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INTRODUCTION

Almost everyone is familiar with the fact that
any way of coloring the edges of the complete graph on 6
vertices with 2 colors always results in a triangle having
all its edges the same color. This is a very special case
of a more general result known as Ramsey's Theorem, first
proved in 1930 [21],[23], which can be stated as follows:
For any positive integers k, 4 and r and any r-coloring*
of the k-subsetsJr of a sufficiently large n-set S, all
the k-subsets of some L-subset of S have one color.

In another direction, L Schur proved in 1916 [25]
that for any r and any r-coloring of a sufficiently large
initial segment of the positive integers, one can always

solve the equation x + y = z with integers having one color.

*
i.e., partitioning into r classes.

Ti.e., subsets with k elements.
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These two theorems are typical of what we shall

call a Ramsey theorem and a Schur theorem, respectively.

In this paper we shall survey a number of more general
Ramsey and Schur theorems which have appeared in the past

40 years. It will be seen that quite a few of these

results are rather closely related, e.g., van der Waerden's
theorem on arithmetic progressions [26],[15], Rado's work
on regularity and systems of linear equations [19],[18],

the results of Hales and Jewett [13] and others [7] on
arrays of points and Rota's conjectured analogue of Ramsey's
Theorem for finite vector spaces, as well as the original
theorems of Ramsey and Schur.

NOTATION

Given a set S, by an r-coloring of S we mean a

partition of S into r (possibly empty) subsets Si’

1 igr. Asubset X of S is said to be monochromatic

if xC; S; for some i.

A rank function p on a partially ordered set P
is a function from P to {0,1,2,...}. If a ¢ P and
p(a) = k, then a is said to have rank k. P is graded by p
if for all a,b € P such that a ¢ x { b implies a = X or
b = x, we have p(b) = p(a) + 1. By a Ramsey theorem R(P)
for P we mean the following:

R(P): Given positive integers k, £ and r, there

exists an integer N = N(k,%,r) such that if n > N and all
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the rank k elements which are below a rank n element p of
P are r-colored then all the rank k elements which are
below some rank 4 element below p have one color.

Similarly, if we have a product defined on P,
i.e., a mapping of PXP into P which we shall assuﬁe is
associative then we can state a Schur theorem S (P) for P
as follows:

8(P): Given positive integers k and r, there
exists an integer N = N(k,r) such that if n > N and all
the elements, which are below a rank n element p of P are
r-colored then there exist k distinct element PyseeesPy
below p such that all nonempty products formed from
distinct P; are below p and have one color.

We next discuss some partially ordered sets P
for which R(P) or §(P) has been established and we indicate
their mutual interrelations. For the following section,
the reader is referred to Diagram 1.

SOME RAMSEY AND SCHUR THEOREMS

(GLR). This is a very general Ramsey theorem for
graded partially ordered sets (or equivalently, certain
classes of categories) recently proved by Graham, Leeb and
Rothschild [8]. Essentially, it is shown that if a class
of graded partially ordered sets satisfies four rather strong
axioms, then a Ramsey theorem is valid for the class. The

precise statements involved are somewhat technical and will
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not be discussed here. As can be seen from the diagram,
(GLR) implies nearly all of the other results to be
described in the paper.

(VS). Suppose V is a countably infinite
dimensional vector space over a fixed finite field F. TLet
P denote the graded partially ordered set of all finite
dimensional subspaces of V, partially ordered by inclusion
with rank equal to dimension. The Ramsey theorem R(P),
first conjectured by Rota, can be deduced directly from
(GLR).

If the notion vector space is replaced by that
of affine space, the corresponding graded partially ordered
set P’ satisfies the Ramsey theorem R(P’). This is also a
consequence of (GLR). Prior to (GLR), it had been shown by
Graham and Rothschild [9] that R(P)and R(P’)were equivalent.
The special case k = 1 for R(P) was previsouly proved by
Kleitman [16] for F having 2 elements, by Rothschild [22]
for F having 2, 3 and 4 elements and by Graham and
Rothschild [11],[10] for all F. (This is indicated by the
arrow in the diagram from KPS to the "low dimension" part
of VS.)

(KPS). The concept of k-parameter set was
introduced by Graham and Rothschild in [11]. Basically,
k-parameter sets Pk are certain distinguished subsets of

A" where A is a fixed finite set and n is an integer.
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Pk also depends upon a given permutation group acting on A
and several other variables; the reader is referred to [11]
for a detailed discussion. In particular, it is possible

to form a graded partially ordered set P from certain classes
of k-parameter sets (with variable k) with the rank of Py
equal to k and partially ordered by inclusion. The Ramsey
theorem R(P) for P, established in [11], has proved quite
useful in deriving and interrelating a number of results in
this field.

(S). This, of course, is Jjust the original theorem
of Ramsey [21] with P being the set of all finite sets of
some countable set partially ordered by inclusion and with
rank equal to cardinality. The two arrows (GLR) — (S) and
(KPS) — (8) in the diagram indicate that the corresponding
derivations given in [8] and [11] respectively are
essentially different.

(S) can also be deduced from the following theorem,
also due to Ramsey [21]:

(IS). Given k and r, if all the k-subsets of a
countably infinite set S are r-colored then there is an
infinite subset S'g; S such that all k-subsets of S have
one color.

We shall return to the topic of infinite versions
of Ramsey and Schur theorems at the end of the paper.

(PS). For a fixed countably infinite set S, we

consider the set P of all partitions of finite subsets of S,
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partially ordered by refinement. The rank of a partition
T=T) + ... +T_ 1s defined to be |T| - t. We note that
the Ramsey theorem R(P) is equivalent to (S) by noting

that P contains arbitrarily large lower ideals isomorphic
to the lower ideals of the subset lattices which occur

in (S). (Specifically, one can consider the set of refine-
ments of a partition T = T; + ... + T, with [T, | ¢ 2 for
all k.)

By taking S to be the nonnegative integers and
associating with each finite subset T of S the integer
obtained by interpreting the characteristic function of T
as the binary expansion of an integer in the natural way,
the Ramsey theorem (PI) follows at once. This is just
R(P’) where P’is the set of partitions of positive integers
partially ordered by refinement and with rank defined as
in (PS).

(UPS). 1In this Ramsey theorem, we essentially
turn the partially ordered set in (PS) upside down. More
precisely we consider the set of partitions P of a countably
infinite set 8. If T = Tl + .. + Tt is a partition then
the rank of T is defined to be t.If T and T’ are partitions
then P is partially ordered by <,where T £ T'if and only if
T’ is a refinement of T. The first proof of the Ramsey
theorem R(P) was given by Graham and Rothschild in [11].

No simple proof of-(UPS) is known.
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(UPI). The Ramsey theorem (UPI), for the
so~called upside-down partially ordered set of partitions
of integers stands in relation to (UPS) in exactly the
same way that (PI) is related to (PS). For further details,
the reader is referred to [11].

(AP). Let A be a fixed finite set. Given an
integer r there exists an integer N(r) such that for any
n > N(r) and any r-coloring of the n-tuples An, there exists
a monochromatic set T consisting of |A| elements of A" of

the form

T = {(al’"”ail-l’x’ail+l’""aid~l’x’aid+l’“') : X e A},

The first published proof of (AP) was given by
Hales and Jewett [13]. (AP) follows from (KPS) by choosing
k=0, £ =1 and taking the permutation group on A to be
trivial (ef. [11]).

(VAW). A classic theorem of van der Waerden [26],
[15] is the following:

(VaW) Given k and r there exists an integer N(k,r)
such that any r-coloring ofthe first N(k,r)positive integers
must result in a monochromatic arithmetic progression of k
terms.

It 1s not difficult to see that by choosing A to
be {0,1,...,k-1} in (AP) and interpreting n-tuples from A"

as integers to the base k, the monochromatic set T guaranteed
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by (AP) corresponds to a monochromatic arithmetic progression
of k terms. Thus, (AP) implies (VdW). A different proof of
this implication may be found in [13].

(8’). We come to the first of the Schur theorems.
Let Pbe the set of all finite subsets of a countably infinite
set S8 partially ordered by inclusion with rank equal to
cardinality. Define the "product" of T and T' to be their
union. Then the Schur theorem §(P) for P holds.

The derivation of (S’) from (KPS) involves using
the set A = {0,1} in (KPS) and interpreting elements of A"
as characteristic functions of subsets (ef. [11]). In turn,
by interpreting the characteristic functions as integers
expressed to the base 2, one obtains the Schur theorem
(I) = S(P') for the set P’ of all nonnegative integers
partially ordered by size with the rank of k equal to k.

To furnish the reader with an example of the type
of argument used in proving the various implications we give
a proof due to Folkman [5] that (VAw) implies (I).

We first need some notation. If a and b are
integers, [a,b] will denote the integers k with a { k ¢ b.
An r-coloring of a set S will be determined by a function

c : 8§—>[1,r]. If S is a subset of the integers, P(S) will

denote the set of all integers of the form }Z X where T is
XeT
a nonempty subset of S. If k and r are positive integers,
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W(k,r) denotes the least positive integer such that if ¢
is any coloring of the set [1,W(k,r)] then there are
positive integers i, a and 4 such that 1 { i ¢ r,
a + kd ¢ W(k,r) and c(a+jd) = 1 for all integers j with
0 ¢ J < k. Note that W(k,r) exists by (Vaw).

We restate (I) in a form more convenient for this
proof.

Theorem (I) (Folkman) Let r be a positive integer
and let tl’t2""’tr be nonnegative integers. There is a

positive integer N = N(tl,...,t such that if ¢ is any

»)
r-coloring of [1,N] then there is an integer i and a set
of integers S satisfying the following conditions:

(1) 1<1gr;

(2) sl = t4;

(3) P(s)C [1,N];

(4) ec(x) = 1 for each x e P(8).

Proof.
- tq (t1+1)
Remark 1. If r = 1 we may take N = — and

conditions (1) - (4) will be satisfied for i = 1 and
S = {l,2,...,tl].

Remark 2. If tj = O for some J with 1 £ Jjgr,
we may take N = 1 and conditions (1) - (4) will be
satisfied for i = j and S = &.

Let T, denote the assertion that the theorem is

true whenever tl + t2 t oees + tr < k. We will prove Tk for

all positive integers k by induction on k.
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If t7 + t5, ++... + t, < 1 then either r = 1 or
tj = 0 for some J with 1 ¢ j ¢ r. Hence, Tl follows from
Remarks 1 and 2. Now let k > 1 be an integer and suppose
that we have established Tk’ Let r be a positive integer
and let tl’te""’tr be nonnegative integers with
ty+t+ e+t k+ 1. IF tj = 0 for some j with

1 < J K r we are done by Remark 2. Hence, we may assume
that tj >0forlg jgr. By T, forl < J £ r, the

required integer N(tl’tz""’t"l’tj+1’""tr) exists.

J
Let M be the maximum of these r integers. Let W = W(M,r)

and let N = 2W.

Suppose that c¢ is an r-coloring of [1,N]. Define
an r-coloring ¢’/ of [1,W] by c’(x) = c¢(x+W) for each
x ¢ [1,W]. By the choice of W there is an integer i with
1 {1 r and positive integers a and d such that a + Md { W
and c’(a+kd) = 1 for 0 ¢ k { M. For 1 ¢ jg r, let
t; = tj if j # 1 and t; = ti - 1. By the choice of M,

’ ! [ . 4 [4
N(tl,t2,...,tr) { M. Hence, if x ¢ [l,N(tl,...,tr)] then
dx { dM < a + Md ¢ W ¢ N. Therefore, we may define an

’ [4
r-coloring c” of [1,N(tl,...,tr)] by ¢”(x) = ¢(dx) for
each X ¢ [l,N(ti,...,t;)]. By T, there is an integer j
with 1 ¢ j { r and a set of integers T with |T| = t; such

that P(T) C [1,N(ty,...,t.)] and ¢”(x) = j for each x ¢ P(T).
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Case 1: J # i.

Let 8 = {dx|x e T}). Then S is a set of positive
integers. P(S) = {dx|x e P(1))C [d,aN(ty,...,t.)1C [1,am]
C [1,a+Ma] C [1,w1 C [1,N]. Furthermore, || = |T| = t; =t
and 1f y € P(S) then y = dx for some x ¢ P(T) so
c(y) = e(dx) = e”(x) = J.

Case 2: J = 1.

Let S = {a#W} Y (dx|x € T}. If x e T then
dx g M W-a<W+aso|S| = [T +1=t;+1=t,.
We have P(S) = {ax|x ¢ P(T)} Y {a+w} Y (atW+dx|x ¢ P(T)].
If xe P(T) then x { Mso dx < a+ W+ dx < W+ a + dM
{ 2W = N. Furthermore, a + W a + dM + W 2W = N so
P

(s)C [1,N]. For x ¢ P(T), c(dx) = cr(x)

It

J =1 and
c¢(W+a+dx) = e’ (a+dx) = i since O g‘x < M. Also
c(atW) = c’(a) = ¢’ (a+0-d) = i. Hence, c(y) = i for every
¥y € P(8).

This completes the proof of the theorem.

Of course, (I) follows by choosing all the ti
to be equal. (I) was first proved by Rado [19],[18],[20],
although independent proofs were given by Sanders [24] as
well as Folkman. As mentioned previously, the case k = 2
which we denote in the diagram by (SCH) was first proved
by Schur [25].

(G). This Schur theorem for groups is most

easily stated as follows: Given k and r there is an
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integer N(k,r) such that if G is a group with |G| > N(k,r)
and G i1s arbitrarily r-colored, then G contains k distinct
elements &1sees 8y all of whose nonempty products have one
color.

The proof of (G) given in [11] actually requires
a combination of (S) and (I). It is interesting to note
that the corresponding result for semigroups does not hold.
Simply consider the null semigroup S defined by ab = 0 for
all a,b € S and assign to O a color not assigned to any
other element of S.

(LE). This result, closer to (VAW) than either
a true Ramsey or Schur theorem, has the following statement:

(LE) Let £ be a finite system of homogeneous
linear equations in the variables XisoeesXy with complex

coefficlents. Suppose for any i, 1 ¢ i < t, there is a

solution (e:(Li),...,g(l)) to { with all eg.i) = 0 or 1 and
séi) = 1. Then given any r there is an integer N({,r) such
that if the integers in [1,N({,r)] are r-colored then there
is a solution (al,...,at) of £ with all a; € (1,§(£,r)] and
all 8y having one color.

(LE) is a special case of some very elegant
results (R) of Rado [19],[18], in which necessary and
sufficient conditions are derived for the forced existence
of monochromatic solutions of systems of linear equations.

The derivation of (LE) from (KPS) is fairly straightforward

and is given in [11].
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It may be pointed [18] out that (LE) leads very
directly to (VdW) and (I).

To see this, first consider the system of
equations £ : {x; ,-%x; ; = x; J-x; : 1< 1 n}. Since
for each x; there is a (0,1)-solution of £ with x; =1
(in fact, the single solution (1,1,...,1) satisfies all
the conditions) then { satisfies the hypotheses of (LE).
However, the X5 certainly lie in an arithmetic progression
so that the conclusion of (LE) implies (VAdW).

The derivation of (I) from (LE) is equally simple,

starting from the system of equations

£ z X; = Yo ! g #17C [1,x]{. For each X;, We can
1eT
construct a (0,1)-solution of { with x; = 1, xy = O for

j#41i and Yp = 1 iff i € T. These solutions show that &
satisfies the hypotheses of (LE); the conclusion of (LE)
is just (I).

(MM). This result is included to show the
application of (KPS) to systems of nonlinear equations.

By a system of multigrade equations of order m we mean a

system of homogeneous nonlinear equations N of the form

t t
X}J; = yl:lé’ i = O,l,-oo,mo
=1 k=1
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It is known [14] that if t is sufficiently large as a
function of m (e.g., t > 1 + (mgl)) then the system N
always has nontrivial integer solutions (i.e., Xy # yL).
In this case, call N golvable. (MM) can be stated as
follows:

(MM). Given r and a solvable system of multi-
grade equations N\, there exists an integer N(,r) such
that for any r-coloring of .the integers in [1,N(NM,r)],

N always has a monochromatic solution in [1,N(NM,r)].
(NC). Let Cn denote the set of vertices of some

unit n-cube in euclidean n-space. It is a fact (cf. [11])

that any nonempty subset XC_ Cn must span a subspace {X)

of dimension > log,|X|. Call X a k-subspace of C, if
dim {X> = log,|X|. Let P denote the set of all k-subspaces
for all finite k of a fixed countably infinite dimensional
unit cube in Hilbert space. P i1s partially ordered by
inclusion; define the rank of a k-subspace to be k. Then
the Ramsey theorem R(P) is valid for P.

The only proof currently known for (NC) relies
on (KPsS) (ef. [11]).

OPEN_ PROBLEMS

The preceding section was meant to give the reader
an idea of the main Ramsey and Schur theorems currently
known and some of their applications and interrelations.

We would like to cénclude with a few questions in this area

for which very limited information is presently available.
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1. It is natural to ask whether or not various

infinite analogues of the preceding results are valid.
For example, we have seen that an infinite analogue (IS)
of (8) is valid.  On the other hand, it is easy to show
that (VdW) has no natural infinite generalization. One
might ask whether any infinite analogues of (VS) are
valid. Similarly, it is not khown if there are infinite
generalizations of (AP) or (UPS).

The possible infinite analogues to some of the
Schur theorems are also quite tantalizing. Although a
whole range of infinite cardinals may be used in the
various generalizations, even the simplest guestions
remain unanswered. For example, if the finite subsets
of a countably infinite set S are r-colored, must there
exist an infinite family J of disjoint finite subsets of
S all of whose (nonempty) unions have one color? What if
all subsets of S are colored and elements of J are allowed
to be infinite? It has been noted by Sanders and others
that if the requirement of disjointness for elements of J
is dropped then the result is trivially true (by considering

an infinite nested family of subsets of S).

*

For a variety of results in this direction, the reader may
consult the fundamental papers of Erdos, Hajnal and Rado
[3]1,[4] or the more recent work of Chang [1? and Milner [17].
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Similarly one may ask: If the positive integers
7z are r-colored, must there exist an infinite subset S
all of whose nonempty subset sums have one color?

It is not even known if there must exist an
infinite subset S for which all integers in S and all
integers in S + S = {s+s’ : s,s’ € S, s £ s'} have the
same color. Of course, the answer is negative if the
integers of the form s + s are also required to have the
same color: Just color the integer k according to the
largest power of 2 which divides k. In the positive
direction, it is known [6] that for r = 2 there always
exists an infinite subset S such that either S and S + S
all have the same color or S and 8 + S + 8 + S all have
the same color. Also, it can be shown (using (IS) and (I))
that there always exist infinite subsets A;Bg; Z' such that
all elements of A,B and A + B have one color.

2. Can proofs be given for some of the theorems
on the lower portion of Diagram 1 which are essentially
simpler than the proofs of the results above them on which
they presently depend? For example, can a relatively simple,
direct proof be given for (UPS) or (UPI). Can (VdW) be
proved just for 2 colors without proving it for an arbitrary
number of colors? Are there any obvious arrows missing in
Diagram 1, e.g., (S) — (Vdw), (Vaw) — (S), (AP) = (s’),
(UPS) — (Vaw), etec.?
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Rota has suggested that Ramsey theorems may be
valid for many other classes of geometric lattices besides
(8), (Vs), and (PS). What are some of these? It seems
clear that some account must be taken of the "thickness"
of the lattice involved. For example, there does not
exist a Ramsey theorem for the class of all finite
dimensional vector spaces over any finite field partially
ordered by inclusion with rank equal to dimension.

3. The results of this paper have been primarily
concerned with the existence of Ramsey and Schur theorems
for various partially ordered sets P and not with estimates
for the ranks involved. Once a particular Ramsey theorem
is known to hold, it is of interest to determine bounds on
the minimal rank elements for which the theorem is true.
Fairly good estimates are available for (S);for some results
and further references, see [12] or [2]. For almost all the
other cases, the results are considerably more incomplete.
Even the bounds for (VdW) are notoriously divergent. The
arguments used in [11] to prove (KPS) involve highly
recursive applications of the type of arguments which
produce the bounds for (VaW).It is therefore not surprising
that the best known bounds for (KPS) and its relatives are
totally ridiculous,to put it mildly (e.g.,see the estimates
for (NC) in [11]).
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