence \(Q(x) \) is constant.

We now have

\[
P(x) = c (x - a_1) \cdots (x - a_{u_+}) + 1.
\]

Since \(u_- \geq 1 \), we may assume \(P(0) = -1 \); that is, \((-1)^{u_+}ca_1 \cdots a_{u_+} = -2 \). It follows that \(|c| = 1 \) or \(2 \).

If \(|c| = 1 \), then \(a_1 \cdots a_{u_+} = \pm 2 \), so either \(a_1 = -2 \) or \(a_{u_+} = 2 \). We may assume \(a_1 = -2 \). (Otherwise replace \(P(x) \) by \(P(-x) \).) If \(u_+ = 1 \), then \(ca_1 = 2, \ c = -1 \), and \(P(x) = -(x + 2) + 1 = -(x + 1), \) so \(-P(x - 1) = x \). If \(u_+ = 2 \), then \(ca_1a_2 = -3, \ ca_1 = 1, \ a_2 = c = 1, \) and \(P(x) = c(x + 2)(x - c) + 1 \). Iff \(c = 1 \), then \(P(x) = x^2 + x - 1 \). If \(c = -1 \), then \(P(x) = -(x + 2)(x - 1) + 1 \), so \(-P(x - 1) = x^2 + x - 1 \). Finally, if \(u_+ = 3 \), then \(ca_1a_2a_3 = -2, \ ca_1a_2 = -1, \ a_3 = 1, c = 1, \) and \(P(x) = x^3 + 2x^2 - x - 1 \).
If \(|c| = 2\), then \(a_1 \cdots a_{u_+} = \pm 1\), so \(u_+ = 1\) or \(2\). If \(u_+ = 1\), then \(ca_1 = 2\), \(c = \pm 2\), \(a_1 = \pm 1\), and \(P(\pm x) = 2x - 1\). If \(u_+ = 2\), then \(ca_1a_2 = -2\), \(a_1 = -1\), \(a_2 = 1\), \(c = 2\), and \(P(x) = 2x^2 - 1\). This completes the proof.

Corollary 1. If \(P\) is a fat polynomial with \(d = 1\) or \(2\), then there is an integer \(b\) such that \(P(-x) = (-1)^dP(x-b)\).

5. Irreducibility criterion.

Theorem 2. Let \(P(x)\) be a polynomial with \(p + 2u > d \geq 2\). Then either \(P\) is irreducible or \(P = QR\) with \(f(Q) \geq f(R) \geq p + 2u - d\).

Proof: If \(P\) is reducible, we can write \(P = QR\) with \(f(Q) \geq f(R)\). Now for each integer \(n\) such that \(P(n)\) is prime, either \(Q(n)\) or \(R(n)\) must be a unit, while for each \(n\) such that \(P(n)\) is a unit, both \(Q(n)\) and \(R(n)\) must be units. Therefore \(u(Q) + u(R) \geq p + 2u\), and \(f(Q) + f(R) \geq p + 2u - d\), as was to be shown.

Corollary 2: If \(p + 2u > d + 4\), then \(P\) is irreducible.

6. Example. Let \(P(x) = x^5 - x^4 + 2x^3 - x^2 + x - 1\). Then

\[
\begin{align*}
P(0) &= -1 \\
P(1) &= 1 \\
P(2) &= 29 \\
P(4) &= 883 \\
P(-1) &= -7 \\
P(-2) &= -71 \\
P(-4) &= -1429.
\end{align*}
\]

Thus \(p \geq 5\), \(u \geq 2\), and \(p + 2u - d \geq 4\). Hence if \(P\) is reducible, we have \(P = QR\) with \(f(Q) = f(R) = 2\). But this implies \(d = 4\), which is a contradiction, so \(P\) is irreducible.

If we fail to notice that \(P(4)\) and \(P(-4)\) are prime, then we have \(p \geq 3\), \(u \geq 2\), and \(p + 2u - d \geq 2\). In this case, if \(P\) is reducible, we have \(P = QR\) with \(f(Q) + f(R) \geq 2\). Thus either \(f(Q) = f(R) = 1\) or \(f(Q) = 2\). In the first case we may assume \(d(Q) = 2\), and therefore \(Q \subseteq 3(2x^2 - 1)\). But this is impossible because \(P\) is monic. Therefore \(f(Q) = 2\), and \(Q \subseteq 3(x^2 + x - 1)\). Now by Corollary 1 we have \(Q(x) = (x-b)^2 + (x-b) - 1\), and so \(x^2 + x - 1\) divides \(P(x+b)\). However the remainder of \(P(x+b)\) modulo \(x^2 + x - 1\) is \(R_1(b) + xR_2(b)\), where

\[
\begin{align*}
R_1(b) &= b^5 - b^4 + 12b^3 - 17b^2 + 21b - 9 \\
R_2(b) &= 5b^4 - 14b^3 + 32b^2 - 31b + 14.
\end{align*}
\]

Since \(R_1\) and \(R_2\) have no common integer root, the remainder cannot vanish for any integer \(b\). This contradiction proves that \(P\) is irreducible.

We thank the referee for his very helpful suggestions.