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SOME RESULTS ON MATCHING IN BIPARTITE GRAPHS*

R. L. GRAHAM{} anp L. H. HARPER}

1. Introduction. Let G be a finite bipartite graph® with sets of vertices 4
and B and with a set of edges E between 4 and B. For X < A let D{X) < B be
defined by

D(X) = {beB:{x,b} €E for some x€ X}.

In other words D(X) is the set of all vertices in B connected by an edge of G to
a vertex in X. If v, and vy are measures on A and B respectively (which by the
finiteness of G will just mean the assignment of a positive weight to each vertex),
we say that vy dominates v, if

Q) vp(D(X)) = v,X) forall X < A.

Let A;,---, A, and By, ---, B, be partitions of 4 and B respectively into non-
empty disjoint subsets. Let G’ denote the quotient bipartite graph with sets of
vertices A’ = {4y, -+, A,,} and B = {By, ---, B,} and a set of edges E' defined
such that {4;, B;} € E' if and only if {a, b} € E for some a € 4,, b e B;. Of course,
v, and vp denote the natural induced measures on A’ and B', and D’ is defined
in the obvious way.

It is important to note that if all vertices have weight 1 and with ae 4 we
associate the subset D({a}) = B, then by the marriage theorem of P. Hall (cf. [3])
vy dominates v, if and only if there exists a system of distinct representatives
(cf. [3]) for these subsets.” If b(a) is the representative chosen from D({a}), then
the mapping a — b(a) is a matching of A into B, i.e,a 1 — 1 mapping of 4 into B
such that {a, b(a)} is an edge of G. It is this application of our results which moti-
vated the present study (cf. Examples 1 and 2). Our main object in this note is to.
develop several theorems which will enable one to show that vz dominates v,
by examining the structure of the (hopefully much simpler) quotient graph G'.

2. The main results. Define the matrix R = (p;;) by

e inf UOX) N B)
ij —

, 1Zifsm, 1=5j<n.
BEXC A v4(X)

By the definition of p;; we have
@ piva(X N 4) = vg(D(X) N B))
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! We assume G has no isolated vertices.

21t is true in general that vy dominates v, if and only if there exists a flow on the edges of G
taking v, into vy (cf. [1]). However, the concept of a flow will not enter into the subsequent development.
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for all i,j and all X < A. (Because G has no isolated vertices, R has positive row
sums.) For any nonnegative m x n matrix R with positive row sums, define a
real-valued function % by

Z(R) = inf max (Z oij) ,
s i
where the inf is taken over all m x n matrices S = (g;;) with ¢;; 20 and
. 0upi; 2 1 for all i.
Fact 1. For any matrix R on which & is defined, there exists a matrix
T= (rij) such that Tij g 0,

Zfijpij =1 for all i, Ztij < Z(R) forallj.
J i

If R is strictly positive, then also ), 7;; = Z(R) for all j.
These facts follow from simple compactness and variational arguments.
THEOREM 1. Z(R) < 1 implies vy dominates v,.
Proof. Let X = A. Then

vp(D(X)) = Z vp(D(X) N By)
> Z (Z r,.j) vp(D(X) N Bj)  (for the matrix T = (t;;) in Fact 1)

= Z 7;,05(D(X) N B))

ij

= Z 701 A(X N A4)
2 Z Z(Tijpij)vA(X NA4)= Z VX N A4) = vy(X)

and the theorem is proved.
The following result is no surprise.
Fact 2. If vy dominates v, then vp. dominates v,,..
This is an immediate consequence of the fact that if X’ = A then

v4(X") = v(X)
= vp(D(X))

< vp(D'(X"),

where X = U, .y X' € 4, by the definition of the edges of G'.

In the other direction we have the following theorem.

THEOREM 2. Suppose vg(B))/v4(A4;) = p;; whenever B;e D'(4;), where the p;;
are defined previously. Then vy dominates v, implies vy dominates v 4.

Proof. Choose & # X < A and let o; = v, (X N A)/v(4;) for 1S i< m.
We can assume that the A; have been labeled sothat 0 S oy S, < -+ = .
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By the hypothesis that vy dominates v, and the fact that «;,; — a; = 0 we have
w4 U - UA4,) S oaqgvpD'4, U --- U A4,)),
(o — a)o(A, U -+ U 4,) < (e — ay)op(D(4; U -+ U 4,)),
) :
@41 — 0Joaldje U - U A4,) S (@501 — 0op(D'(Aj; U -+ U 4,),

(am - am—-l)vA’(Am) é (am — Uy I)UB'(D,(Am))‘
If we sum the left-hand sides of inequalities (3), we obtain

a04(Ay) + o04(Ay) + -0 F v (A4,)

@ = o 0(A1) v dy) + -0 FavdA, (by definition of v.)
= UA(X n Al) + UA(X n Az) + M + UA(X n Am) (by deﬁnition Of ai)
=70 A(X )

Similarly if we sum the right-hand side of (3) we obtain (after minor computations)

4 B, )1

@) ; [vs(B)) max ()]

However, since p;; = vp(B;)/v4(4;) whenever B; e D'(4;) by hypothesis,
VX N A4 < vp(D(X) N Bj)

for B;jeD'(4).

v4d) T vg(B j)
Hence,
vp(D(X) N B) v{X N A) _
0pB) = mibetn vdd)  meen ™
and .
4") Y. [va(B) max ()] <3 vp(D(X) N B)) = vp(D(X)).
j BjeD'(41) j

Therefore, combining (4), (4), (4”), we have
v(X) = Y [vp(B) max ()] < vp(D(X)),
j BjeD'(4:)

ie., vg dominates v,, and the theorem is proved.

COROLLARY. Suppose each vertex in A; has weight w; and is connected to the
same number p;; of vertices in B;, and each vertex in B; has weight W; and is con-
nected to the same number q;; of vertices in A;. Then vy dominates v, implies vy
dominates v 4.

Proof. For (§ # X < A,, there are p;| X| edges connected to vertices in B;.
Since each vertex of B; can accept at most g;; of these edges,

wmnwg%m

u



1020 R. L. GRAHAM AND L. H. HARPER

and
vp(D(X) N By) _ wiD(X) N B} S WDy
v4(X) wi X| - Wid;;
— UB(Bj)
UA(Ai)'

Since X was arbitrary, the hypothesis of Theorem 2 is satisfied and the corollary
is proved. We shall present an application of this result in the final section.

To state the final result in this section, we require an additional definition.
Let A = (§;;) denote an arbitrary m x n matrix with positive real entries. Let
A* = (0f) be the n x m matrix defined by

of =85! 1<ign, 1£j<m.

ji oo =t =Tt =/ =
THEOREM 3. L(A)ZL(A*) < 1.
Proof. By Fact 1, there exists a matrix T = (r;;) which satisfies 7;; = 0,
Z,- 1;0;; = Lforalliand ), 7;; = #(A)for all j. Define the n x m matrix T* = (¢}
by
7404
20

T
Then rj‘, > 0 and
T..0::051 1
* (5* - yYijvij -
L= 2" gm) f(A)Z BT ()

13

- PA) = 1.

However,

v Tidi __1_
L= ;Q(A) T2

J

so that #(A*) £ 1/%(A) and the theorem is proved.

Note that if vg(D(@) N B,), a€ A;, is independent of a and v(D~'(b) N 4)),
be B;, is independent of b, then p;; = vg(B;)/v(4;) and R* is the R matrix cor-
responding to an attempt to show v, dominates vg. Hence, if p;; > 0 for all i, j,
then Z(R)Z(R*) < 1, which implies either Z(I') < 1 or L(R¥) £ 1, ie, either
vg dominates v, or v, dominates vg.

We mention in passing that it can be shown in fact that Z(A).Z(A*) = 1 if
and only if ;; = &m;, i€, 0,0y = 040y; for all 4, j, k, L

3. Applications. In this section we apply the preceding results to several
specific bipartite graphs.

form the graph G-

s s
Exdmple 1. Let S be a set of s elements. For (k) =< (l

by letting A = {X < S:|X| =k}, B={Y < S:|Y| =1} and {X, Y} is an edge of
G if and only if X = Y or Y < X. By choosing the trivial partitions 4 = 4,
B = B, and assigning weights of 1 to all vertices of G, we find that the corollary
applies. Since G’ has only two vertices, it is obvious that vg dominates v, and
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hence, vz dominates v ,. This implies the well-known result that there is a match-
ing of 4 into B.

The same arguments can be applied to the k- and I-dimensional subspaces
of an s-dimensional vector space over a finite field, yielding the result that there
is a matching between these two sets (which is also well known).

Example 2. Let S be a set of s elements. For 0 < k < s, form the graph G} = G
by letting B = {partitions =, of S into k nonempty subsets}, A = {partitions
my+, Of S into k + 1 nonempty subsets} and {m;,m, .} is an edge of G if and
only if @y, ; is a refinement of m,. Assume that all vertices of G are assigned weight
1. In general it is not known whether or not there is a matching between the two
sets of vertices of G. The cardinality of B is given by S(s, k), a Stirling number of
the second kind (cf. [2]), and these numbers very quickly become unpleasantly
large. We demonstrate the power of our methods for the case s = 12, k = 5. For
these parameters |B] = S(12,5) = 1379400 and |4]| = S(12,6) = 1323652. A
natural choice for the partition 4, U --- U 4,, = 4 is obtained by letting two
partitions of S be in the same block 4, if and only if there is a 1-1 correspondence
between the cardinalities of the blocks of the two partitions. Thus, the cardinalities
generate the same number-theoretic partition of 12 into 6 parts. With
B, U --- U B, = B defined similarly we find that |4} = 11, |B| = 13 and the
matrix R is given by Table 1, where it is easily seen by the corollary that

_ vg(B)) _ @

P =04~ 14

for BeD'(4).

TABLE 1
0 o~ \O w el vy <t <r vy <+ o =t o
~ o © < N o < o0 o~ o o o o
— — — ~— o~ o~ [\ o o~ o~ g o~ (o]
— — ~— — — — - — o~ o~ ol N N
~— ~— ~ — — — — — — - ~— o~ [o\]
(7} 3110;0;0[070{0;0|0}0}10]0)]0
1126{ 41 41410131070 (0({0{0}0101]0
11113510 2}11{0{6 {0 {010 ;0101010
11144 10101 %10;0)60]0]0]00]0
1mi22sjol&Ajol 4 4f{2(0}j0}{1{0{0{0]0
112340 |55 &0l 2]2{4]0o]2]olo]o
1mi33zjojolHjololojolglojo|3|01l0
1122241 0l0jojo|tjlof{ijol2l210(%]0
u2sfololojlolsl2lolsiolt (4]0

i
N
[e]

Bim

Wi

122223 0({0{0}[0{0,0 {00

2222221010/ 0j0(0|0]0]0}0O}0 |05 |0
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The matrix S = (5;;) shown in Table 2 has ¢;; 2 0, Z; o;p;; 2 1 for all i, and
Y, 0:; < 1 for all j.

TABLE 2

0{0{0]0|0]|O

)
=
o
o
o
)
)

<
[=]
(=]
(=]
[=]
[=]
[=]
[=]
(=]
winy
[=]
<
<

ololo|lojt|o|z|lojol&lolt]|o
olojojololi]loj1lo|&|2]|o0]o0
olo|lololo|o|lolo|lz|ojo|o]1

Hence, #(R) < 1 and by Theorem 1, vy dominates v,. We note that a direct
verification that vz dominates v, i.e., | X| < |D(X)| for all X < A, involves check-

ing 21323652 cages, a somewhat tedious task.
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