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The methods used to perform the switching functions of the Bell System
have been developed under the fundamental assumption that the holding
time of the completed call is long compared to the time needed to set up
the call. In considering certain forms of communication with and among
computers the possibility arises that a message, with its destination at
1ts head might thread its way through a communication network without
awaiting the physical realization of a complete dedicated path before
beginning on its journey. One such scheme has been proposed by J. R. Pierce
and may be called “loop switching.” We imagine subscribers, perhaps
best thought of as computer terminals or other data generating devices,
on one-way loops. These “local’’ loops are connected by various switching
poinis to one another as well as to other “regional’”’ loops which are in
turn connected to one another as well as to a “national” loop. If a message
from one loop is destined for a subscriber on another loop it proceeds
around the originating loop lo a suitable switching point where it may
choose to enter a different loop, this process continuing until the message
reaches s destination. The question naturally comes up, how the message
18 to know which sequence of loops to follow. It would be desirable for the
equipment at each junction to be able to apply a simple test to the destination
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address at the head of the message which would determine which choice
the message should make at that junction.

In this paper we propose a method of addressing the loops which has
several attractive features:

(#) It permits an extremely simple routing strategy to be used by the
messages in reaching their destinations.
(i) By using this sirategy, a message will always take the shortest
possible path between any two local loops in the same region.
(¢¢t) The method of addressing applies to any collection of loops, no
matter how complex their interconnections.

The addressing scheme we propose will be applied primarily to local
loops where the mutual interconnections may be quite varied. If a certain
amount of hierarchical structure is introduced into the regional and national
loop structure, as suggested by J. R. Pierce," it is possible to achieve
addressings which are both compact and quite efficient.

I. INTRODUCTION

The methods used to perform the switching functions of the Bell
System have been developed under the fundamental assumption that the
holding time of the completed call is long compared to the time to set
up the call. It is thus sensible to hold portions of a route while the
attempt is made to establish the connection. In considering certain
forms of communication with and among computers, as well as the
consideration of many schemes for time division switching, the
possibility arises that a message, with its destination at its head, might
thread its way through a communication network without awaiting the
physical realization of a complete dedicated path before beginning on its
journey.

One such scheme has been proposed by J. R. Pierce,’ and may be
called “loop switching.” We imagine subscribers, perhaps best thought
of as computer terminals or other data generating devices, on one-way
loops. If a meassage is destined for a subscriber on another loop it
proceeds around the originating loop to a suitable switching point where
it may choose to enter a different loop and continue the process until
it reaches its destination.

The question now comes up, how the message is to know which se-
quence of loops to follow. A sufficiently complicated memory in the
originating loop might, of course, look up an appropriate route, and then
attempt to seize a complete path; but this is the old and perhaps in-
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appropriate solution. It would be more convenient and sometimes
preferable if the equipment at each junction could apply some simple
test to the destination address at the head of the message which would
determine which choice the message should make at that junction.

In the nation-wide loop switching system as conceived by Pierce, we
can envisage local loops, regional loops, and a national loop. The simplest
imaginable structure is one in which each local loop has an interchange
only with its regional loop and with no other loop; similarly each regional
loop interchanges with the national loop and otherwise only with its
local loops. How does it work? Suppose that a message originates in local
loop X, and has its destination in local loop ¥, where X and ¥ may or
may not be identical. When the message comes to the interchange
between X and X’s regional loop, it exits onto the regional loop if and
only if ¥ = X. It later exits onto the national loop if ¥’s region is
different from X’s region; otherwise the message stays on X’s regional
loop until it reaches Y. Therefore what should addresses look like? We
see that if a portion of the loop address represents the regional loop, and
another portion the local loop, routing decisions will be made on the
basis of identity or nonidentity of certain portions of the sending and
the receiving addresses.

The loop configuration just described is perhaps too special to be
practical. For example, it provides for no alternate routing, and for no
special direct connections between two local loops with high mutual
traffic. Pierce has shown how each of these difficulties can, to some
extent, be alleviated. There remain, however, the further problems of
the configuration of local loops belonging to a given region, and of the
configuration of regional loops themselves. It is quite likely that the
local loops attached to a given regional loop have many mutual switching
points among themselves, so that calls within one region are not normally
expected to use the regional loop. How should we address such local
loops so as to make routing easy? Much of the rest of this paper will
be devoted to this problem. We shall, in this and the next two sections,
speak of “loops” generally, but mean a system of local loops as the most
likely realization. We note in passing that a completely general national
configuration of loops on which no hierarchical structure has been
imposed will have the same addressing problem—but probably a much
larger number of loops. We return to the hierarchical situation in Section
IV,

In some very simple arrangements of loops it is easy to see how
addressing might successfully be accomplished. Consider, for example,
Fig. 1 showing four loops which touch as if they were circles of radius 2 at
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Fig. 1—Simple arrangement of loops.

the vertices of the unit square. If the address of each loop were just the
two-digit numeral 4j, ¢, j = 0 or 1, representing the coordinates of its
center, then routing could be done in the following extremely simple
manner: at each junction, go into the new loop if this decreases the
Hamming distance* between where you are and your destination. If it
doesn’t decrease the Hamming distance, don’t go. Thus, if you wish to go
from loop 10 to loop 11 then the Hamming distance is 1. You will not
take the exit from 10 to 00 if you reach it first, for this increases rather
than decreases the Hamming distance. You will, however, exit into 11
when you reach that junction. To go from 10 to 01 either exit, to 00 or to
11, improves the Hamming distance and either routine is equally good.

A simple potential routing scheme can thus be described as follows.
Each loop has a binary address, n bits long. You make an exit from one
loop to another if and only if it decreases the Hamming distance between
where you are and where you want to go. If several exits do the same job
then each one must lead to an equally short optimal path from sending
loop to receiving loop. Furthermore, the number of loops traversed
should, if possible, be exactly the Hamming distance between sender and
receiver, with each transfer decreasing the distance from the receiver by
exactly 1.

Can such an addressing scheme be devised for every collection of loops
with whatever adjacency structure? A little reflection shows that there
will eertainly be difficulties. Let’s think of the collection of loops ab-
stractly as a graph, with each loop a vertex, and two vertices connected
if and only if the two loops have a mutual transfer point. Thus, the
graph of the previous example is as shown on Fig. 2. We have numbered
each vertex with a pair of binary digits so that adjacent vertices differ
in exactly one position, the number of edges required to pass from one
point to another is exactly the Hamming distance between the cor-
responding numberings, and all shortest paths between two points are
achieved by following routes of decreasing Hamming distance to the
destination. Another example (Fig. 3): if we wanted a collection of six

* The Hamming distance between two n-place binary numbers is the number of
places in which they differ.
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Fig. 2—Graph of Fig. 1.

loops arranged cyclically we could use the numbering 000, 100, 101, 111,
011, and 010. We see that we are looking for a closed path on the 3-
dimensional cube with the additional property that two points are
exactly as far apart in Hamming distance as the number of edges to be
traversed between them —otherwise, the routing logic would be ruined.
Thus we can use the realization for a eycle of six loops shown in Fig,. 4a.
The realization shown in Fig. 4b, however, would not be a valid solution.
In this latter picture, 100 and 110 have Hamming distance 1 and there-
fore should be directly connected. The path between them, however, has
length 3, the first link out increases rather than decreases Hamming
distance, and therefore would not represent a useful addressing scheme.

We thus see a difficulty caused by points coming too close together on
the cube for the addressing scheme to work, but there are even deeper
difficulties. Suppose we wish to construct an addressing scheme for a
system consisting of three pairwise adjacent loops (see Fig. 5). This can
never be drawn on a cube of any dimension. For any closed path of
edges on a cube has even length, and 3 is odd. Is the scheme therefore
kaput?

Not quite. We can still imagine the 3-cyele embedded on a cube in an
appropriate dimension (in this case a square) if we are willing to gen-
eralize what we mean. We shall attach to A the code 00, B the code 10,
and to C both 11 and 01. We shall denote the pair 11 and 01 by the
symbol d1, where d means “don’t care.” Hamming distance between two
n-tuples of 0’s ,1’s, or d’s is computed by crediting 1 for every position at

Fig. 3—Cyeclic arrangement of six loops.



2500 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1971

o
/

1
]
! l
|
L 010 ) ———|—— 3 !l ot0 1o
/ /
i ! ’
| ’ I /
| / | /
000 100 [ele]e] 100

Fig. 4—Realizations for a cycle of six loops: (a) a valid solution; (b) not a valid
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which one n-tuple has a 0 and the other a 1, and 0 for every other
position. Thus, the Hamming distance between 01d1d0 and 114010 is 2,
with the contributions coming from the first and fourth positions. With
this convention, the Hamming distance between any two of the three
addresses 00, 10, and d1 is certainly 1, and correct routing still consists
exactly of decreasing by 1 the Hamming distance at each junction at
which a transfer is made.

We now have a number of fundamental questions to answer. Can
every collection of loops be numbered by assigning to each loop an address
consisting of a sequence of 0’s, 1’s, and d’s? We require that every
shortest route between two loops can be found automatically by moving
from a loop to an adjacent one if and only if this decreases the Hamming
distance to the final destination by 1. How many bits long would such
an address have to be? Let’s state right away the fundamental theorem
of this paper: Every collection of n loops, with maximum distance s
between any two loops, can indeed be realized by giving each loop an
address of no more than s(n — 1) 0’s, 1’s, or d’s. In fact, we know of no
example where more than (n — 1) “bits”” are needed, and we shall give
a construction that has found addresses no more than n — 1 bits long
in every case on which it has been tried. The construction, however, is
not quite an algorithm and we do not have a proof that it can always be
done with as few as n — 1 bits.

WITH ABSTRACT GRAPH

A B

Fig. 5—Three pairwise adjacent loops.
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How is this routing algorithm going to work in practice? Here we have
only the very earliest and simplest suggestions. The basic idea of the
scheme is to obtain the greatest possible simplicity of routing strategy at
the expense of the length of the loop address. Thus, for example, you
could physically realize addresses consisting of 0’s, 1’s, and d’s by
encoding 0 as 00, 1 as 01, and d as either 10 or 11. The logic then says:
If the 2k — 1st digit of both addresses is 0 then compute the Hamming
distance between the 2kth digits. If the 2k — 1st digit of either address
is 1, ignore it. Add up over all k, and see if going into the new loop
decreases Hamming distance to the destination. This could be very easy
to mechanize; the arbitrary bit following a 1 in an odd position could be
used for parity checks or other purposes.

It is not immediately clear who assigns the loop address to an in-
dividual message. The ‘“‘phone book” may contain a shorter code that is
translated in the first junction you come to, or the sending computer
itself may use the destination’s correct loop address. This problem is
connected with that of system growth. How many numbers do you have
to change if a loop is added to the system? The consequent desire for a
hierarchical loop address structure is to a large extent fulfillable and will
be discussed in Section 1V.

Before we proceed with the general theory, let’s see how a particular
and not so simple example works out. Thus, consider the system of
loops in Fig. 6. The distance between pairs of vertices is given by the
following (symmetric) table:

A B ¢ D E F

410 2 1 3 1 2
B |2 0 2 1 1 2
Cc 1 2 0 2 1 1
D |3 1 2 0 2 1
E |1 1 1 2 0 2
Fl2 2 1 1 2 0

We shall assign a sequence of five (s, 1’s, and d’s to each vertex in such a
way that the Hamming distance between the 5-tuples corresponding to
two vertices is exactly the distance in the table. One solution, as the
reader should verify, is the following:
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A

WITH ABSTRACT GRAPH

Fig. 6—System of loops.

A—11114d
B—001dd
C—11d0d

D—000d1
E—10dd0
F—010dd

In the sequel, we shall see how such a solution ean in fact be found for
every possible system of loops. A really surprising amount of interesting
mathematics seems, at present, to be involved in the problem.

In order to see how a set of satisfactory loop addresses can always be
constructed, let us analyze the previous example in more detail. The first
column of the solution is:

A—1

F—0

We see that A, C, and E have the value 1 at this coordinate while B, D,
and F have the value 0. Thus, this coordinate will contribute a 1 to the
Hamming distance from any of ACE to any of BDF. We may denote
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this as ACE X BDF. Therefore, the first column makes the following
contribution to the overall distance matrix.

A B (¢ D E F
410 1 0 1 0 1
B i1 0 1 0 1 0
¢|o 1 0 1 0 1
D1 0 1 0 1 0
E |0 1 0 1 0 1
F |1 0 1 0 1 0

The second column may be written as ACF X BDE and contributes the
following to the distance matrix.

A B ¢ D E F

410 1 0 1 1 0
B |1 0 1 0 0 1
c|0 1 0 1 1 0
D1 0 1 0 0 1
E |1 0 1 0 0 1
F 10 1 0 1 1 0

The first two columns (i.e., coordinates) then contribute the sum of the
previous matrices to the distance matrix.

4 B C D E F

410 2 0 2 1 1
B |2 0 2 0 1 1
C|0 2 0 2 1 1
D |2 0 2 0 1 1
E |1 1 1 1 0 2
F |1 1 1 1 2 0
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The third column is:

F—0

It will contribute 1 between A or B and D or F. Since C and E have the
third coordinate value d, it cannot contribute to the Hamming distance
from C or E to any other point. We can write AB X DF and obtain the
following contribution to the distance matrix:

H oy o W e

F

A B ¢ D E F
0 0 0 1 0 1
0 0 0 1 0 1
0 0 0 0 0 0
1 1 0 0 0 0
0 0 0 0 0 0
1 1 0 0 0 0

The first three columns (coordinates) thus contribute the following to the

distance matrix:

oy O W o

F

The last two columns are A X € and

A B ¢ D E F
0o 2 0 3 1 2
2 0 2 1 1 2
0o 2 0 2 1 1
3 1 2 0 1 1
1 1 1 1 0 2
2 2 1 1 2 0
D X E respectively. If the cor-
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responding 1’s are added to the distance matrix, we obtain the matrix of
our example. We see, therefore, that we can think of the distance matrix
for our example as generated by the sum of the products ACE X BDF,
ACF X BDE,AB X DF, A X C, D X E. Notice that in each product we
assign a 0 to each element of one multiplier, a 1 to each element of the
other, and a d to any possible multiplier which does not occur. Which set
you make 0 and which set you make 1 does not matter. If we carry this
out we obtain the coordinates for 4 through ¥ given previously.

The same mathematics works in general. Take the system of loops for
which we wish to find an addressing scheme, and find the abstract graph
in which each loop represents a vertex and two vertices are connected if
and only if the loops touch. Now write down the (symmetric) distance
matrix for this graph. If the vertices of the graph are 4, 4,, --- , 4,,
and the Hamming distance between 4, and A, is d,;, then we may take
d;; copies of A; X A; and then sum over all 7 and j. The contribution to
the address of each A, will be d;; coordinates 1 to A;, 0 to 4;, and d to all
other vertices. Therefore, the total contribution to the distance matrix
will be d,; in the (¢, j) position, and 0 everywhere else. Thus, the re-
sulting complete set of coordinates for the A4, will consist of 0’s, 1’s,
and d’s caleulated from each necessary copy of each A; X A4; and will
produce the desired distance matrix.

This proves that the addressing scheme is always possible, but we have
used a ridiculously large number of coordinates, perhaps

snn — 1)
2

where s is the largest point-to-point distance in the distance matrix. We
can save a factor n/2 if we take

AIX(AZyAEI)"')An)
+ Al X (Ah;Aiz y T )Al’k,) + Al X (Ah y T ;A:‘k,) + .-
where 4., , - -+ A,,, are all those vertices for which d, ;,, = 2, 4,,, -

A;,, are all those vertices for which d, ;, = 3, etc. We then repeat
for A, X (A;, -+ A,) -+, and so on up to d,_, , copiesof 4, ., X 4, .
This time we have at most s(n — 1) products, and therefore have
found a set of at most s(n — 1) coordinates for the A, such that loop
addressing will work in the desired way. We have proved:

Theorem 1: Given any system of n loops so that the maximum distance
between any two loops is s, a system of addresses such that every minimal
path between loops is obtained by switching to an adjacent loop +f and only of
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the Hamming dislance to the destination is decreased by 1 can always be
found. The length of each address can be taken to be no more than s(n — 1).

Let us remark right away that we believe the right answer to be
(n — 1) rather than s(n — 1). We have no proof and we have no counter-
examples. We will, however, prove the following theorems in the sequel.

Theorem 2: If the abstract graph of the loop system is the complete graph
on n verlices, then addresses of length (n — 1) are best possible.

Theorem 3: If the absiract graph of the loop system is a tree on n vertices,
addresses of length (n — 1) are best possible.

Theorem 4: If the abstract graph of the loop system is a cycle of length n,
then addresses of length n/2 are best possible if n is even, and addresses
of length (n — 1) are best possible if n is odd.

II. MATHEMATICAL DEVELOPMENT

Let us summarize what we have proven so far. Let (d,,;) be the distance
matrix of the abstract graph G with vertices A,. Let

N(G)

Z (Aias o A L) X (44, - As L) 1)

a=

represent the graph (¢ in the sense that A, and A; appear on opposite
sides of products exactly d,; times. The number of coordinates which we
must assign to each vertex of G is the minimum of N(G) over all de-
compositions that satisfy the above conditions.

The problem is equivalent to a problem in quadratic forms. Write

Z a;0:%;

1<igisn

N
2_; @iao + o F i )@+ L) (2

Since d.; = 0, no single z can appear in both factors of any single
product. The equivalence is immediate since either decomposition will
immediately yield the other. Our problem then is to find the minimum
number N for any given quadratic form whose coefficients d,, are the
distance matrix of a graph. We shall prove the following lemma due to
H. S. Witsenhausen.

Lemma 1: Let n., n_ be respectively the number of strictly positive and
strictly negative eignevalues of the distance matriz (d;;). Then

N = maz (n,,n_).
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Proof: Let Q(x,, - - , z,) denote the quadratic form D icizizn Ak,
As we have seen, the existence of a length k addressing of G is equivalent
to the existence of a decomposition of  into the sum of k produects of the
form (z,, + - + ;) (x;, + -+ + z;,). But we see that

k

Q= Z (xiu.x + -+ xiu,r(u))(xiu,l + -+ xiu.x(u))

u=

1
1 k
= Z Z o .+ + %y T+ 0+ xiu,x(u))z

=1

- (xiu,l + -+ Tivrow = Liuy — 77 xiuts(u))2}

so that we have represented @ as a sum of k squares minus another sum of
k squares. However, it is an easy consequence of the theory of quadratic
forms (ef. Ref. 2) that for any representation of @ as a sum of p squares
minus a sum of ¢ squares, we must have

p = index Q = n, ,

g = rank @ — index @ = n_ .

examples equality seems to hold in the above lemma. However, most
unfortunately, in general N = max (n,, n_). For the graph given in
Fig. 7, we have n, = 1, n_ = 5, but a computer search of possible
decompositions has shown N = 6.

Therefore, k = max (n,, n-) and the lemma is proved. For most simple

Lemma 1 is strong enough to settle the best N in many cases. In
preparation let us prove Lemma 2, due to E. N. Gilbert.

Lemma 2: If the n X n distance matriz (d.;) is cyclic (meaning d;; =
a{j — 1) mod n), then the eigenvalues of (d.;) are the values of

n—1
PQ) = Z ad
0

at each nth root of unily.

Fig. 7—Graph for Lemma 1.
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Proof of Lemma 2: Let the cyclic matrix M be

Ao QA1 0 Ay
M = Ap-1 Qo " OQpo i
a (42 (1

If we try an eigenvector of the form

1
2
. y
n:-l
2
then
1 a + az+ - + an—lzn—l
yl 2o |t et g
2" 4+ oz + -+ gt
If 2% = 1, then the latter matrix equals
1
(ao + a2+ - + an—lzn_l) ?
n—1
Thus the values of o + @12 + - - - + @,-.2" " if 2" = 1 are eigenvalues of

the matrix M. Since they are n in number, and since M has only =
eigenvalues, they are all the eigenvalues of M.

Theorems 2, 3, and 4 may now be proved by using these lemmas. Let
us prove a statement equivalent to:

Theorem 2: If G is the complete graph* on n vertices, then N(G) = n — 1.
Proof: For this graph, d;; = 1, 1 £ ¢ < j < n. The corresponding

quadratic form is

n—1

*ie., any two vertices of G are joined by an edge.
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which is equal to

n—1

Z @i + 0 1)

i=1
Hence N(G) £ n — 1. To obtain an inequality in the opposite direction,
we examine the eigenvalues of the (d;;) matrix. By Lemma 2, they are
the values of

PRy =242+ -+
when z"=1. But P(z)=[2(z""'—1)/(2—1)], so that if z"=1 and 251,

P(e) = —1.Ifz = 1,P(z) = (n — 1). Hencen, = 1,n_ = (n — 1), and,
by Lemma 1, N(G) = n — 1. Hence N(G) = n — 1.

Theorem 8: If the graph G s a tree® with n vertices, then N(G) = n — 1.

Proof: We first examine the distance matrix D, for a tree with n vertices.
Consider a terminal vertex v, i.e., a vertex which is distance 1 from
just one other vertex, say v;. By a suitable relabeling we can assume ¢ = n
and j = n — 1Y Thus, d,, = 1 + d,—,,for1 £k £ n — 1. Hence,
the matrix D, has the form

[0 diy o+ dyey 14 diy |

di» 0 - dawr 14 dos
p.-| 1 -
dyns 0 1

11+ diny 1 0

We wish to evaluate the determinant det (D,) of D, . Certainly we
can subtract column #» — 1 from ecolumn n and row n — 1 from row n
of D, without changing det (D,). This leaves us with a matrix D,
with the form

0 o dyl, 1]
1
D, =
Aoy e e 1
1 - 1 =2

*i.e., G is connected and has no cycles.

t We have chosen j = n — 1 to simplify the exposition of the first part of the
proof. In fact, any j, 1 < j < n — 1, is acceptable. This generality is required later
in the proof. :
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But, we now imagine removing the vertex », from G, forming a tree
G,.-, with » — 1 vertices. The interpoint distances in G, are given
exactly by the upper-left (n — 1)-by-(n — 1) submatrix of D! . As
before, we can suitably relabel the vertices of G,_, so that Vp-1 1S &
terminal vertex adjacent only to v,_, . The corresponding rearranged
matrix D/’ now has the form

[0 dn o dws 14dy, 1]
iy 0 don—z 1 4 dy,es 1
D! = . .
Ain—s 0 1
1+ diuee cee 1 0 1
L1 R | 1 -2

By subtracting column n — 2 from column n — 1 and row n — 2 from
row n — 1 we obtain

[0 d, dine 1 1

ds 0 doms 1 1

prr—| 1 : L
dinz dones 0 11

1 1 - 1 —2 0

L1 1 1 0 —2|

It is not difficult to see that this process can be continued until we
reach the matrix

o 1 1 1 1 1
1 -2 0 0 0
1 0 -2 o0 0 o0
Df=|1 0 0 -2 0 o
1 0 0 o0 -2 0
1 0 0 o 0 —2

The first (surprising) conclusion we draw is that det (D,) depends
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only on the number of vertices n and not on the structure of the tree G.
By expanding det (D%) along the last column it is easy to get the
recurrence

D,=(-1y"'2*-2D,,, D=0, D,=—1
from which it follows that
D, = (—1)"'(n - 1)2"% nzl

We next note that if we relabel the vertices of G, according to the
relabeling used to get the matrix D*, in the corresponding distance
matrix D, (which is a permutation of the original distance matrix D,)
the upper left-hand k-by-k submatrix D, of D, is just the distance
matrix for some k vertex subtree of G. Hence,

det (D) = (=) '(k — 1)2"% k= 1.
Finally, the sequence of determinants
1, det (D,), det (D), -~ , det (D,) 3)
18 just
1,0, —1,4, —12,82, -« , (—=1)"'(n — )22

Hence, the number of permanences of sign of this sequence (where 0
is fixed as either positive or negative) is just one! By a theorem in
matrix theory (cf. Ref. 2), the number of permanences in sign of the
sequence (3) is exactly the number of positive eigenvalues of D, which
we have seen is just one. Since D, is nonsingular for n = 1, then D,
has no zero eigenvalues and hence, D, must have n — 1 negative eigen-
values. Therefore D, also has n — 1 negative eigenvalues and by
Lemama 1, N(G) =2 n — 1.

The construction which gives N(G) = n — 1 has an easy recursive
definition: Each time we choose the next vertex v; in the tree to assign an
address to,* make sure that it is adjacent to a vertex v; which is already
addressed, and let A(v;) — A (v;) 1 and A (v,) — A(vs) O for the previously
addressed vertices (i.e., 1 and 0 are adjoined to the previous addresses).
Thus, after all vertices have been addressed, all addresses will have
length n — 1 and, in fact, no d’s are used. Therefore, N(G) = n — 1
and the theorem is proved.

Theorem 4: If G is a cycle on n vertices, then N(G) = n/2 if n is even and
(n — 1) #f n 1s odd.

* Where we assign 0 to the first vertex and 1 to the second vertex.
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Proof: If n = 2m, then the vertices 4;, - - - A,,, can be coordinatized as
follows:
A, =@ 1,00 if 1<Ss<m+1,
NV ey
s—1 m—g+1
and
A, =0---0,1---1) if m+2=<s<om.
S e
s—m—1 2m—za+1

Clearly d;; = min (|¢ — j|, 2m — | — j|) is the number of places in which
A; and A; differ, and is the correct distance on a cycle. Hence N(G) < m.
On the other hand, d, ,.,, = m, and hence 4, and A,,.., must differ in
exactly m coordinates. Therefore there must be at least m coordinates,
and hence N(G) = m. Thus N(G) = m.

If n = 2m + 1, consider the following addresses:

2m
f“_'/%

m m
A, —000---00---000
A, —d00---00- - -001

A, —dd0---00---011

A, —ddd---di---111
Ay —1dd- - -dl---110
Apir—dld- - -d1---100
Apiy—ddl- - -d1---000

A,, —ddd---10---000
We see that:
@if0=si=<j<= i =]— 1
(@) ifm<i<js2md,; =7—7;
(w2) if 0 <7 < mandj = m + s where s > 0, then consider sepa-
rately © > sand 7 < s. If ¢ > s then the first m coordinates
contribute 0 and the second m contribute j — 4. If i < s the
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first m coordinates contribute 1 and the second m contribute
i + 2m — j, so that together they give 2m + 1 — j + ¢ which
is the correct cyclic distance.

We thus know that N(G) £ 2m.
To prove N(G) = 2m, we use Lemmas 1 and 2.

P) =242+ - +me" +me" 4+ (m— 12" 27

and we consider z such that 2*™*' = 1.
If 2, = exp (2wik/2m + 1), then

SR 2jrk _
P(zk)—22100s2m+1, E=0,1,2 , 2m.

P(1) > 0; we shall prove P(z,) < O for all other k. We find that if we
define

R S PALES
g(x) = ;s1n2m+ 1

then

T
2m + 1

Cco8 — COS ¥

1

2m + 1

sin

Therefore

+
T

2m + 1

is m/(2m + 1) times the desired seriesif zis 1, 2, - - - 2m. But¢'(x) < 0at
all of these points. Hence n, = 1,n_ = 2m, and N(G) = 2m by Lemma 1.
The theorem is proved.

——=—— + sin 7z sin i 1 COS XL COS UL
r 2m+1 TSN G 1 T om 1L 2m + 1

g'@ =3

sin’

III. ADDRESSES OF MINIMUM LENGTH

We describe an algorithm which is guaranteed to produce a valid
addressing for any graph G. This algorithm has always succeeded in
finding an addressing of length < n — 1 for every graph @ on n vertices
to which it has been applied. However, no proof that this will always
happen is eurrently known.

The algorithm proceeds as follows:
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(z) Number the n vertices of ¢ with integers {1, 2, -+, n} so that for
k > 1, the vertex numbered k is adjacent to some vertex with a smaller
number. Since G is connected, this is always possible. Let v(k) denote the
vertex to which k has been assigned.

(¢i) Assign the (partial) addresses of 0 to v(1) and 1 to v(2).

(#47) In general, suppose we have assigned (partial) addresses to
v(1), v(2), - -, v(k), say, A7) has been assigned to v(z), so that d,; =
de(A(@), A(j)), 1 <7 < j £ k, where dy denotes the Hamming distance
and d;; denotes the distance between v(z) and v(§) in G. We next search
for an address A (k + 1) (of the same length as the A (z)) with the property
that max,cicx (diser — du(A@), Ak + 1)) = my,, is as small as
possible under the constraint

1In‘ink @i ser — du(A@@), Ak + 1))) = 0. ™
Of course, we can always find some address which satisfies (*), namely
the all d’s address. Typically we ean choose A(k + 1) so that m,,, = 1.
In fact, it is usually possible to do this by choosing A(k + 1) to be a
slightly perturbed copy of some A (I) where v(l) is adjacent to o(k + 1).
This is intuitively reasonable since in this case |dixsr — diy] £ 1.

After A(k + 1) has been chosen, we then adjoin m,., symbols to each
of the partial addresses A(z), 1 < 4 < k + 1, as follows. To Ak + 1) we
adjoin m, ., 1’s. To A(2) we adjoin my,, — (di by — du(A @), Ak + 1))
d'sand d; .1 — dg(AQ@), Ak + 1)) 0s. It is easy to check that for the
new augmented addresses A’(5), 1 <7 < k + 1, we have

dij = da(4'G), A’(G), 1Si<j=<k+1.

We continue in this manner until the addressing is completed. By
construction, the terminal addresses will form a valid addressing for G of
length 1 4+ ms + -+ + m,.

As an example, we construct an addressing for the graph in Section I
by this process. In Fig. 8 we show this graph with a particular “adjacent-
numbering” chosen and also the distance matrix for the graph.

We start with

vertex address
1—0
2—1

Adjoining vertex 3, we see that any partial address of length one will
give my; = 1. We choose 0.
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Fig. 8—Addressing example.

vertex address
1—0
2—1
3—0
We next adjoin m; = 1 I’s to A(3) and augment A(1) and A(2) ac-
cordingly. \
vertex address
1—00
2—1d
3—01
Now adjoin vertex 4, choose partial address 01, calculate that m, = 1,
and augment the partial addresses accordingly.

vertex address

1—000
2—1d0
3—010
4—011
Continue this for two more steps. Each time m, = 1.
vertex address vertex address
1—0000 1—0000d
2—1d0d 2—1d0dd
3—0100 3—0100d
4—0110 4—01100
5—0111 5—0111d

6—1d1d1
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The last array gives a length 5 addressing for G. Of course, different
partial addresses or a different initial vertex numbering will result in
different addressings for G.

As we have previously stated, we have no general proof that
N(G) =n — 1lin all cases although a number of partial results in that
direction have been given as well as a heuristic construction.

IV. ADDRESSING IN RESTRICTED LOOP SYSTEMS

The addressing scheme we have been describing has the very great
power of being able to handle an arbitrary configuration of loops, and to
provide alternate routing in an optimal way without any supervisory
memory. The price we have paid for this generality is in the length of the
address—typically n — 1 “bits” for n loops in the simplest encoding—
and in possible complications under system growth. It is clear that if a
new loop is added which greatly sl{lortens the distance between many
pairs of loops, then many addresses may change a good deal. There
would be various ways of handling this, but it is obviously a problem.
It arises essentially because the numbering in its full generality is not
hierarchical.

Typical Bell System loop eonfigurations, as we noted in the intro-
duction, will not be arbitrary collections of loops, but will have a
hierarchical structure.

By correspondingly restricting the allowable adjacency graphs G, it is
possible to modify the routing algorithm and effectively take advantage
of a natural “product” construction, as pointed out by J. R. Pierce.' In
this system, as we saw, loops are partitioned into three classes—national,
regional, and local. The address portion of the message is subdivided
into three corresponding portions. The routing algorithm now consists of
three steps: (¢) First apply the previous Hamming distance algorithm
to the “‘national”” portions of the sending and the destination addresses;
(%) When the distance in ¢ becomes zero, then apply the Hamming
distance algorithm to the “regional” portions of the addresses; (#71)
Finally, when the distance in 4 is zero, apply the Hamming distance
algorithm to the “local”’ portions of the address.

This scheme combines the efficiency of the Hamming distance al-
gorithm with the savings in address lengths resulting from the hierar-
chical structure. As an example, the network in Fig. 9 has 44 local
vertices. For a direct Hamming algorithm addressing we should expect
addresses to have length of around 59. By distinguishing national,
regional, and local loops (capital letters, lower case letters, and integers
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respectively), with a small additional computed cost in routing (several
extra conditional transfers) we can have addresses of length = 11,
For example, let N, R, L denote national, regional, local, respectively.

One possible addressing begins:
A—(00, 000 --)
B—(01, 000, ---)
Cc—(10, 000, ---)
D—(11, 000, ---)
a—(00, 001, 000)
b—(00, 010, 000)
¢—(00, 140, 000)
d—(01, 001, 000)
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1—(01, 001, 001)
2—(01, 001, 010)
3—(01, 001, 1d0)

44—(11, 000, 001)

Moreover, to add additional local stations to a regional station it is a
very simple matter to modify just the netghboring local addresses to
obtain a correct addressing for the augmented network.

The restriction on local loops in the above addressing is that each one
must interchange directly with one and only one regional loop. If a local
loop meets no regional loop directly, but only other local loops, then the
addressing must make special provision for routing calls to other regions
properly. If a local loop meets more than one regional loop—really a
violation of the hierarchical concept—then routing becomes more
difficult, and must assure that a call to a different region exits the local
loop properly. As J. R. Pierce has pointed out,' a special trunk loop
connecting a local loop in one region to a local loop in another (ie., a
preferred alternate route in a special case to the national loop) is no
problem. The exit from the local loop is just before the regional inter-
change, and the entrance to the local loop just after. Exit is made only if
the total loop address matches exactly. Alternate routes more generally
are perhaps most easily provided by duplicating portions of regional or
natural loops.

V. SOME VARIANTS OF THE ADDRESSING PROBLEM

The purpose of this section is to record very briefly some other
alternatives that have been considered.

(#) We have required that in every alternate route between the loops,
Hamming distance decrease by exactly 1 at each transfer. One could
consider the alternate problem in which any exit which decreases
Hamming distance is valid—even if it decreases it by more than 1. Under
special conditions, this can lead to shorter addresses, but we do not
have a solution for this alternate problem.

(%) Since the introduction of d’s causes some complication of the
address codes, it is interesting to consider the possibility of getting rid of
them. They arose originally because of the need for odd cycles, as in the
case of a 3-cycle. One way out of this example would be to double all the
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distances. If these vertices were located at 000, 110, and 101 respectively,
the Hamming distance between any pair is two, and correct routing
would be possible without any d’s in the addresses.

Unfortunately, this technique of doubling all the distances to get rid
of d’s does not generalize. Consider the graph in Fig. 10a. We double all

C D C D E

A B A B

Fig. 10—Graphs to illustrate one variant of the addressing problem.

distances, so that AB = AC = AD = BC = BD = 2, CD = 4. Then
A =00---,B =11---, where the coordinates are identical from the
third onward. Now C must differ from each of A and B by 2. It therefore
must differ in one of the first two columns, and in one other, say the
third. Thus, we may assume A =000 --- ,B=110---,C =101 -- -,
where the coordinates are identical from the fourth onward. D must also
differ in exaetly two places from A and B and in four places from C.
Hence A = 0000 --- ,B = 1100 --- ,C = 1010 --- , D = 0101 - - - .

So far so good. If we now require yet another point E (Fig. 10b) such
that EA = EB = 2, EC = ED = 4, we have no possible coordinates for
E left. E’s address must begin with 01 or 10 in order to differ from A
and B by equal amounts, say with 10. To differ from C and D by equal
amounts the first four coordinates must be 1001. But it now differs
from 4 and B by 2 and from C and D by 2; no additional coordinates can
make EC = ED = 4 without destroying EA = EB = 2. Thus doubling
distances will not get rid of d’s.

Similar arguments show that even if we are allowed to multiply all
distances by a fixed number m > 2, we still cannot get along without d’s.
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