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On a linear diophantine problem of Frobenius

by
P. ErpOs (Budapest) and R. L. GRArAM (Murray Hill, N. J.)

Introduction. Given integers 0 < a, < ... < @, with ged(a,, ..., a,) =1,
n

it is well-known that the equation N = },a, has a solution in non-
k=1

negative integers x;, provided N is sufficiently large. Following [9], we let
G(a,, ..., a,) denote the greatest integer N for which the preceding equa-
tion has no such solution.

The problem of determining G(a,, ..., a,), or at least obtaining non-
trivial estimates, was first raised by G. Frobenius (cf. [2]) and has been
the subject of numerous papers (e.g., ef. [1], [2], [3], [4], [7], [8], [9], [11],
{127, [18]). It is known that:

G(ayy a5) = (@, —1)(a,—1)—1  ([2], [11]);
Gty oney ay) < (0, —1)(a,—1)—1  ([2], [4]);

n—1
G (A ..oy @) < Z Oy 1 Qg g
k=1

where d,, = ged(ay, ..., a;) ([2]). The exact value of G is also known for
the ease in which the a; form an arithmetic progression ([1], [137).
In this paper, we obtain the bound

an
Gy, ..., a,) < 2a,_, I:“/;] — Ay,

which in many cases is superior to previous bounds and which will be
seen. to be within a constant factor of the best possible bound. We algo
congider several related extremal problems and obtain an exact solution
in the case that a,—2n is small compared to n'?.

A general bound. As before, we consider integers 0 < a, <...<a,
with ged(ay,y ..., a,) = 1.
THEOREM 1.

(1) Ga, ..., a) < 2a,_, [%] —a,.
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Proof. Let g denote a,, let m denote [%] and let A denote the
set {0,a,,...,a,_,} of residues modulo 4. Consider the sum

C=A+...+4 ={b;+...4+b,: byed} (mod g).

m

By a strong theorem of Kneser ([10]; cf. also [6], p. 57), there exists
a (minimal) divisor ¢'-of g such that

€ =A9 ...+ A9 (mod g)

where
AD = {a+rg': 0<r<glg, acA} (mod g)

and such that

€] mn m—1
(2) e
g g 9

Agsume % does not contain a complete system of residues modulo g.
Since ged(@yy ..., 0, ,,9) =1 then A’ must consist of more than
one congruence class mod ¢g’. By the theorem of Kneser and the minimality
of ¢’, it follows that € must contain at least m + 1 distinct residue classes
mod ¢’; thus

€| m-+1

3) >—
g g

Note that g > n and m = [g/n] imply

(4) PR
m — 1.
21 mn 1
g 2

Suppose now that || < 4¢. By (2) and (4) we have

mn m—1<1 < m—1 < 20m+1)
—_— — _— m -
g g 2’ IS"m 1

g 2

Hence, by (3),
€l _m+1 _ mil 1

= >
g g 2(m-+1) 2

which is a contradiction.
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We may therefore assume || > 1g. But in this case it is easily seen
that €+ contains a complete residue system mod g. It follows that the
least possible integer not representable in the form

@by 4o Ty by, g

with z, >0, # >0, byed, is given by

a
2m-max(a)—g = 2a, _, [J] —a,.
acA n
This proves the theorem.
Note that in the case that » = 2 and a, is odd we have

as
G(a,, a,) < 2a, [’5‘] 0y = Q10— 0y — Gy

which is best possible.

An extremal problem. The question of the estimation of G naturally
suggests the following extremal problem. For integers n and ¢, define
g(n,t) by

g{n,t) = max@(a,..., a,)

1

where the max is taken over all a; satisfying

(5) <oy <..<a, <t, ged(ay,...,a,) =1.

By Theorem 1 the following result is immediate.
COROLLARY. g(n,t) < 2i2/n.

On the other hand, it is not hard to see that for the set {x, 2z, ...
vy (M=), ™} with @ = [t/(n—1)] and z* = (n—1)[t/(n—1)]—1,

tZ
gn, ) >G(x,..., 2% > 1—5t for n>2.
n_

Thus, g(n,?) is bounded below by essentially 2/n.
Of course, for n = 2, the exact value of g is given by ¢(2,1)
= (I—1)(t—2)—1. It appears that

(t—2)2
g9(3,1) = [T] -1,

with the sets {¢/2,¢—1, ¢} or {t—2,¢—1, ¢} for t even and {(t—1)/2, t—1, &
for ¢ odd achieving this bound. However, this has not yet been established.
1t follows from the Corollary that g(n, en) < 2¢2n and g(n, n?) < 2n3;
again, the truth probably differs from these estimates by a factor of 1 /2 for
large n.

26 — Acta Arithmetica XXI.
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Determination of g(n, 2n 4+ k). The remainder of the paper will be
concerned with the determination of g(n,2n -+ k) for » large compared
to k. It follows easily from density considerations that g(n,2n-+k)
=2n+2k—1 for k<< —1 (ef. [12]). It was shown in [5] that g(n, 2n)
=2n+1 and g(n,2n+1) =2n+3. It was also proved in [5] that
for k fixed g(n, 2n+k) = 2n+ h(k) for some function k of Lk provided n
is sufficiently large. The exact value of h(k) is given by the next result.

THEOREM 2. For k fized, if n is sufficiently large then
[2n+2k—1  for k< -1,
2n -+ 1 for k=0,
2n+4k—1 for k=1 and n—k =1 (mod 3),
|2n+4k+1  for k=1 and n—k % 1 (mod 3).

g(n, k) =

Proof. By previous remarks we may restrict ourselves to k> 2.
Agsume for a fixed integer K > 2 the theorem holds for all k£ < K. Let
A = {ay,...,a,} be a set satisfying (5) with k¥ = K and n large (to be
specified later). We first establish

2n+4K—1 if wn—K =1 (mod3),
(6) g(n, k) < .
2n+4K+1 i n—K #1 (mod 3).

Let S(4) denote the set of sums {Zn: w;a;: ¢;> 0} we are considering
and let G(A) abbreviate G(a,, ..., an).wl%ote that if there exists an 2,
1<a<2n+K, with zeS8(4), x¢4, then the set A" = AU {«} satisfies

0<ay<...<p,=2n+K =2(n+1)+K—2.
By the induction hypothesis
G(A) =G(A)<2(n+1)+4(K—2)+1 =2n+4K —5 < 2n+4K —1

so that (6) certainly holds in this case. Hence, we may assume A and §(4)
agree below 2n- K.

Next, suppose 2n+K-+1eS(A). Then for A" =Au {2n+K+1}
we have

O<a<..<@ap,=2n+K+1=2n+1)+K—1
so that by the induction hypothesis

GA4) =qAY<2(n+1)+4(K—-1)+1 =2n+4K —1
and (6) holds in this case. Hence, we may assume

on+K+148(4).
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Now, suppose 2n4K+2e8(A4), 2n+ K +3e8(4). For A’ =4y
v {2n+K+2,2n+ K+3} we have
0<a,<..<ap,=2n+K+3=2(n+2)+K—1.
By the induction hypothesis
2n42)+4(K—1)—1 if (n+2

)—(
2(n42)+4(K—1)+1 if (n+2)

)

)

(

— (K —1) = 1(mod 3),
— (K —1) % 1(mod 3)

G(4) = G(A')<‘

’

2n+4K—1 if n—k =1 (mod 3
2n+4K+1 f n—%k £ 1 (mod 3

)

so that (6) holds in this case. Hence we may assume that either
2n+K+2¢8(4A) or 2n+K-+4+3¢S(4).

There are two cases:

(I) Suppose a, < 3K. If at least 3K consecutive integers belong to A
then by successively adding a, to these integers, we infer that G(4)
< 2n+ K and (6) holds in this case. Therefore, we may assume that A4
does not contain 3K consecutive integers.

Since we have assumed 2n+ K +1¢S(A) then foralli, 1 <4< 2n+ K,

K+1
either ¢¢A or 2n+K+1—i¢A. Thus, for exactly [ ] values of j

we have j¢A and n+K+1—j¢A. For a given integer f(K), if n is suffi-
ciently large then for some t<C [%] f(K), each of the integers ¢--1,
1 < i< f(K), satisfies either
t4+ied or 2p+K+1—(t+4d)ed.
Consequently, for some ¢, t+1 < ¢ <t+3K, we have
2n+K—1t'+1e4.

There are several possibilities:

(i) Suppose2n + K —t' ¢ A.Ift' + 2 ¢ A then we would have 2n + K —#' +
+2, 2n+K—t +3e8(A) which contradicts our assumptions on A.
We may therefore assume

2nt+ K —t'—1eA.

But now consider ¢ +3. If ¢ -3 ¢4 then as before we find 2n+ K —1' +2,
2n+ K —1'+3¢8(A4) which is a contradiction. Hence, we must have

2n+ K —1t' —2¢cA.



404 P. Erdés and R. L. Graham

We can continue this argument to conclude that
In+K—t'—sed for 0<s<<3K-—1,

provided f(K) > 6K and = is sufficiently large. But this is a sequence of 3K
consecutive integers in A and since this contradicts our assumption on 4,
then case (i) is impossible.

(ii) Suppose 2n+ K —t'¢ A. Then we have

t'+1eAd.

If we now have t' - 2 ¢ A then as before 2n + K —¢' +2, 2n+ K —t' +3e8(4)
which is a contradiction. Therefore, we may assume t'+2¢4, i.e.,

n+K—t —1ecA.

Now, by using the same arguments as in (i) we can argue that ' +3,
on+K—t—3,...,t' +2r+1, 2n+ K—t'—2r—1eA for 2r < f(K)—3K
if n is sufficiently large. In particular we have

t+2+1led, 0<j< }(f(K)—3K)

K-+1 :
where ¢’ < [%] f(K)+-8K. Since a, < 3K then by successively adding

2a, to the integers ¢’ + 2j - 1, we see that all integers « of the form © = ' -
4+2s+1,s8 > 0, belong to S(A4) provided

6K < f(K)—-3K.
Of course if ¢ = 0 (mod 2), then by adding ¢ +1eA4 to the integers
K-+1
5 ]f(K)—|—6K+2

belong to S(A4). For n sufficiently large, this certainly implies (6). We
may therefore assume

'1+2s4+1, s>0, we see that all integers>2[

' =1 (mod 2)

and consequently all even integers > t'+1 belong to S(4). In fact, is
it clear that if z<A is an odd integer and » < 2n+ K — (' 4-1) then all
odd integers > 2n - K (and hence all integers > 2n + K) belong to S(4).
Thus, we may assume that

K+1

xed, x odd :>x>2n—[ ]f(K)—2K.

Further, if K is odd then 2n-+K +1 is even and therefore belongs
to 8(A4) for n sufficiently large. This contradicts our assumption on A
and we may assume K is even.
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Now, let u be the largest integer such that 2n + K —2u 1 A. Since K
is even it follows that

1 ([K—l—l

S ]f<K>+3K+1).

Consider the K 41 integers 2u+2j, 1 < j < K+ 1. By the definition of %
none of the integers 2n+ K — (2u-+-2j)+1 belongs to A. Since there are
K+ 1] K

at most [ =% of these integers for which both 2u-2j¢4

: K K
and 2n+ K — (2u+ 2§) + 1 ¢.A then we see that at least K +1 — > =7 +1

of them belong to 4, say,
2042y, .., 2u+2f,ed, t=K/241.
Forming the sums
2n4+K—2u+1)+2u+2)), ¢=1,2,...,1,
we obtain at least K /241 sums 2n + K + 2j;,+1 which are > 2n+ K 43
and < 2n43K +3 and which belong to S(4). But all the even integers
2n+K+2r, 1<r< K-+1, also belong to S(4). Hence, S(4) contains

at least n+ (K/241)+ K +1 integers which are less than or equal to
2n+3K +3 and we can find a subset A" = §(4) with

0 << ...<@h sk =20+3K+3—4d,
for some integer d > 0. Since
2n+3K-+3—d)—(2+3K/2+2)< —1

then by the induction hypothesis we coneclude that all integers > 2n |
+ 3K 4+ 3 —dbelong to 8(A). If d > 1 then in fact all integers > 2n - 3K 4-2
belong to S(A); if d = 0 then since 2n 3K -2 is even then we still
have all integers > 2n-+3K +2¢8(A). Thus,

G(A)<2n+ 3K 4-1.
But for K >2, 4K—1> 3K -+1 so that
G(A)<2n+4K—1

and (6) holds in this case. This concludes case (I).

(II) Suppose a, > 3K. There are two cases:

K-+1 _ K+1
(i) Suppose a, > n+ [T+:| Thus, exactly [—;—] of the inte-

K+1
gers which are > n+[ a ] and < 2n+4 K are missing from A. This
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K+1
implies that for some, 1 < ¢ < [—ZL] +1, bothn+2 [

K+1 K+1
a,ndn+2[——2+—] +2—ieA,i.e.,2n+4[ ;_ ]—|—3eS(A). Of course,

K-+1
2

K+1

] +14+7ed

the same argument can be repeated for 2n—|—4[

K+1 K+1
for » sufficientiy large, 2%+4[T+] +j5+2eS(A)yforl <j< 4[ ;_ ]+

] + 4, etc., so that

+3. Hence S(A) contains a subset A’ with
K+1

0<“1<"'<“n+4[§%l+3 =2n+8[ ]+5—d

for some d = 0. Since
K+1 K+1
oo [ 2] o) o[ K]

K+1
then by the induction hypothesis all integers > 2n+ 8 [—Z_L-] + 5 belong

K+1 Kol
toS(A).Butsince2n+4[ ; ]+j+2€S(A)for1<j<4[ ; ]+3

K-+1 K-+1
then all integers > 2n + 4[ ] + 2 belong to S(4). However, 4[%] +

+2 < 4K —1 for K > 2 so that (6) holds in this case.
K+1
(ii) Suppose a, < n+ [%] Consider the 3K —1 integers 2un
G+ K—a,+1+1, 1 <i<3K—1. Since a, is the least element of 4 then
K-+1

at least 3K —1— [ ] of these integers must belong to A. Adding a,

K+1
to each of them gives at least 3K —1— [%] integers in §(A4) which
are > 2n+ K and < 2n+4K. Thus, 8(A4) contains a subset A’ with

0<a<..<d [K+1]=2n+4K—d

n+3K—-1— 3
for some d > 0.
For K > 4,

K41
2(n+3K—1—— [T])> 2n4-4K —d

so that by the induction hypothesis
GA)<GAY<2n+4K—1

and (6) holds. Hence, we may assume K < 3. There are two cases.
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Suppose K =2. If 2n—a;+jed, 4<j<6, then 2n+jeS(4),
4 < j < 6. Thus S(A) contains a subset 4" with

O<a;<..<ap,=2n+6
and by the induction hypothesis
GA)Y<GAY<2n+T

so that (6) holds in this case.

If at least one of 2n—a,+j, 4 <j < 6, is missing from A, then in
tact, exactly one of 2n —a;-j, 4 <j < 6, is missing from A4, and all of
2n—a1—|—jeA, 1<j<9. Hence, 2n+jeS(A), <j<9, and S(4) eon-
tains a subset A’ with

0<ay<ooe < lpys <2n+9.
By the induction hypothesis
GAY<2n+8
and since 2n+47, 2n+8eS(4) then
G(A) < 2n+6

which satisfies (6) in this case.

The case K = 3 is similar and will be omitted. It ecan be checked
that the condition that n be sufficiently large in the preceding arguments
is satisfied, for example, by taking n > 20K>

This conecludes case (I1I) and (6) is proved.

We next exhibit specific sets A which satisfy (6) with equality for »
arbitrarily large. There are three cases.

(i) n— K =1 (mod 3). Write » =3m+K-+1 and let

2m+K m+1

A= U {3¢tu U {3m+ 3K +5—3j}.

i=1

The least element of S(4) which is =1 (mod 3)is 2(3m +3K +2) = 6m +
+6K +4 so that

2n+ 4K —1 = 6m+6K+1¢8(4).
Therefore 0 < a,<...<a, =20+ K and G(4)> 2n+4K —1.
(ii) n — K =2 (mod 3). Write n = 3m+ K +2 and let

2m+K+1 m+1

A= U {3iju U 3m+3K+7—3j}.
i=1 . j=1

(iii) n — K = 0 (mod 3). Write n = 3m+ K and let
2m+4-K

U {3i} v U{6m+3K—]—2 3j}.
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It is easy to see in (ii) and (iii) that A satisfies (5) and G(4) > 2n +
+4K +1.

The examples in (i), (ii) and (iii) together with (6) establish the the-
orem for k¥ = K. This completes the induction step and the theorem is
proved.

Acknowledgment. The authors wish to thank E. G. Straus for
important suggestions in the proof of Theorem 1.

(t—2)

Added in proof: The conjecture g¢(3, t) =[ ]—1 has recently becn

settled in the affirmative by M. Lewin (personal communication).
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