ON SUBTREES OF DIRECTED GRAPHS WITH NO PATH OF LENGTH EXCEEDING ONE

BY

R. L. GRAHAM

The following theorem was conjectured to hold by P. Erdős [1]:

THEOREM 1. For each finite directed tree T with no directed path of length 2, there exists a constant $c(T)$ such that if G is any directed graph with n vertices and at least $c(T)n$ edges and n is sufficiently large, then T is a subgraph of G.

In this note we give a proof of this conjecture. In order to prove Theorem 1, we first need to establish the following weaker result.

THEOREM 2. For each finite directed tree T with no directed path of length 2, there exists a constant $c'(T)$ such that if G is any directed graph with no directed path of length 2, n vertices and at least $c'(T)$ edges, and n is sufficiently large, then T is a subgraph of G.

Proof of Theorem 2. First note that if G has no directed path of length 2, then each vertex of G is either a source (all edges directed out), a sink (all edges directed in), or isolated.

Define the graph $A(d, k)$ for $d \geq 2$, $k \geq 0$, as follows:

$A(d, 0)$ consists of a single isolated vertex p.

$A(d, k)$ is formed from $A(d, k-1)$ by adjoining to each vertex of degree 1, d new edges and vertices so that the resulting graph still has no path of length 2, where for $k=1$ we take p to be a source.

Thus, $A(d, k)$ consists of the vertex p surrounded by k alternating layers of sinks and sources (cf. Figure 1).

The jth layers of $A(d, k)$ consists of d^j vertices. We note the immediate

Fact. If T is a directed tree with no directed path of length 2, if the longest undirected path in T has length m, and if the maximal degree of a vertex of T is d, then T is a subgraph of $A(d, m+1)$.

We now prove by induction on k that Theorem 2 holds for $T = A(d, k)$. By the preceding fact, this is sufficient to establish Theorem 2 for general T.

For $k=0$, this is immediate. Assume the result holds for a fixed $k \geq 0$ and all d. Let D denote $1 + d + d^2 + \cdots + d^k$, the total number of vertices of $A(d, k)$ and let $M = D + d$. Let C denote $c'(A(d, k)) + d^k M$ which exists by the induction hypothesis. Suppose G is a graph with no directed path of length 2, n vertices and at least Cn edges, where n is a large integer to be specified later. Assume further that k is even.

Received by the editors November 11, 1969.
(the case of k odd is similar and will be omitted). Form the subgraph G' of G by deleting from G all source vertices of degree $\leq d^k M$, of which there are, say, u of these, and their incident edges. Note that this operation does not decrease the degree of any vertex of G of degree $> d^k M$. By construction, in G' all source vertices have degree $> d^k M$. By the choice of C, we have $u < n$. Since we have removed at most $ud^k M$ edges from G in forming G', then G' has $n - u$ vertices and at least

$$Cn - ud^k M \geq c'(A(d, k)) n + (n - u)d^k M$$

$$\geq c'(A(d, k)) n$$

$$\geq c'(A(d, k))(n - u)$$

edges. Since G' has less than $(n - u)^2$ edges then

$$(n - u)^2 > c'(A(d, k)) n$$

and

$$n - u > \sqrt{c'(A(d, k))n}.$$

For n sufficiently large, $n - u$ becomes arbitrarily large and we may apply the induction hypothesis to G'. This implies that G' contains a copy of $A(d, k)$ as a subgraph. Let us examine the outside layer of vertices of this subgraph $A(d, k)$, i.e., the vertices of degree 1. Since k is even (by assumption), these vertices are sources. Denote them by $v_1, v_2, \ldots, v_{d^k}$. With each v_i, we associate the set S_i of vertices of G' which are adjacent to v_i. That is, $s \in S_i$ if and only if (v_i, s) is an edge of G'. By the construction of G', $|S_i| > d^k M$. It is not difficult to see that this implies that we can extract a system of disjoint representative subsets R_i, $1 \leq i \leq d^k$, i.e., a set of subsets such that:

(i) $R_i \cap R_j = \emptyset$ for $i \neq j$,
(ii) \(R_i \subset S_i, \quad 1 \leq i \leq d^k \),

(iii) \(|R_i| = M, \quad 1 \leq i \leq d^k\).

Finally, form \(R'_i \) from \(R_i \) by deleting all vertices which lie in the subgraph \(A(d, k) \subseteq G' \). Thus, \(|R'_i| \geq M - D = d\) for \(1 \leq i \leq d^k \). By reconnecting the vertices of the \(R'_i \) to the subgraph \(A(d, k) \) so that they are sinks, we see that we have \(A(d, k + 1) \subseteq G' \subseteq G \). The case for odd \(k \) is similar. This completes the induction step and Theorem 2 is proved.

Proof of Theorem 1. Let \(G \) be a directed graph with \(n \) vertices and at least \(2c'(A(D+d,k))n \) edges. We shall show that for \(n \) sufficiently large, \(A(d, k) \) is a subgraph of \(G \). By choosing \(c(A(d, k)) = 2c'(A(D + d, k)) \), Theorem 1 will then be established for \(T = A(d, k) \), and by a previous remark, this suffices to prove it for general \(T \).

We can assume \(G \) has no isolated vertices (for otherwise they may be deleted without harm). Form the graph \(G^* \) from \(G \) by the following operation: Replace each vertex \(v \) of \(G \) by a pair of vertices \(v', v'' \) such that all directed edges going into \(v \) now go into \(v' \), and all directed edges going away from \(v \) now go away from \(v'' \) (cf. Figure 2). The vertices \(v' \) and \(v'' \) will be called mates of one another.

\[\text{FIG. 2} \]

\(G^* \) has the property that it has no path of length 2, it has \(n^* \leq 2n \) vertices and at least

\[2c'(A(D+d,k))n \geq c'(A(D+d,k))n^* \]

edges. Hence, for \(n \) sufficiently large, we may apply Theorem 2 to \(G^* \). This implies that \(G^* \) contains the subgraph \(A(D+d, k) \).
We next recursively delete certain vertices and edges from G^* as follows:

1. Delete from $A(D + d, k) \subseteq G^*$ the mate $m(p)$ of p (the central vertex of $A(D + d, k)$), all edges incident to $m(p)$ and all other vertices and edges of $A(D + d, k)$ which are not connected to p after the deletion of $m(p)$.

2. Next select d of the remaining first level vertices of $A(D + d, k)$, say, u_1, u_2, \ldots, u_d, and delete all the other first level vertices, incident edges and new components formed by these deletions.

3. For each of the u_i, $1 \leq i \leq d$ (which are sinks) delete from what is currently left of $A(D + d, k)$ the mates $m(u_i)$ of the u_i, all incident edges and all newly formed components (i.e., vertices and edges not connected to p). Since each u_i is originally adjacent to $D + d \geq 1 + d + d$ vertices in the second level, then after this deletion each u_i is now still adjacent to at least d vertices on the second level.

4. For each u_i, select d of the second level vertices to which it is adjacent, say, $u_{i1}, u_{i2}, \ldots, u_{id}$, and delete all remaining second level vertices, incident edges and new components.

(\omega) We can continue this construction since $D = 1 + d + \cdots + d^k$ until we have finally constructed by selective deletions a copy of $A(d, k)$ with the important property that this $A(d, k)$ does not contain both a vertex and its mate. This, however, is sufficient to guarantee that $A(d, k)$ is a subgraph of the original graph G. This completes the proof of Theorem 1.

REFERENCE

1. P. Erdős, (personal communication).

Bell Telephone Laboratories, Inc.

Murray Hill, New Jersey